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Abstract

The ability to sequence movements in response to new task demands enables rich and 

adaptive behavior. Such flexibility, however, is computationally costly and can result in halting 

performances. Practicing the same motor sequence repeatedly can render its execution precise, 

fast, and effortless, i.e., ‘automatic’. The basal ganglia are thought to underlie both types of 

sequence execution, yet whether and how their contributions differ is unclear. We parse this in rats 

trained to perform the same motor sequence instructed by cues and in a self-initiated overtrained, 

or ‘automatic’, condition. Neural recordings in the sensorimotor striatum revealed a kinematic 

code independent of the execution mode. While lesions reduced the movement speed and affected 

detailed kinematics similarly, they disrupted high-level sequence structure for automatic, but not 

visually-guided, behaviors. These results suggest that the basal ganglia contribute to learned 

movement kinematics which are essential for ‘automatic’ motor skills but can be dispensable for 

sensory-guided motor sequences.

Introduction

Our brain’s capacity to organize movements and actions in response to new challenges 

allows us to imitate trendy dance moves or play Chopin etudes from sheet music. 

Assembling motor sequences in such flexible and deliberate ways can be mentally taxing 

and computationally costly, resulting in slow1 and error-prone performances subject to 

cognitive interference2. However, executing the same motor sequence, such as typing a 
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password or playing a favorite piano sonata, repeatedly and consistently, can turn it into a 

continuous task-specific movement pattern that is fluid, fast3–5, precise6, efficient7, and less 

cognitively demanding2,8; in a word: ‘automatic’5,9,10. Thus, the very same motor sequence 

can be executed in qualitatively and subjectively distinct ways1,9–11.

Given that the specification of the same motor sequence can differ so markedly (Fig. 1), 

the underlying neural circuits are thought to differ as well5,8,12–14. For example, a discrete 

motor sequence informed by external sensory cues will engage a serial action selection 

process while single overtrained, or ‘automatic’, motor sequences, can, by virtue of being 

the same every time, be specified in terms of continuous low-level motor commands and 

sensorimotor policies (Fig. 1c)15–18. Indeed, our colloquial reference to automatic behaviors 

being stored in ‘muscle memory’ reflects a subjective sense that they are, in comparison 

to sensory-guided motor sequences, less reliant on higher-order cognitive processes and 

produced by circuits closer to the motor periphery5,11,12,19.

Besides being instructed by sensory cues or automatically expressed, motor sequences 

can also be informed by working memory (Fig. 1b), as is the case when we try to 

imitate our piano teacher or reproduce our own improvisations from a few moments 

ago. The generation of such motor sequences are akin to sensory-guided ones in that 

they too demand considerable mental effort20 and are defined by (remembered) sensory 

experiences. Given these shared qualities, we refer to the sensory-guided and working 

memory-guided sequences as ‘flexible’13,21 to distinguish them from rote and inflexible 

automatic motor sequences1,10. However, working memory-guided motor sequences are also 

similar to automatic ones in that their progression is informed by internal neural processes. 

Hence these two modes of sequence execution, automatic and working memory-guided, 

are sometimes collectively referred to as ‘internally’ generated, to distinguish them from 

‘externally’ cued ones14,22,23.

Yet the degree to which the distinctions between “flexible’ vs ‘automatic’ and ‘externally 

vs ‘internally’ generated motor sequences map onto specific neural circuits and mechanisms 

is unclear13,24,25. Here we set out to probe how the neural implementations of automatic, 

visually- and working memory-guided sequences differ, focusing on the sensorimotor and 

associative arms of the basal ganglia (BG). While these pathways have been implicated in 

various aspects of motor sequence learning and execution19,26–29, their specific contribution 

to sensory-guided, working memory-guided, and automatic behaviors, have yet to be fully 

understood12,14,24,25,30.

To get at the distinction in how the BG contribute to the different types of motor sequences, 

we developed a paradigm for rats in which they are trained perform the very same motor 

sequence under the three conditions discussed above (Fig 1). We viewed BG function 

through the lens of the dorsal striatum, the input zone to the sensorimotor and associative 

arms of the BG. Surprisingly, neural recordings in sensorimotor striatum (dorsolateral 

striatum, DLS, in rodents) – a region implicated in behavioral automaticity5,31 – revealed no 

meaningful difference across task conditions, with neurons representing low-level kinematic 

features in all cases. The neural population showed no selectivity for higher-level attributes 

of the behavior, such as the order or sequential context of a given movement.
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Lesions to the DLS, however, revealed a stark contrast across task conditions, with sequence 

organization being essentially lost for automatic and working memory-guided sequences, 

but largely preserved for sequences informed by visual cues. Additionally, the movements 

across all three conditions were slower and more variable post-lesion, resembling the 

animal’s behavior early in learning, a finding consistent with a general role for the BG 

in specifying the detailed kinematics, including the vigor15,23, of learned movements.

Results

A discrete sequence production task for rats

To directly compare the neural substrates of visually-guided, working memory-guided, and 

automatic motor sequences, we designed, based on similar paradigms in humans and non-

human primates (NHPs)14,30,32, a discrete sequence production task in which rats execute 

the same motor sequence in the three different conditions. To distinguish motor automaticity 

from habit formation5,33,34, two independent processes that may involve some of the same 

neural substrates5,34, we wanted our rats to achieve automaticity on a motor sequence 

without developing it into a habit. Since habits tend to form when the correlation between 

actions and outcomes is weak or variable35,36, if the reward is delayed37, or, further, if 

the reward is appetitive or addictive38,39, our paradigm directly linked behavioral variants 

to a water reward in a training process that resulted in highly overtrained and automatic 

behaviors expressed in goal-directed ways (Extended Data Fig. 1).

To facilitate comparisons to other motor-related studies in rodents, including our own15,16, 

which probe forelimb26,29,40–42 and whole-body orienting43,44 movements, we opted for 

a ‘piano-playing’ task, in which rats are rewarded for performing sequences of three 

keypresses on a three-key ‘piano’ in a prescribed order, alternating between forelimb lever-

presses and orienting movements (12 possible sequences; see Fig. 2a, Supplementary Movie 

1).

Rats were initially trained to press a single lever for a water reward, then to associate a 

visual cue above each lever with pressing that lever (see Methods). After acquiring the cue-

action association for each of the levers (5164 ± 948 trials; mean ± s.e.m), rats transitioned 

from single presses to two- and, ultimately, three-element sequences. In ‘flexible’ training 

sessions, the rewarded keypress sequence was either signaled directly and sequentially by 

visual cues (CUE) or had to be remembered from the instructed sequence of previous trials 

(working memory, WM; see Methods). This trial design, adopted from studies in NHPs22, 

allowed us to compare performance and neural dynamics for sequences guided by visual 

cues and internally generated from working memory14,45. Blocks of CUE and WM trials 

were interleaved, and, in each, one of the 12 possible sequences was randomly selected and 

rewarded (Fig. 2b).

In separate ‘automatic’ sessions (see Methods), animals were trained to produce the very 

same pre-determined keypress sequence - randomly chosen for each rat from the 12 

possible sequences - for the duration of the months-long experiment (automatic condition, 

AUTO). Because this automatic sequence is one of the 12 sequences rewarded in the 
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flexible sessions, we could compare the same motor sequence across the three distinct task 

conditions.

Rats master the ‘piano playing’ task

Rats learned to produce the prescribed sequences under all three conditions (CUE, WM, 

AUTO) (Fig. 2c–d). We deemed rats to be ‘experts’ when both their success rates and trial 

times were reliably within 0.5σ of asymptotic performance values (see Methods), which 

happened after 17,623 ± 7616 trials (75 ± 23 days) in the CUE task, 11330 ± 5278 trials 

(88±30) days in the WM task, and 14061 ± 7082 (72 ± 21 days) trials in the AUTO task.

The success rate of expert rats was, on an average, 60.19% ± 10.73% (CUE), 44.29 

± 15.45% (WM) and 79.57 ± 11.84% (AUTO), i.e. many times better than chance 

performance, which would be 8.33% considering only the 12 prescribed sequences or 3.7% 

considering all possible three element keypress sequences. As is expected from similar 

learning paradigms in humans and NHPs3,4,14, the mean and variability of the trial times 

decreased with learning (Fig. 2e–f), while the stereotypy of the associated movement 

patterns increased across all three task conditions as did the smoothness and efficiency 

of the movement trajectories (Fig. 2g, see Methods)7,46.

Kinematic similarities across task conditions and movement elements

Distinguishing the neural circuit implementation of the different forms of motor sequence 

execution requires dissociating differences in task conditions from differences in movement 

kinematics. To compare kinematics for the same motor sequence across tasks (i.e. CUE, 

WM or AUTO), we tracked the rat’s dominant forelimb (i.e. the one pressing the lever) 

and nose from videos recorded from the sides and top (Fig. 2g, Supp vid 1, Extended Data 

Fig. 2a)47,48. Comparing trials of similar duration across the tasks revealed very similar 

forelimb and nose trajectories (Fig. 2h, Extended Data Fig. 2b–c). Similarity in kinematics 

is important because it allows us to interpret any potential differences in neural activity 

and sensitivity to neural circuit manipulations as being due to differences in task condition 

(AUTO, WM, CUE) rather than low-level aspects of motor implementation.

Single overtrained motor sequences show the signatures of automaticity

In humans, motor automaticity is distinguished by improved performance, increased 

movement speed, and less variable execution times1,5,9. While we found that the kinematics 

for the same motor sequence across session types was overall similar (Fig. 2e–f, 

Supplementary Movie 1), we parsed these metrics to assess whether automaticity had been 

established in AUTO sessions (Fig 3a–d).

Consistent with signatures of automaticity, we found that trials in AUTO sessions were 

indeed more successful, faster, and less variable than when performing the same sequence 

in flexible sessions (Fig. 3a–c). We also found that the entropy, or randomness, of erroneous 

sequences was much lower in the AUTO sessions than for either of the flexible sessions 

(CUE, WM; Fig. 3d), consistent with the idea that errors in automatic sequence execution 

are more systematic or less variable49.
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Furthermore, if automatic motor sequences are consolidated and defined in terms of 

continuous low-level motor commands15,42,50,51, and not as serial discrete action selection, 

unsuccessful trials in AUTO sessions should be dominated by errors relating to variability 

in movement kinematics (e.g. a forelimb swipe at the ‘correct’ lever that misses the target), 

as opposed to errors in higher-level sequencing (Supplementary Movie 2). In support of this, 

failures in AUTO trials were mostly due to rats swiping at but missing the ‘correct’ lever or 

failing to depress it beyond the threshold for detection (approximately 63.81 ± 19.56% of all 

AUTO errors were of this type; Fig. 3e). This was in contrast to flexible sessions, in which 

unsuccessful attempts were dominated by true sequence errors, where rats orient towards 

and press the ‘wrong’ lever (only 17.6 ± 18.25 % of CUE and 29.62 ± 19.02% of WM errors 

were motor errors). Interestingly, potential sequence errors in the AUTO sessions were twice 

as likely to come after trials with motor execution errors compared to correct trials (Fig. 3f, 

see Methods), consistent with a drop in reward triggering increased motor exploration49.

Similar to studies in humans and NHPs 23,52, rats were also more likely to execute 

the automatic sequence in flexible sessions compared to chance (12.35±4.43% in CUE, 

14.99±4.85% in WM, where chance is 8.3%; Fig. 3g).

In aggregate, these differences in the quality of motor sequence execution and the error 

modes across the distinct session types are consistent with studies comparing sensory 

cued and automatic motor sequences in humans3,4,10 and indicate that automaticity of the 

overtrained motor sequence, as commonly defined in the literature, had been achieved.

DLS represents motor sequences similarly across task conditions

We had designed our behavioral paradigm to directly probe whether and how the neural 

implementations of different types of motor sequences differ at the level of the striatum (Fig. 

1).To directly and effectively probe this, we implanted 64-channel tetrode drives targeting 

the DLS in expert rats (n=4, Extended Data Fig. 3a) and compared the activity of the same 

neurons for the same motor sequence in AUTO, CUE and WM trials. We recorded neural 

activity continuously over several weeks, comparing units recorded for at least 5 successful 

trials in each task condition (CUE, WM, AUTO) for the same motor sequence (in total: 

n=579 neurons selected from 2468 total, see Methods).

The comparisons across task conditions (Fig. 4a) were striking for the lack of any qualitative 

difference: task-related activity patterns of DLS neurons for the same motor sequence 

were highly correlated across all trial types (CUE, WM and AUTO; Fig. 3a–b,d) with 

no significant difference in either the average firing rates or peak z-scored activity (Fig. 

4c). We found a similar result when splitting the population into putative medium spiny 

neurons (MSNs) and fast-spiking interneurons (FSIs) (Extended Data Fig. 4). Thus, the 

neural recordings, on their own, did not suggest a meaningful difference in how the BG are 

engaged in sensory-guided, working memory-guided, and automatic motor execution despite 

prior suggestions to the contrary12,53–55.

The DLS does not encode high-level aspects of the sequence

We next analyzed neural activity patterns in DLS for clues about the general contributions 

it makes to motor sequence execution, focusing first on its putative role in action selection. 
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Prior studies supporting such a function have interpreted elevated average DLS activity at 

the boundaries of ‘chunked’ actions41,56,57 as an indication that the BG help bias their 

initiation and/or termination by facilitating and/or inhibiting downstream control circuits. 

To test for this, we examined the firing rate modulation over the length of the whole 

sequence (Fig. 4e; see Methods). We found no evidence for population activity in the 

DLS preferentially marking the start and/or stop of automatic sequences; neither did it 

consistently mark the boundaries between behavioral elements (lever-presses, orienting 

movements) or pairs of such (combined orient and lever-press movements) (Fig. 4e).

However, DLS activity could reflect sequential organization in other ways58–60. For 

example, it has been proposed that DLS neurons represent the sequential context of 

movements and actions, including their ordinal position or, in lever-pressing tasks, the 

identity of the lever being pressed40. In such a coding scheme, DLS activity associated 

with a specific movement should not be a mere function of its kinematics, but also reflect 

higher-order features of the sequence25.

To explicitly probe this, we expanded our analysis to all 12 motor sequences generated 

in flexible sessions. If DLS represents higher-order features of sequence organization, its 

neural activity should differ when the same lever-press or orienting movement is performed 

in different sequential contexts (e.g., the press and orienting movement L→C in the 

sequence L→C→L vs. the sequence C→L→C; Fig. 5a). We did not find this to be the case: 

neural activity across two sequences composed of different elements but similar lever-press 

and orienting movements was similar (Fig. 5a). More generally, DLS activity associated 

with a given motor element was highly correlated regardless of the sequence in which it 

was embedded, its ordinal position in the sequence (1st, 2nd, 3rd press), or the specific lever 

being pressed (i.e. L, C, or R) (Fig. 5a–e). There was however a very clear distinction 

in how striatal neurons represented orienting movements to the left and right, both short 

(e.g., L→C) or long (e.g., L→R), consistent with an egocentric kinematic code (Fig. 5d–e, 

Extended Data Fig. 5a–b).

DLS encodes detailed movement kinematics

Based on this initial analysis and related studies15,42,51,61, a plausible alternative to DLS 

representing higher-order aspects of discrete motor sequences is that is encodes - and 

contributes to shaping - the detailed kinematics of learned sequential movement patterns. 

While DLS is not required for species-typical lever-press or orienting movements15,29,44, it 

can, by acting on downstream control circuits, help make them more adapted to a specific 

task15,42,62 (Fig. 2e). In this scenario, we would expect DLS neurons to encode kinematic 

features continuously throughout the behavior15,50,51.

To probe this idea15, we trained a multilayer neural network to predict, using the spiking 

activity of simultaneously recorded DLS units, the instantaneous velocity of the rats’ 

active forelimb and nose during the flexible task, as viewed from a side and top camera 

respectively (Fig. 5f, Extended Data Fig 6a). Consistent with observations from trial-

averaged ensemble activity, we could decode movement kinematics on individual trials 

across the different sequences from populations of DLS neurons (Fig. 5g). Decoders trained 

on a subset of sequences could predict kinematics from held-out sequences just as well (Fig. 
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5g), implying that the kinematic code in DLS is invariant to the sequential context of the 

movements as also suggested by our earlier analysis (Fig. 5d–e, Extended Data Fig 6).

Recent studies50,63, have suggested that DLS encodes the progression, or ‘phase’, of 

a behavioral sequence. In the context of stereotyped movement sequences, however, 

kinematics and phase are tightly coupled, making it difficult to parse which of these 

attributes DLS activity reflects64. Because our flexible task condition breaks this coupling, 

kinematics and phase become dissociable. Training a decoder to predict the phase of the 

behavior, however, failed (Fig. 5h), meaning that phase in the sequence cannot be recovered 

from DLS activity alone. Only when phase and kinematics were coupled, i.e. when we 

considered only single sequences with no repeated motor elements (e.g., lever taps, see 

Methods for how these were selected), could we decode phase (Fig. 5h). Taken together, our 

results suggest that DLS encodes low-level continuous kinematics of movements in a way 

that is – in contrast to prior reports40,41 – invariant to their sequential context.

Probing DLS function by lesions

Although our neural recordings showed that DLS activity reflects ongoing kinematics in a 

similar way for sensory-guided, working memory-guided, and automatic motor sequences, 

this does not establish a causal role for DLS in their execution. Alternatively, DLS activity 

could – in one or all task conditions – simply reflect input from essential sensorimotor 

control circuits18. To arbitrate between these possibilities, we lesioned DLS bilaterally in 

expert animals (n=7 rats, see Methods, Fig. 6a, Extended Data Fig. 3b).

In interpreting the effects of striatal lesions, we distinguish, as we did for the neural analysis, 

two aspects of performance, each associated with a putative function of the BG (Fig. 6b). 

The first is the ability to perform the prescribed sequence of lever presses (i.e. ‘sequencing’). 

The second is the ability to use fast and efficient movements refined and adapted to the 

task (i.e. ‘kinematics’). Note that only the sequencing aspect is required for reward. Parsing 

performance in this way allowed us to probe whether striatum contributes to high-level 

sequence structure and low-level movement kinematics differently across task conditions.

DLS lesions affect high-level sequence structure on automatic and working-memory, but 
not visually cued, trials.

Following a seven-day post-lesion recovery (see Methods), the rats’ ability to perform 

the AUTO sequence was severely impaired (Fig. 6c–d), dropping to near chance levels 

(8.33%). In stark contrast, success rates on CUE sequences were comparable to pre-lesion 

(Fig. 6c–d), save for a brief drop in the first few sessions after the lesions, consistent with 

non-specific transient effects of the surgery15,16. Success rates in WM trials, on the other 

hand, were chronically affected with performance dropping to near chance levels (Fig. 6c–d) 

and changing significantly more than CUE performance (p=0.015625, Wilcoxon sign-rank 

test). A seven-day control break before the lesion (see Methods), did not significantly affect 

the behavior in either task condition (Extended Data Fig. 7).

One possible explanation for the lesion resilience in CUE trials, and the less severe 

performance drop in WM trials (compared to AUTO), is that visual cues aid movement 

initiation in a DLS-independent manner. However, the post-lesion drop in success rate on 
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AUTO and WM trials could not be explained by a deficit in movement initiation42. Although 

DLS lesioned rats generated fewer lever-presses overall, they were actively engaged in 

the task and performed similar numbers of trials across flexible and automatic sessions 

(Extended Data Fig. 8a).

Taken together, these results are consistent with DLS having an essential role in controlling 

the sequence structure for automatic (AUTO) and working memory-guided motor sequences 

(WM)15,54. However, DLS is dispensable for sequencing visually-cued behaviors (CUE).

DLS lesions affect learned movement kinematics equally across task conditions

Consistent with a general role for the BG in specifying learned task-specific movement 

kinematics15, we found that orienting and lever-pressing movements across all three tasks 

were affected to a similar degree. The ‘vigor’ of the movements, defined as the scalar 

gain factor applied to the kinematic features of a movement such as movement latency or 

speed62,65,66 was also reduced (Fig. 6e–f, Extended Data Fig. 9).

One plausible coupling between deficits in kinematics/vigor and the ability to generate the 

proper sequence is if the neural dynamics that inform the sequence in AUTO and WM 

trials can be expressed only at higher (i.e. closer to pre-lesion) speeds (CUE trials would be 

paced and informed by visual cues and hence would not be affected). Under this hypothesis, 

successful post-lesion trials should be performed with similar speeds to pre-lesion trials. We 

saw no evidence for this (Fig. 6e–f, Extended Data Fig. 9e–g).

Another interpretation is that DLS lesion-induced reduction in vigor reflects a change in 

sensitivity to effort or motivation61,66. Because overtrained behaviors are thought to be 

less sensitive to effort62,the expectation is that lesions would impact the speed, success, 

or overall engagement of AUTO trials less than CUE or WM trials. That we saw similar 

relative decreases in vigor across all task conditions (Fig. 6e–f) and similar levels of 

engagement in both session types post-lesion (Extended Data Fig. 9a), suggests that the 

reduction in vigor is not due to a change in motor motivation.

While the lesion-induced effects on overall movement speed and latency are consistent 

with prior reports on BG’s role in controlling movement vigor23,61, other aspects of 

kinematics were also affected. Trial-to-trial movement variability, even for similar duration 

movements, was dramatically increased (Fig. 6g–h). Furthermore, the smoothness of task-

related movements, which increases over learning46, also decreased following DLS lesions 

(Fig. 6i). Comparing the effects on vigor to these, more fine-grained, aspects of kinematics 

showed that they were largely uncorrelated, consistent with DLS affecting vigor and more 

fine-grained aspects of kinematics independently (Extended Data Fig. 9h).

Interestingly, we found that the quality of the movements post-lesion reverted to what is 

seen early in learning (Extended Data Fig. 8b–g). This suggest that the basic movements 

that form the building blocks of the animal’s task-relevant behavior are controlled by circuits 

downstream of the BG (likely brainstem)67 and that the sensorimotor arm of the BG adds 

learned task-specific kinematic refinements to these species-typical motor programs17.
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The DMS is not required for motor sequence execution in either task condition

Our focus on sensorimotor striatum (DLS) was motivated by its known role in movement 

execution62,68. In contrast to DLS, which receives much of its input from sensorimotor 

cortex, dorsomedial striatum (DMS) receives its cortical input predominantly from PFC and 

PPC69. Though this associative region of the striatum has been implicated in flexible control 

of behavior, such as modifying, switching, and updating behavioral choices in response to 

previously learned associations70,71, whether it has an essential role in generating sensory- 

or working memory-guided motor sequences is less clear29,44. To probe this, we lesioned 

DMS bilaterally in a separate cohort of expert animals (n=6 rats, see Methods, Fig. 7a, 

Extended Data Fig. 3c).

Consistent with prior work15, DMS was not required for automatic motor sequence 

execution (Fig. 7b–c). More surprisingly, DMS lesions also did not have any lasting effects 

on flexible motor sequence execution in either WM or CUE trials (Fig. 7d–h). Furthermore, 

unlike for DLS, lesions of DMS did not significantly affect kinematics in either task 

condition, with lesioned rats showing no consistent increase in trial time or mean trial speed 

or a drop in the stereotypy of their task-related movements (Fig. 7d–h). This reinforces 

the dissociation between the DLS and DMS in terms of low-level kinematic control15, and 

further suggests that DMS is not necessary for either sequencing or kinematic aspects of 

well-trained motor sequences. Whether DMS plays a role in early motor sequence learning 

remains an intriguing open question27–29,72.

A simple neural network model can account for the results in both CUE and AUTO tasks

At first glance, our results suggesting both similar (e.g., in terms of coding properties and 

contribution to low-level kinematics) and different (e.g., in terms of effects of lesions on 

high-level sequence structure) functions for DLS across tasks, may seem discrepant. To 

reconcile these findings and better inform the circuit-level logic underlying motor sequence 

execution, we built a simple neural network model of the motor system (Fig. 8a) in which 

a DLS-like circuit learns to interact with ‘downstream’ control circuits under different task 

conditions. Our modeling focused on the sensory-guided and automatic tasks, as these show 

the clearest distinctions in our experimental data, setting aside for this analysis the working 

memory-driven condition.

The DLS network in our model contained no recurrence, reflecting the fact that spiny 

projection neurons are coupled via relatively weak and sparse lateral inhibition73. The 

‘downstream’ component of the model – intended to capture the control circuits modulated 

by the BG – was made recurrent. For simplicity, and to focus on the DLS, we abstracted 

away the details of how it connects to downstream control circuits (i.e., through other BG 

nuclei, thalamus, etc.), modeling them with a set of linear synaptic weights. To capture the 

ability of animals to execute cued lever presses prior to sequence training, we pretrained 

our model to perform a simple in-silico version of ‘lever-pressing’: moving a virtual 

manipulandum to a target in a 2D environment (Methods).

We then trained the DLS input synapses such that the network’s output ‘moved’ through 

sequences of three targets (Fig. 8b, Methods). The same network was tasked with producing 
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sensory-guided sequences instructed by external inputs (CUE task), and also a single 

internally generated sequence (AUTO task; see Methods).

Since animals value time74 and reduce trial duration as a function of learning (Fig. 2d), our 

training procedure incentivized the model to reach the three target positions in the correct 

order as quickly as possible. The decision to train the DLS input synapses was inspired 

by the presumed role of cortico-striatal and thalamo-striatal plasticity in reinforcement 

learning17,75.

To compare the performance of our network model to that of real rats, we conducted 

analyses of the model analogous to those performed on our experimental data. We found that 

the activity of the neural units in the trained DLS network was largely independent of task 

condition as seen in our data (Figs. 8c–d; compare with Figs. 4b,d). This independence 

reflects an emergent alignment of DLS inputs (which are trained on both tasks) for 

AUTO and CUE trials with the same target sequence (Fig. 8e). We also recapitulated our 

experimental observation that DLS network representations reflected egocentric direction-

of-motion information (Fig. 8f; compare with Figs. 5d–e).

Next, we simulated lesions to the DLS by removing this part of the model following 

training, comparing the effects on sequencing and kinematics separately. We found that DLS 

removal left high-level sequencing impaired for AUTO but not CUE trials (Fig. 8g; compare 

with Fig. 6a), recapitulating our experimental results. The model also captured the effect of 

DLS lesions on movement trajectories, decreasing movement velocity and increasing trial 

time across execution modes. This is consistent with a role for DLS in adapting movement 

kinematics independent of task condition (Figs. 8h–i; compare with Figs. 6a–b).

Thus, key features of the experimental data – invariance of DLS activity to task condition, 

sensitivity of automatic task performance to DLS lesion, and a role for DLS activity in 

shaping learned movement kinematics – all emerge naturally during task learning when 

using a network model with basal ganglia-like circuitry.

In the model, we used a biologically-inspired circuit architecture (Fig. 8a) and matched the 

training procedure of the network to that of our rats (i.e., with sequence training overlaid 

on pretrained circuits). To probe how different features of our model contributed to the 

results, we also considered three alternative circuit models/paradigms. First, to test whether 

our results depended on DLS output being time-varying and high-dimensional, so as to 

specify detailed kinematics, we made the DLS output scalar, thus constraining it to represent 

coarse sequence-level information, e.g. movement speed modulation or ‘vigor’, as has been 

suggested23,61. This model led to markedly different DLS activity patterns across execution 

modes, in violation of our experimental findings (Extended Data Fig. 10a–g).

We next explored an ‘action selection’ model in which DLS is constrained to generate 

signals only at the boundaries of elementary movements, which inform the rest of the circuit 

of the next ‘lever-press’ to be executed. This model resulted in DLS activity patterns that 

lacked prominent representations of egocentric movement information, again in violation 

of our experimental data (Extended Data Fig. 10h–m). Finally, to test whether the task-

specific deficits of our lesions were due to the existence of pre-trained motor circuits 
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capable of executing cued movements, we eliminated the pre-training of downstream circuits 

and trained the full network de novo on all aspects of both task conditions (CUE and 

AUTO). This simulation failed to capture the DLS lesion resilience seen in our experiments 

(Extended Data Fig. 10n–s).

Comparing the results from our various models with our experimental data further supports 

the idea that, for behaviors with learned task-specific kinematics, the BG provide fine-scale 

kinematic control signals to downstream circuits, which in the case of automatic motor 

sequences defines the high-level sequential structure of the learned behavior.

Discussion

We set out to probe the BG’s contribution to motor sequence execution and how it differs 

depending on whether the sequence is informed by sensory cues, working memory, or 

is generated automatically after lengthy overtraining (Fig. 1). Surprisingly, neural activity 

patterns in the sensorimotor striatum (DLS) of rats producing the same three-element 

sequences were similar across the different task conditions (Figs. 2–4), representing low-

level kinematic features of the behaviors (Fig. 5). Consistent with this coding scheme, 

lesions to the DLS affected task-specific movement kinematics similarly in all tasks. 

Interestingly, higher-level sequential organization, while not represented in DLS, was 

affected by DLS lesions on overtrained and working memory-guided trials but remained 

intact for visually cued sequences (Fig. 6). Lesions to the associative regions of the striatum 

(DMS) had only transient effects on performance and no effect on movement kinematics 

(Fig. 7). A simple network model could recapitulate our results and provide an explanation 

for the different findings: DLS learns to transform its inputs into task-invariant activity 

patterns that provide similar kinematic control signals to downstream motor circuits in all 

task conditions (Fig. 8).

DLS’s role in specifying low-level kinematics of task-specific learned movements

The BG have been implicated in a diverse array of functions related to motor sequence 

execution, including action selection26,60,76, the storage of sensorimotor associations15,18, 

chunking76, and low-level kinematic specification of the requisite movements15,23,42,51. 

Evidence for the different functions comes from studies that challenge animals to produce 

motor sequences in different ways11, some relying on sensory cues others on working 

memory to inform sequencing54,55,59, while many probe overtrained, or automatic, sequence 

execution15,28,40,41,50. Thus, the often-discrepant views of BG’s role in motor sequence 

execution could simply reflect the different computational demands of the various tasks and 

BG’s ability to contribute to each of them in different ways and to different degrees.

Our experimental paradigm allowed us to test this by probing striatal function across three 

distinct task conditions of motor sequence execution in the same animal and across the 

same neural populations. Surprisingly, we did not find any meaningful difference in DLS 

activity when animals performed the same motor sequence in the different task conditions, 

representing ego-centric movement kinematics in all cases15,42,50,51,62.
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Consistent with a role for the DLS in specifying fine-grained time-varying kinematics 

of acquired behaviors, lesions affected task-specific learned movements across the task 

conditions (Fig. 6e–f). While lesioned animals could still orient towards the levers and press 

them, the speed and variability of their movements reverted to what they expressed early in 

learning (Extended Data Fig. 8b–f), consistent with the results from an earlier study15.

Together, these results implicate the DLS in the task-specific refinement of species-typical 

movements generated in downstream control circuits, in our case, likely in the brainstem67. 

We saw a similar result in our circuit model: when the ‘DLS’ circuit was allowed to interact 

with pre-trained ‘downstream circuits’ that could independently respond to cues, variability 

in trial duration decreased following sequence learning and increased following DLS lesion 

for both automatic and cued execution modes (Fig. 8h–i). Dissecting the model revealed 

that, despite receiving different inputs across modes, the DLS learned task-invariant activity 

that modulated movement kinematics by acting on its downstream targets.

DLS role in generating high-level sequential structure?

Despite our experiments implicating the BG in the specification of task-specific movement 

kinematics15,42,50, successful performance in our task does not explicitly require such 

adapted kinematics. Reward is contingent only on the three-element sequence being 

generated as prescribed, which can be done also with slow and inefficient movements akin 

to what DLS lesioned animals express. Therefore, deficits in task performance after DLS 

lesions would seem to implicate it also in the control of high-level sequence structure.

However, we found no evidence for DLS activity representing such sequence structure. 

Furthermore, while DLS lesions severely affected performance in automatic and working 

memory-guided sessions, there was no significant lasting effect on the success rate in 

visually cued trials despite the kinematics being similarly affected. Interestingly, this 

dissociation mirrors what is seen in Parkinson’s patients, whose inability to execute 

internally generated motor sequences can be rescued by providing instructive visual or 

auditory cues19. Intriguingly, much like we see in our lesioned rats, Parkinson patients 

exhibit kinematic deficits, including in movement vigor, independently of the patient’s 

ability to move accurately66. Taken together with our results, this implies that the BG need 

not be essential for expressing cue-action associations or the serial action-selection process 

they inform but provide kinematic refinement to the requisite movements.

That DLS lesions affected sequence structure on trials in which the prescribed sequence was 

not informed by external cues (AUTO, WM trials), raises the question of how the DLS, 

and the BG more generally, contributes to sequencing such internally generated behaviors? 

For highly stereotyped overtrained motor sequences (expressed on AUTO trials), we posit 

that the behavior becomes consolidated in terms of DLS-dependent continuous low-level 

kinematics9,25. In this case, behavioral progression would no longer rely on the selection 

of discrete actions but instead results from an invariant and continuous mapping of past to 

future behavior, a process we argue is DLS dependent11,15.
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DLS role in ‘chunking’ and action selection?

The BG have also been widely implicated in the process of ‘chunking’76, through which 

a motor sequence initially generated by a serial decision-making process becomes linked, 

over training, in a way that allows the sequence to be selected and executed as a single 

action76. Support for BG’s role in chunking comes from studies showing that the neural 

representation of task-specific motor sequences in striatum becomes sparser with extended 

practice56,77, preferentially marking the boundaries (i.e. start and stop) of overtrained, or 

‘chunked’, behaviors40,41,56. Such sparsification is consistent with a role for the BG in 

selecting actions elaborated in downstream circuits56,77. For sensory- and working memory-

guided behaviors, action selection would occur at the level of individual elements and hence 

be more granular, while selection for overtrained behaviors would happen at the level of the 

whole sequence or ‘chunk’.

Our paradigm allowed us to directly probe whether DLS activity reflects such a function by 

comparing it for the same motor sequence with similar kinematics in an automatic (selection 

of the sequence as a chunk) and a flexible (serial selection of discrete motor elements) 

context (Fig. 1). Not only did we fail to see prominent start/stop activity on automatic 

trials, but we found that flexible and automatic motor sequences share highly correlated 

representations in the DLS (Fig. 4).

How should the differences between our results and those showing signatures of chunking 

and – implicitly – the selection of overtrained sequences by the BG be interpreted? 

First, most studies implicating BG in chunking tend to compare overall activity early in 

learning to what is seen in the expert (see, e.g.27,53,57,77). Any observed activity difference 

could thus reflect either the process of chunking or changes in movement kinematics that 

occur as a function of training. For example, one recent study found behaviorally-locked 

sequential activity patterns in DLS already early in learning, while position- and speed-

related activity became more prominent after extensive practice50. That we see no difference 

across automatic and flexible motor sequences suggests that start/stop and sequence-specific 

activity seen in previous studies is not the consequence of motor chunking per se but 

may instead reflect learning-related changes in motor output or a shift in how the DLS 

contributes to it.

Alternatively, the lack of sequence-specific activity in our study could mean that the motor 

sequence we overtrained failed to coalesce into a single ‘chunk’ due to some peculiarity 

of our experimental approach. We do not find this plausible, given the clear signatures 

of automaticity we see (Fig. 3) and the lengthy training times. Furthermore, in an earlier 

study, in which we trained rats to generate highly stereotyped and stable movement patterns 

without any need for serial decision making or action selection, we similarly did not see 

start/stop activity15.

While our results do not support a role for the BG in initiating consolidated motor chunks 

elaborated downstream, they are consistent with overtrained motor sequences becoming 

defined as BG-dependent motor chunks. Thus, rather than selecting them, BG’s role in 

motor chunking could be in transforming discrete motor sequences into single continuous 
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actions in which the high-level sequential structure of the overtrained behavior is specified 

by BG-dependent low-level kinematics.

Circuits controlling sensory-guided motor sequences need to be elucidated

Our finding that visually guided motor sequences can be performed as prescribed after DLS 

and DMS lesions, begs the question of which circuits control the progression of externally 

cued behaviors. Work in humans and NHPs have suggested a role for cortex22,30,78. 

Though we have shown that motor cortex is not required for executing highly overtrained 

automatic behaviors in rodents16, it remains an open question whether and how motor cortex 

contributes to sensory-guided motor sequences and the degree to which its function differs 

across task conditions. Future experiments will be needed to address the degree to which 

motor cortex’s contributions to movement control depend on the specific challenges posed 

by a task, and the condition under which its function require the BG.

Methods:

Animals:

The care and experimental manipulation of all animals were reviewed and approved by the 

Harvard Institutional Animal Care and Use Committee. Experimental subjects were female 

Long Evans (strain code 006) rats 3- to 8- months at the start of training (Charles River, 

RRID: RGD_2308852).

Statistics and Reproducibility:

Because the behavioral effects of our circuit manipulations could not be pre-specified before 

the experiments, we chose sample sizes that would allow for identification of outliers and for 

validation of experimental reproducibility. Animals were excluded from experiments post 

hoc if the lesions were found to be outside the intended target area or affected additional 

brain structures (see “Lesion surgeries” and “Histology” section). Additionally, units with 

very low firing rates (<0.25 Hz) or units not recorded across all trial types during task 

execution were excluded from analyses (see “Criteria for unit selection” for details). The 

investigators were not blinded to allocation during experiments and outcome assessment, 

unless otherwise stated.

Statistical tests applied to the behavioral data were nonparametric and did not assume 

normality. Statistical tests applied to electrophysiological data used parametric statistical 

tests (Student’s t-test). The data distribution for these analyses were assumed to be normal, 

but this was not formally tested. All statistical tests were two-sided. For more details, and a 

description of the test used for each figure, see Supplementary Information, Supplementary 

Table 1.

No statistical methods were used to predetermine the number of subjects in our study, 

but our sample sizes were similar to those reported in previous publications15,40,44,50. The 

subjects were randomly allocated to experimental groups. Data collection and analyses were 

not performed blind to the conditions of the experiments, except for histological verification 

of lesion location and sizes.
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Behavioral apparatus:

Animals (n=23 total) were trained on our discrete sequence production task (the ‘piano’ 

task) in a fully automated home-cage training system79. Hardware was controlled by Teensy 

3.6 and experiments and videos were recorded by Raspberry Pi 3. Home cage training 

was done in custom-made behavioral boxes. Boxes were outfitted with three levers spaced 

approximately 2.5 cm apart, and 14 cm above the floor. Plastic barriers 0.25” thick, 2.3” tall, 

and of 1” extent were placed between each lever to restrict the postures with which a rat 

can use their forelimb to press levers. A reward spout for water delivery was placed beneath 

the center lever. Lever presses were registered when lever displacement reached a threshold, 

corresponding to an angular deviation from horizontal of ~14 degrees. Lever displacements 

were measured by optical sensors (Digi-key QRE1113-ND). Three cameras (Raspberry Pi 

Camera Module V2) recorded videos from each side of the box, and from the top (Extended 

Data Fig. 2a, Extended Data Fig. 6a).

Behavioral training:

Water deprived rats received four 40-minute training sessions during their subjective night, 

spaced 2 hours apart. Starts of sessions were indicated by blinking house lights, a continuous 

1kHz pure tone, and a few drops of water. At the end of each night, water was dispensed 

freely up to the daily minimum (5ml per 100g body weight).

Importantly, we wanted our paradigm to distinguish motor automaticity from habit 

formation5,9, two independent processes that can occur alongside each other and that may 

involve some of the same neural substrates5,33,80. Thus, we designed our task to ensure 

that rats achieve automaticity on a motor sequence without developing it into a habit. 

Since habits tend to form when the correlation between actions and outcomes is weak 

or variable35,36,81, if the reward is delayed37, or, further, if the reward is appetitive or 

addictive38,39,82, our paradigm directly linked behavioral variants to a water reward in a 

training process36 that resulted in highly overtrained behaviors expressed in goal-directed 

ways.

Stages of training

1. Rats were initially pre-trained to associate a visual cue with a lever press. On 

each trial, one of three LEDs above each of the three levers, chosen randomly, 

would light up to signify the ‘correct’ lever. Correct presses were rewarded while 

incorrect presses triggered a 1.2 second timeout, which was retriggered for every 

press in the time out period. To prevent rats from only selecting a single lever, 

we gradually decreased the probability of cueing a repeatedly pressed lever. All 

rats (n=18) learned to associate levers with cues in a median of 5284 trials. The 

criterion for learning was performing at >90% success rate for >100 trials.

2. After learning to associate visual cues with levers, rats were rewarded only when 

performing consecutive lever presses. Initially rewards were provided for every 

two successful consecutive presses, but after 500 rewards, reward was dispensed 

only after every three consecutive lever presses. Cued levers were constrained 

to not repeat, giving 12 different possible three-lever sequences. Rats quickly 
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learned to press levers in a sequence, and no longer visited the reward port in 

between consecutive presses.

3. Following 1000 successful three-lever trials, rats were introduced to the block 

structure (Fig. 2a), which was modeled on a sequence task in primates45. In the 

block structure, the same three-lever sequence is cued on each trial until there are 

6 successful performances, then a new sequence is randomly chosen. Cues are 

presented sequentially with no delay.

4. After ~1–2 weeks of training on the block structure, working memory (WM) 

trials were introduced by withholding the 2nd and 3rd cued lever in the 4th-6th 

trial of the block. Missed uncued levers were not required to be repeated until 

successful for a new sequence to be chosen.

5. One of the four nightly flexible sessions was changed to an automatic session. 

In this session, rats were required to perform only a single three-lever sequence, 

chosen randomly for each rat. This sequence was initially fully cued. Cues were 

then removed in reverse sequence, from last lever to first lever, every time the rat 

performed at >50% success rate over 30 trials. If success rate fell below 20% for 

30 trials, or if rats failed to press the lever once in the entire session, a cue would 

be added back in. All rats were able to perform > 100 trials with at least two of 

the three cues withheld after 1024 ± 438 (mean ± SEM) trials or 17 ± 10 (mean 

± SEM) days. After learning the sequence without cues, they would occasionally 

(5.18% ± 1.39% (SEM) of trials) hit the lower threshold prompting the addition 

of cues.

Behavior analysis

In total, 23 rats were trained on the three-lever task. 12 of 23 were used to characterize 

the behavior; nine were excluded because kinematics was not captured or analyzed early in 

training.

Definition of expert performance—Expert performance was determined when success 

rates and trial times stabilized to within 0.5σ of final performance values (based on the last 

2000 trials). Metrics (success rates and trial time) were smoothed with a moving average of 

400 trials. Furthermore, we required automatic performance to reach >72% success rates to 

be considered ‘expert’, following previous studies50,57,72,83.

Calculation of performance metrics

Success rate:  Success rate was defined as the number of rewarded trials divided by the total 

number of attempted trials.

Trial time:  Defined as the interval between the first and third lever press. This only 

includes successful sequences, as incorrect sequences may not include three full lever 

presses.

Error variability:  Defined as the Shannon entropy (in bits) of the probability of each 

sequence occurring for a given target sequence. Low probability sequences (p<0.001) are 
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discarded. If mistakes are systematic, the probability distributions will be skewed towards 

particular erroneous sequences, and the entropy will be low. If mistakes are made randomly, 

the distribution will look more uniform, and the entropy will be high. For flexible sequences, 

the error calculation was done on the sequence chosen for the AUTO task.

Error modes:  Motor errors were defined as failures to touch or fully depress the ‘correct’ 

lever in what would otherwise have been a correct sequence (Supplementary Movie 2). 

I.e. the rat oriented to the ‘correct’ lever and swiped at it but failed to depress it beyond 

the threshold for detection. Sequence errors, on the other hand, involved orienting to and 

pressing the wrong lever. For each rat and session type (flexible and automatic), ~100 videos 

of error trials were manually inspected and labeled as either a sequence or motor error. 

To analyze behavior following different error mode types (Fig. 3f), we used a heuristic to 

automatically estimate and classify failures as motor or sequence errors. This allowed us to 

analyze >100 trials. In this analysis, motor errors were classified as any error sequence that 

resembled an omitted lever (e.g., for the target sequence LRC, RC and LC are considered 

motor errors), while sequence errors are any other type of mistake. This heuristic generally 

overestimates motor errors (29.65% ± 5.9% of errors for CUE trials, 16.95% ± 5.48% of 

errors for WM trials, 13.16% ± 5.32% of errors for AUTO trials, data is mean ± s.e.m.) 

and underestimates sequence error. Trial-dependent accuracies and trial times, conditioned 

on the type of trial that came before (hit, motor error, sequence error), were then calculated 

using this heuristic (Fig. 3f). For trial times, we only considered sequences that had the same 

overall movement length as the overtrained sequence (since L→R is further to travel than 

L→C) as a control.

Average forelimb speed:  Raw trajectories (position traces) of the active forelimb were 

smoothed and up-sampled (from 40hz to 120hz) using cubic smoothing spline (csaps in 

Matlab, smoothing parameter of 0.1). Instantaneous velocities for the horizontal (x) and 

vertical (y) positions were calculated, then converted to instantaneous speed. This value was 

averaged from 0.1 second before the first lever press to 0.1 second after the last one. Since 

velocity was calculated from a side-view camera, and animals moved towards and away 

from the camera to press different levers, we left velocity measures in pixels/s.

Movement smoothness:  To quantify the smoothness of the movement, or its continuity 

and non-intermittency46, we measured each trajectories spectral arc length, a dimensionless 

metric that measures the arc length of the Fourier magnitude spectrum within an adaptive 

frequency range84. This metric quantifies smoothness independent of amplitude and 

duration, and is less sensitive to noise than another popular smoothness metric, the log-

dimensionless jerk46. Values are scaled between the maximum and minimum average 

spectral arc length recorded across rats in Figures 2i, 6i, and 7i. Values closer to 1 are 

more smooth.

Trial selection for behavioral analysis—In Fig. 2, early performance is taken from 

the first 1000 trials, and late performance is measured from the last 1000 trials. For Fig. 

3, metrics are calculated from all trials after expert performance was reached. For Fig. 6 

and 7, pre- and post- lesion accuracies are calculated from the week before and after lesion. 
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Pre- and post- lesion trial times, trial speeds, and kinematics are taken from the last 1000 

trials before and after lesion. Finally, it is important to note that since automatic sessions are 

introduced after the flexible sessions, early performance on automatic (AUTO) trials benefits 

from prior flexible practice (Fig. 2).

Kinematic tracking—To track the movements of the rat’s active forelimb and head during 

our task, we utilized recent machine learning approaches to detect keypoints from individual 

video frames. Videos of animals performing the task were acquired at 40 Hz (90 Hz for 

DLS recording cohort) from cameras pointing at the lever from the two sides to obtain 

both forelimb trajectories, and one camera pointing down from the top to obtain the rat’s 

horizontal position. For video-based tracking, we trained ResNet-50 networks pretrained 

on ImageNet, using DeeperCut (https://github.com/eldar/pose-tensorflow)47. To refine the 

tracking for our rats, we randomly selected about ~200 frames per view and trained the 

network using manually labeled position of the hand and nose. The network was then used 

to predict the position of body parts across all trials on a frame-by-frame basis, using 

GPUs in Harvard Research Computing cluster. Tracking accuracy was qualitatively validated 

post-hoc by visual inspection of 5 trials across 3 different sessions. Frames with poor 

tracking (< 0.95 score from the model), due to occlusion of the forelimbs, were removed 

and trajectories in those frames were linearly interpolated. If > 5 consecutive frames were 

removed, the trial was discarded for tracking purposes. Additionally, any trial with >5% 

of poorly tracked frames was removed from the analysis. The full trial trajectory was then 

smoothed using a Gaussian filter in matlab, with a σ of 0.6 frames.

To track the movements of the rat’s active forelimb and nose in 3-dimensions, we first 

calibrated our multiple camera views (left side, right side, top side, see Extended Data 

Fig. 6a) to a set of manually labeled features in our box observable from both views 

in order to calculate camera extrinsics and world coordinates, drawing from camera 

calibration functions in the Computer Vision Toolbox (e.g. estimateWorldCameraPose, 

estimateCameraParameters, cameraPoseToExtrinsics). We could then use the calibrated 

cameras to triangulate our 2D estimated points into 3D85. For the forelimb, we triangulated 

from 2D points tracked on the left and right cameras (Extended Data Fig. 6b). The nose used 

either the left and top, or right and top cameras. 3D world coordinates are in mm, relative to 

one of the manually labeled feature in the box.

Kinematic analyses—To quantitatively compare kinematic similarity, we computed 

pairwise trial-to-trial correlations. Since trial times varied, movement trajectories were time 

warped to a common template. Specifically, trajectories from each trial were interpolated 

so that the time between the 1st and 2nd lever, and the time between the 2nd and 3rd lever, 

matched the median inter-lever intervals. For sub-movement correlations, trajectories are 

warped to the median inter-lever interval time. Though we tracked both forelimbs, analyses 

were performed only on the active forelimb used to press the lever. Rats used a single 

forelimb to perform lever presses (n=12/23 right, n=11/23 left).
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Electrophysiological recordings

Microdrive construction, surgical and recording procedures were performed as previously 

described86. After expert performance was reached on the sensory guided, memory guided, 

and automatic tasks, a microdrive containing arrays of 16 tetrodes was implanted into the 

DLS (n=4 rats) contralaterally to the active forelimbs as previously described15 (Extended 

Data Fig. 3a). We first made a 4–5mm diameter craniotomy and removed the dura, before 

lowering the 16 tetrode array to the DLS (see Supplementary Table 2 for coordinates). 

Neural and behavioral data was recorded continuously for 95+−31 days. The drive was 

occasionally advanced by ~200 μm, 0–4 times over the course of the experiment. At the 

end of the experiment, an electroylytic lesion was done to mark the electrode site. This was 

done by passing a 30 μA anodal current for 15s through the electrode tips. For implant 

coordinates, according to Paxinos87, see Supplementary Table 2.

Lesion surgeries

After reaching expert performance, bilateral striatal lesions were performed (n=7 DLS, 

n=6 DMS) (for full details, see 15,16). For injection coordinates, see Supplementary 

Table 2. Anesthetized animals (2% isoflurane in carbogen) were placed in a stereotactic 

frame. Bregma was located after incision along the midline, and small craniotomies were 

performed above the targeted brain areas. Quinolinic acid (0.09 M in PBS (pH 7.3), 

Sigma-Aldrich) was injected in 4.5nl increments, via a thin glass pipette connected to a 

microinjector (Nanoject III, Drummond). Lesions were performed in two stages, starting 

with the side contralateral to the primary forelimb (the forelimb that presses the first lever). 

Animals recovered for 7 days minimum before being reintroduced to training.

Histology

At the end of the experiment, animals were euthanized (100 mg/kg ketamine and 10 mg/kg 

xylazine), transcardially perfused with either 4% paraformaldehyde (for nissl staining to 

confirm lesion size and location), or 2% paraformaldehyde (PFA) and 2.5% glutaraldehyde 

(GA) (for osmium staining, to confirm location of electrode implant) in 1x PBS. For 

electrode implants, brains were then stained with osmium (as described in88) and embedded 

in epoxy resin for micro-CT scanning. Micro-CT scans (X-Tek HMS ST 225, Nikon 

Metrology Ltd.) were taken at 130 kV, 135 uA with 0.1 mm copper filter and a molybdenum 

source. 3D volume stacks were reconstructed (VG studio max), and brains were aligned 

along the coronal, medial, and sagittal plane using Fiji. Location of the electrolytic lesion 

could be calculated relative to anatomical landmarks (i.e., corpus callosum split at AP = 

1.65mm from bregma, anterior commissure split at 0 mm bregma). For lesioned animals, 

brains were sectioned into 80-μm slices using a Vibratome (Leica), then mounted and 

stained with Cresyl-Violet. Images of whole brain slices were acquired at x10 magnification 

with either a either a VS210 whole slide scanner (Olympus) or an Axioscan slide scanner 

(Zeiss). To quantify the extent and location of striatal lesions, we analyzed coronal sections 

spanning the anterior posterior extent of the striatum from 4 calibration animals and 2 

experimental animals (DLS) (7 hemispheres injected in total) or from 4 experimental 

animals (DMS). Boundaries were manually marked based on differences in cell morphology 
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and density89. The extent of the striatum was determined based on the Paxinos87, using 

anatomical landmarks (external capsule, ventricle) and cell morphology and density.

Neural analysis

Spike sorting—Raw neural data was collected continuously over the course of the 

experiment (mean and s.e.m. are 95 ± 31 days, n=4 fully trained rats). Spiking activity from 

populations of single units was sorted using our custom-designed spike-sorting algorithm, 

Fast Automated Spike Tracker (FAST)86. A custom Matlab GUI (https://github.com/

Olveczky-Lab/FAST-ChainViewer) was used to manually isolate and track single-units over 

long timescales. On average, we isolated 20.5 ± 13.3 units simultaneously in the striatum 

within each session. We were able to track units for an average of 4.3 ± 1.2 days. Assessing 

the quality of sorted single unit was done as previously described86.

Unit type identification—Units were identified as putative MSNs or FSIs based on their 

peak width (full width at half maximum) and time interval between spike peak and valley90. 

Units with peak width >150 μs, peak-valley interval >500 μs were classified as SPNs, while 

units with peak width ≤150 μs, peak-valley interval ≤500 μs were classified as FSIs.

Criteria for unit selection—We selected a subset of the total population of recorded units 

for our neural analyses. To be included, we required that a neuron fired at least 1 spike, on at 

least 25% of all trials and was recorded over >5 rewarded trials in each task condition (CUE, 

WM, AUTO) for Fig. 4, or >5 rewarded trials in each of the 12 different sequences. From 

a total of 2468 recorded and well-isolated units, this criterion reduced the units available 

for analysis to 579 units for the comparison across task conditions, and to 340 units for 

comparisons across sequences in the flexible sessions.

Neural metrics

Trial averaged, z-scored activity:  First, instantaneous firing rates were calculated for each 

trial by convolving binned (10ms bins) spike counts with a Gaussian kernel (σ=25ms). To 

account for differences in trial times, firing rates were then local linearly warped to the 

median press times. Warping was done only after calculating firing rates to not artificially 

increase or decrease the firing rate. Firing rates before the first and after the last lever press 

were not warped. After this alignment step, each trial was z-scored, and then averaged over 

for each unit and each task condition.

Average firing rates:  Firing rates on individual trials were calculated from −0.2 seconds 

before the first lever press, to 0.2 seconds after the third lever press. This value was averaged 

over every trial for a given task condition.

Average activity:  To determine if there was elevated population activity at privileged 

timepoints in the sequence in the task (e.g. at the boundaries of discrete motor elements), we 

averaged over the time varying z-scored activity for each unit recorded in a rat. This average 

trace was compared to a distribution of average z-scored activity, sampled from random 

times in the behavior (2 seconds before and after the first and last lever press, n=1 × 104 

permutations).
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Correlation across task conditions:  For each unit, correlation coefficients were computed 

between the time-varying vector of trial-averaged activity across task conditions.

Correlating neural activity associated with behavioral elements across sequences:  We 

computed the correlations between neural population vectors of combined orienting and 

lever pressing movements across the 12 different sequences. Population vectors were 

calculated by averaging the activity of each neuron over orienting and lever press 

movements. Orienting movements were defined as those that occurred 0.1 seconds after 

a prior lever press until 0.1 seconds before the next press. Lever press movements were 

defined as occurring +/−0.1 seconds around the lever deflection. We excluded the first lever 

press for this analysis, as it was not preceded by an orienting movement.

Principal components:  Principal component analysis was performed on the matrices of 

population activity (neurons vs. time) concatenated across either the three task conditions 

(CUE, WM, AUTO) or the twelve sequences along the time dimension. Task conditions or 

sequences were then disjoined to generate the plots in Fig. 4e and Fig. 5d.

Neural decoding analysis—We used a feedforward neural network with two hidden 

layers to predict the time-varying, 2D velocity components of the active forelimb (side 

camera) and the nose (top camera) from the spiking activity of ensembles of DLS neurons. 

Spiking activity was binned in 25ms bins. We used 75ms of coincident spiking activity 

as the input to the model. Other model parameters were the same as in previous work15. 

We additionally challenged our network to predict the 3D velocity components of the 

active forelimb and nose, from 3D world coordinates triangulated from calibrated cameras 

(described above) (Extended Data Fig 6d–f).

We trained our models on blocks of >50 trials in which there were at least 12 simultaneously 

recorded units that had an average firing rate >0.25hz during the trials. In each block of 

trials, we fit decoding models using the activity of up to n=20 randomly sampled ensembles 

of 12 striatal units. We quantified model performance using two-fold cross validation by 

computing the pseudo-R2: pR2 = 1 − Σ(X − X)2

Σ X − X 2  Decoding performance (pseudo-R2) was 

measured in each ensemble, then averaged across all 20 ensembles, and then averaged across 

all blocks of trials for each rat. For subset model, the training dataset was generated from 

only 6 of the 12 sequences, chosen at random for each of the n=20 ensembles. The test 

dataset was then generated from the remaining 6 sequences.

Neural network model

We simulated an artificial neural network consisting of two populations, one corresponding 

to DLS and another to other downstream motor circuits. The DLS network contained 

no recurrent connections while the downstream network contained all-to-all recurrent 

weights. The two populations were bidirectionally connected with all-to-all feedforward and 

feedback weights. The downstream motor network directly controls movement via a set of 

feedforward weights, and also receives an additional source of input representing cue signals 

via a set of feedforward weights. Each network consists of 500 units with a rectified linear 
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(ReLU) activation function. Network weights were initialized with the Kaiming Uniform 

initialization91. Gaussian noise of standard deviation 0.1 was added to the inputs to each 

neuron in both networks at every timestep in all simulations.

We modeled a simplified version of the experimental task in which the output of the network 

controls the velocity of a “forelimb” (represented simply as a point) and is tasked with 

moving it into a set of three circular target zones in a prescribed sequential order, as in the 

piano task. The target zones were positioned as shown in Fig. 8b. On each trial, the loss 

function measuring the performance of the network was defined as the sum of the squared 

distance between the forelimb position and the center of the current target. The identity of 

the current target changes to the next in the sequence once it is reached. On cued trials the 

target lever changed, and on the first step, cue input was provided in the to the downstream 

network in the form of a vector indicating the position of the cue relative to the forelimb. 

The cue input was transient, lasting only one timestep for each cue. If the sequence was 

not performed successfully within T=40 timesteps of the simulation, the trial was halted and 

considered a failure.

The network, excluding the DLS input and output weights, was pre-trained on the cued 

task for 100,000 iterations (well past the point where asymptotic performance was reached). 

The DLS input weights were then trained on randomly interleaved cued and automatic task 

trials (50% probability of each, with all 12 possible target trajectories equally likely on cued 

trials), again for 100,000 iterations. The target sequence on automatic trials was always the 

same (right, center, left). All network training used backpropagation and the Adam optimizer 

with learning rate set to 1e-4. Training was conducted using PyTorch.

In Extended Data Fig. 10a–g, we modified the network architecture by replacing the 

NxN DLS output weights with a chain of Nx1 and 1xN weights, corresponding to a 

rank-1 projection. In Extended Data Fig. 10h–m, we modulated the gain of DLS activity, 

suppressing it by a factor of 0.1 at all time steps except the first and those when the target 

lever changed. In Extended Data Fig. 10n–s, we omitted the pretraining stage and instead 

trained the entire model on all task conditions for 200,000 iterations.
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Extended Data

Extended Data Fig. 1. Rats express flexible and automatic behaviors in a goal-directed way.
A. Average number of taps performed per day. Homecage trained rats engage with the 

levers, which are always present, only during session times (n=12 rats). B. Average number 

of trials per session, plotted for flexible (orange) and automatic (automatic) sessions, for 

typical and devalued sessions (see Methods, n=10 rats). Bars indicate the grand average 

across rats, and lines are individual rats. **P<0.01, ***P<0.001, two-sided t-test.

Extended Data Fig. 2. Rat’s movements increase stereotypy along other axes and joints.
A. View of ‘piano task’ from a side (right) and top camera. Axes are defined as +x – towards 

lever, +y – towards top of box, and +z – towards right lever along the piano. B. Replotted 

from Fig. 1e is 8 example forelimb trajectories in the x and y dimension for each task 

condition from early and late in learning. Orange – CUE, blue – WM, green – AUTO. C. 
Same as B., but for the nose position in the x and z dimension. D. The average, trial-to-trial 
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correlation of forelimb (in x and y dimensions) and nose (in x and z dimensions) trajectories 

increases with training. Bars represent grand averages over rats, and lines are averages 

within individual rats (n=8 rats). *P<0.05, **P<0.01, Wilcoxon two-sided sign-rank test.

Extended Data Fig. 3. Histology of DLS implants, DLS lesions, and DMS lesions.
A. Location of recording electrode implantation sites in DLS marked with a colored 

arrowhead for each of the 4 rats. For some individuals multiple sites are marked, due to 

individual tetrode bundles spreading during implantation. Coronal slices are labeled from 

distance relative to bregma. B. The extents of DLS lesions from 6 rats (11 hemispheres) are 

marked for the DLS lesion along the anterior-posterior axis of the striatum, and shaded in 

green. Lesion extent was calibrated to target the motor cortex-recipient region of dorsolateral 

striatum, as determined from virally-mediated fluorescent labeling in24. C. Same as B, 

but 12 across 6 rats hemispheres are labeled for DMS lesions. Targeting is based on the 

prefrontal cortex recipient region of dorsomedial striatum, also from work in24.
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Extended Data Fig. 4. MSNs and FSIs represent AUTO, CUE, and WM sequences similarly.
A. Z-scored average activity of 415 putative medium spiny neurons (MSNs) recorded in 

the DLS for the same sequence during the AUTO, CUE, and WM task condition (from 

n=4 rats). The trials were linearly time-warped to each lever press (red vertical lines). 

Units were sorted by the time of their peak activity. The sorting index was calculated from 

half the available trials for each unit, taken from the AUTO task, and then applied to the 

remaining trials and tasks. B. (Left) Histogram of the average firing rate of putative MSNs 

during the trial period for each task condition. (Right) Average firing rates across all rats 

are not significantly different (p>0.05, two-tailed t-test). Lines represent individual rats. C. 
(Left) Histogram of correlation coefficients of trial-averaged neural activity across the task 

conditions (CUE x WM - purple, WM x AUTO - pink, CUE x AUTO - yellow). (Right) 

Average correlation coefficient across all units, for each rat (n=4). Average correlations are 

not significantly different across each task comparison (p>0.05, two-tailed t-test). D-F. Same 

as A-C, but for 164 putative FSIs. Note n=3 only, as one rat had no putative FSIs recorded 

that met our criteria (see Methods).
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Extended Data Fig. 5. Neural and kinematic similarity for all orientation movements.
A. Comparing kinematic similarity across different orientation movements. Plotted is the 

average trial-to-trial correlation between kinematic traces of the forelimb (side view, x 

and y) and nose (top view, x and z) from different orientation movements (e.g., L->C 

and C->R). Orientation movements are cropped 0.2 seconds after and before the lever 

presses. Bars are averages across rats, and lines represent averages in individual rats 

(n=4). Colors denote whether orientation movements match in length (i.e. short vs. 

long) or orientation direction (i.e. left- vs. right-wards). B. Comparing neural similarity 

across different orientation movements. Bars indicate average similarity across all rats, 

lines denote individual rats (n=4). Population activity is averaged during the orientation 

movement (defined as 0.2 seconds after and before the presses) for each different orientation 

movement, and correlation coefficients are computed between population vectors.
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Extended Data Fig. 6. DLS encodes 3d nose and forelimb kinematic trajectories.
A. Views from our three cameras (right, left, and top) are shown, along with a set of 

static features in the box that were used to calibrate multiple views to the world for 

triangulation151. To triangulate the forelimb, the left and right view were calibrated using 

the blue points. To triangulate the nose, the top and either left or right view were calibrated 

using the yellow or red points. Some points are shared across calibrations. B. An example 

trajectory of the forelimb (left) and nose (right) plotted in 3 dimensions, during performance 

of the sequence C->R->C. Forelimb coordinates are relative to the top-left blue point in A, 

and nose coordinates are relative to the top-left yellow point in A. C-E. Decoding analysis, 

performed the same as in Fig. 4f–h. C. Schematic of the decoding analysis. A feed-forward 

neural network is trained to predict the velocity components (x, y, and z) of the nose and 

forelimb in 3 dimensions. D. (Top) Heatmap of normalized forelimb (left) and nose (right) 

velocities in each dimension, observed in an example flexible session. (Bottom) Heatmap of 

the predicted forelimb and nose velocities output by our model. E. Decoding performance, 

measured in pseudo-R2 of the model on a held-out set of test trials (see Methods). Dots 

indicate model performance on individual rats, and bar is average over rats (n=4).
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Extended Data Fig. 7. Performance on 3-lever task is unaffected by a 7-day mock break
A-F. Performance metrics before and after the mock break, in expert animals. Gray lines 

represent individual rats (n=7), bars are averages across rats. A. Normalized success rate, B. 
Trial time, C. Variance in the trial time, D. Entropy, or randomness, of errors, E. Average 

speed during the trial, F. Average trial-to-trial correlation. *P<0.05 Wilcoxon two-sided 

signed rank test. Orange – CUE, Blue – WM, Green – AUTO.
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Extended Data Fig. 8. Post-lesion kinematics are more similar to early in learning.
A. Trials presses per session for both CUE, WM, and AUTO sequences decrease on 

average following the lesion. The average number of trials per session was not significantly 

different between the flexible (CUE and WM) and automatic (AUTO) session types before 

(p=0.9375) or after (p=0.8125, Wilcoxon sign-rank test) the lesion (n=7 rats). B. Forelimb 

kinematics from 8 example trials of the same sequence, from one rat, sampled early in 

learning, late in learning, and following the bilateral DLS lesion (also see Fig 1e, Fig 5e, and 

see Methods for timing). C. Average trial-to-trial correlation for forelimb trajectories of the 

active paw (both horizontal (x) and vertical (y)) from early in training, compared to late (pre-

lesion), and post-lesion, for all task conditions (orange=CUE, blue=WM, green=AUTO). 

Gray lines are average within rats (n=7 late and lesion, n=6 early, 1 rat was not recorded 

early in learning) and bars represent average across rats. D. Trial time from 1st to 3rd lever 

press early, late (or pre-lesion), and post-lesion (n=7 rats). E. Average forelimb speed during 

the trial (n=7 rats late and lesion, n=6 rats early). F. Variability in errors, measured through 

the Shannon entropy of the error distribution (see Methods, n=7 rats). *P<0.05, Wilcoxon 

two-sided sign-rank test.
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Extended Data Fig. 9. The effect of DLS lesion on different types of orientating movements, and 
on vigor and kinematics.
A-D. The effect of DLS lesions on short (e.g., L->C) and long (e.g., L->R) orientation 

movements. A. Plotted is the average inter-lever interval, split by short and long orientation 

movements, before (darker shade) and after (lighter shade) the lesion, for each task condition 

(CUE – orange, WM – blue, AUTO – green). Note that only 4 of 7 rats had long orientation 

movements in their prescribed AUTO sequence. In all plots, lines represent averages within 

individual rats, and bars are grand averages over all rats (n=7 except where noted). B. The 

factor increase in trial time (post lesion time / pre lesion time) is similar for short and long 

movements (n=7 rats, or n=4 for AUTO). C-D. Similar to A-B, but for the average forelimb 

speed during the orientation movements (submovements). E-G. The effect of DLS lesion on 

the vigor of successful and unsuccessful orienting movements. E. Average forelimb speed 

of successful and unsuccessful trials, for CUE (orange), WM (blue), and AUTO (green) 

trial types, plotted pre (darker bars) and post (lighter bars) DLS lesion (n=7 rats). F-G. 
Average inter-lever interval (submovement time) for actions performed in successful (Hit) 

and unsuccessful (Miss) trials (n=7 rats). F. For short (e.g., L->C) submovements, and G. 
long (e.g., L->R) submovements. Only 4 of 7 rats had a long orientation movement in the 

AUTO sequence. H. The effect of DLS lesion on vigor compared to the effect of DLS lesion 
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on kinematics (from Fig. 6e–i). Plotted is the change in vigor (i.e., trial time or forelimb 

speed, plotted on the x-axis) against the change in kinematics (i.e., movement smoothness 

or forelimb correlation, plotted on the y-axis). Each graph is a different kinematic vs. vigor 

metric comparison, and each dot indicates one rat, and the color indicates the task condition. 

Correlations between vigor and kinematics are calculated within each task condition for all 

rats (plot insets). *p<0.05, Wilcoxon two-sided sign rank test

Extended Data Fig. 10. Alternative network models fail to reproduce experimental results.
A-G: A neural network model with scalar DLS outputs fails to learn task-invariant DLS 

activity A. Schematic illustrating architecture of a model variant in which DLS outputs to 

downstream motor circuits are constrained to be scalar-valued. B-G: Replication of analyses 

in Figure 8d,f–i, for this model variant (n=10 runs). The neural representations are much less 

similar across task conditions than in the original model (panels E and F here versus Fig. 8d, 

f).

H-M: A neural network model with action selection signals fails to learn strong kinematic 

representations. H. Schematic illustrating architecture of a model variant in which DLS 

outputs to downstream motor circuits are suppressed except at trial initiation and transitions 

between lever presses. I-M: Replication of analyses in Figure 8d,f–i, for this model variant 

(n=10 runs). The neural representations show much less egocentricity than in the original 

model (panel M here vs. Fig. 8f).

N-S: A neural network model without pre-trained circuits is not robust to DLS lesions in the 

flexible task. N. Schematic illustrating architecture of a model variant in which the entire 
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model is trained on the cued and automatic tasks from scratch, rather than using the strategy 

of pretraining downstream motor circuits on cued trials first. O-S: Replication of analyses in 

Fig. 8d,f–i, for this model variant (n=10 runs). The resilience of flexible task performance 

seen in the original model is lost (panel O here versus Fig. 8g).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Conceptual schematic showing differences in how a motor sequence can be specified 
and produced.
A-C. Motor control is thought to be hierarchical. To perform a new discrete motor sequence 

(A-B-C), high-level circuits select and order the requisite motor elements (i.e., select A, 

then B, then C), while low-level circuits implement the detailed control of the movements. 

A. Sensory-guided and B. working memory-guided sequences likely engage higher-order 

selection-level processes, whereas C. automatic sequences can become consolidated and 

fully specified in low-level execution circuits5,11,25. Schematic adapted from13,25. D. 
Simplified schematic of motor circuits discussed in this study. The BG is the nexus 

of several intersecting motor pathways, allowing them to affect motor implementation 

by modulating both brainstem and motor cortical dynamics. Omitted, for clarity, are 

somatosensory and prefrontal projections, cerebellar inputs, and dopaminergic midbrain 

projections.
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Figure 2: Paradigm for training rats to produce visually guided, working memory guided, and 
automatic motor sequences.
A. Rats learn to generate 3-element lever-press sequences that, in ‘flexible’ training sessions, 

are either visually cued (CUE) or generated from working memory (WM) by repeating 

the sequence from the preceding cued trial. In a separate ‘automatic’ session without any 

cues, the same sequence is rewarded each day. The automatic (AUTO) sequence is chosen 

randomly for each rat and fixed for the duration of the experiment. B. Performance of 

an example rat in a flexible (top) and automatic session (bottom). In flexible sessions, 

sequences are randomly chosen, from 12 possible sequences, and change every block. C. 
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Fraction of rewarded trials per session for the three task conditions (orange = CUE, blue 

= WM, green = AUTO) for one animal over several months of training. D-F. Performance 

metrics improve from early (light shade) to late (dark shade) in learning across all three task 

conditions (n=12 rats). D. Fraction of rewarded trials. E, Trial time (middle). F. Variance 

in trial time (right). G. Vertical (y) and horizontal (x) components of forelimb trajectories, 

aligned to the first lever press, for 8 example trials from early and late in learning, as 

captured from a side camera. Examples are selected from trials with similar duration. F. 
Trial-to-trial correlation of the active forelimb trajectory within a given task condition from 

early and late in training (n=11 of 12 rats were tracked in early learning), and correlation 

of the kinematics across the three task conditions, late in training. I. The smoothness of 

the movement kinematics, as measured through the inverse of the spectral arc length46 (see 

Methods) increases over learning (n=11 of 12 rats tracked in early learning). Values closer to 

1 indicate smoother movements. For all panels, *P<0.05, **P<0.01, ***P<0.001, two-sided 

Wilcoxon sign rank test.
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Figure 3: Single overtrained motor sequences show signatures of automaticity.
A-D. Performance metrics for the same sequence across tasks at expert performance (see 

Methods). Gray lines are averages within rats; bars are the grand average across rats (n=12 

rats). A. Success rate, or fraction of rewarded trials. B. Median trial duration for rewarded 

sequences measured as the time from the 1st to the 3rd lever press. C. Standard deviation of 

trial durations. D. Variability, or Shannon entropy, of the mistakes made in unrewarded trials 

(see Methods). E. Fraction of unrewarded trials classified as either motor errors or sequence 

errors (see Supplementary Movie 2 and Methods). F. Probability of a sequence error, if the 

previous trial was rewarded (Hit), a motor error, or a sequence error (Seq), in the AUTO 

condition. G. Probability that the rat performs the automatic sequence in the flexible session 

before and after the automatic sessions are introduced. Dotted line is chance of performing 

any particular sequence (8.33%). For all panels, *P<0.05, **P<0.01, ***P<0.001, two-sided 

Wilcoxon sign rank test.
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Figure 4: DLS represents motor sequences similarly across task conditions
A. Spike rasters for two example neurons recorded in DLS during the execution of the same 

motor sequence in CUE (orange), WM (blue), and AUTO (green) trials. Black dots indicate 

the time of a lever-press; red lines separate the task conditions. Below is the instantaneous 

firing rate across each task condition. Trials were subsampled to have equal trial durations 

across tasks. B. Z-scored average activity of 579 neurons recorded in the DLS during 

execution of successful AUTO, CUE, and WM trials with the same target sequence (from 

n=4 rats). The trials were linearly time-warped to each lever press (red vertical lines). Units 

were sorted by the time of their peak activity. The sorting index was calculated from half the 

available trials for each unit, taken from the AUTO trials, and then applied to the remaining 

trials and task conditions. C. Comparing task-aligned activity statistics across the population 

of recorded neurons. (Left) Histogram of the average firing rate during the trial-period 

(P>0.05, paired two-sided t-test for each task condition). The bar graph breaks this down by 

rats (n=4). (Right) Same as in the left panel but for maximum modulation of Z-scored firing 

rate during the trial-period (P=.94 AUTO-CUE, P=.25 AUTO-WM, P=.26 CUE-WM, paired 

two-sided t-test). D. Histogram of correlation coefficients between trial-averaged activity 

across task conditions for the DLS neurons shown in B (see Methods). Left, histogram of 

the correlation coefficients of the trial-averages neural activity on CUE and AUTO trials 

(yellow), CUE and WM trials (purple), WM and AUTO trials (cyan), and AUTO and a 
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heldout set of AUTO trials (green). Right, mean correlation coefficients for trial-averaged 

activity across task conditions broken down by animal (n=4). **P<0.01, paired two-sided 

t-test. E. Z-scored firing rates averaged over all neurons. Thick, solid lines indicate the grand 

average across all rats (n=4), and colored shaded regions indicate the s.e.m. across rats. 

Thin, dashed lines indicate individual rats, and the thin, dashed gray lines denote the 95% 

confidence interval of z-scored activity. Average firing rates are highly correlated across 

all tasks for each rat (Pearson correlation of 0.8286 +- 0.0874, mean +- s.e.m) and do not 

significantly differ at the time of the first lever press (p>0.05, two-sided t-test, n=4 rats).
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Figure 5: DLS encodes low-level kinematics, not high-level attributes, of discrete motor 
sequences
A. Comparing trial-averaged neural activity for different sequences, from all DLS neurons 

that met our criteria for inclusion (See Methods), across 4 rats. Units were sorted based 

on the time of peak firing rate in the LCL sequence (left most). Sequences LCL and CLC 

(left and center), are comprised of the same motor elements (LC and CL occur in both) but 

ordered differently. Sequences LCL (left) and CRC (right) are comprised of the same actions 

(press, move right, press, move left, press), but on different levers. B. Cross-correlations 
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of time-varying neural activity from A (see Methods). C. The flexible condition allows us 

to compare the same sub-sequence of orienting and pressing movement (here: rightward 

orienting and pressing) in different sequential contexts. Dashed box indicates examples of 

comparisons made in D. D. Correlation of the neural activity patterns associated with the 

same sub-sequence of orienting and pressing movements in different sequential contexts 

(n=24, 12, 24, 32, 16, 64 different lever presses for each bar from left to right). Error 

bars denote SEM. ***P<0.001, Bonferroni corrected two-sided Wilcoxon rank sum test. 

E. Neural population trajectories in principal component (PC) space for the 12 different 

sequences, plotted along the 1st, 2nd, and 3rd PC. In DLS, all lever-press movements 

(color dots) are associated with similar neural activities, as are all right- (cyan) and left-

ward (magenta) movements, independent of lever identity or order in the sequence (i.e., 

right→center, center→left, and right→left are all similar). F-H. Decoding analysis. F: 

Schematic of the decoding analysis. A feedforward neural network was trained to predict 

either the instantaneous velocity of the active forelimb (viewed from the side) and the 

nose (viewed from above), or the sequence phase, from the spiking activity of groups 

of simultaneously recorded DLS units. G: Velocity of the active forelimb (top left) and 

nose (top right) from a representative session, in the +x and +z dimension respectively 

(see Methods). Trials are aligned to the first lever press and sorted by trial duration. 

Velocity predictions on held-out trials for forelimb (bottom left) and nose (bottom right). 

(Right) Model performance (measured in pseudo-R2, see Methods), tested on held-out trials, 

when predicting all velocity components (forelimb +x, +y, and nose +x, +z, see Methods). 

Performance is shown for models trained on every sequence (Full) and tested on held-out 

trials, and for models trained on a randomly selected half of the sequences and tested on the 

other half (Subset). Gray lines indicate model performance within individual rats (n=4). H. 
Heatmaps show observed (top) and predicted (bottom) sequence phase for single sequences 

without repeated elements (left), and for all flexible sequences (right). Trials are aligned 

to the first tap. (Right) Model performance, tested on held-out trials and quantified by the 

pseudo-R2, for models trained on all flexible sequences (full), and those trained on a single 

sequence with non-repeating elements (single). Lines indicate performance for individual 

rats (n=4). *P<0.05, two-sided t-test.
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Figure 6: DLS is required for generating task-specific movement kinematics across all task 
conditions, but is not required for ordering basic movements in the prescribed sequence when 
visually-cued.
A. Outline of DLS lesion boundaries, from 3 rats in one hemisphere. For full lesion 

annotation, see Extended Data Fig. 3b. B. Schematic of the two performance attributes 

we parse. The first is high-level sequencing of orienting and pressing movements. Success 

(reward) in the task is contingent on getting this right. The second is the low-level 

implementation of the requisite movements, i.e task-specific learned kinematics. While 

movements adapted to the task are faster and more fluid than at the onset of training, they 

are not required for reward. C-D. Effects of DLS lesions on sequencing. C. Success rate 

in producing the prescribed sequence, averaged over rats (n=7, error bars are SEM), in the 

week before and after lesion. Stars denote whether performance is significantly different on 

a given day, relative to average performance in the week pre-lesion, for each task condition. 

D. Bars show success rate in the week pre-lesion and days 3–7 post-lesion, averaged across 

rats (n=7). Gray lines denote individual rats. E-I. Effects of DLS lesions on movement 

kinematics. E. Trial times and F. average forelimb speed for successful trials before and after 

the lesions, across rats (n=7) (see Methods). The relative change due to lesion is similar 

across trial types for both trial times (p=0.3750 CUE vs. WM, p=0.2969 CUE vs. AUTO, 

p=0.8125 WM vs. AUTO) and forelimb speeds (p=0.2969 CUE vs. WM, 0.1565 CUE vs. 

AUTO, p=0.6875 WM vs. AUTO). G. The horizontal (x) position of the active forelimb 

on eight example trials with similar duration are overlayed and compared before (left) and 

after (right) DLS lesions. H. Average trial-to-trial correlation and I. movement smoothness 

for trajectories of the active forelimb (both horizontal (x) and vertical (y)) before and after 

lesion (n=7 rats). For all panels, *P<0.05, **P<0.01, two-sided Wilcoxon sign-rank test.
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Figure 7: DMS lesions have no long-term effect on either flexible or automatic sequence 
execution.
A. Outline of DMS lesion boundaries, from 3 rats in one hemisphere. For full lesion 

annotation, see Extended Data Fig 3c. B-C. Effects of DMS lesions on sequencing. B. 
Success rates in producing the prescribed sequence, averaged over rats (n=6, error bars are 

SEM), in the week before and after lesion. Stars denote whether performance is significantly 

different on a given day, relative to average performance in the week pre-lesion, for each 

task condition. C. Bars show success rate in the week pre-lesion and days 3–7 post-lesion, 

averaged across rats (n=6). Gray lines denote individual rats. D-H. Effects of DMS lesions 

on movement kinematics. D. Trial times and E. average forelimb speed before and after 

the lesions (see Methods, n=6 rats). F. The horizontal (x) position of the active forelimb 

on eight example trials, from one rat, with similar durations are overlayed and compared 

shown before (left) and after (right) DMS lesions. G. Average trial-to-trial correlation and 

H. movement smoothness for trajectories of the active forelimb (both horizontal (x) and 

vertical (y)), before and after lesion (n=6 rats). For all panels, P>0.05, two-sided Wilcoxon 

sign-rank test.
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Figure 8: Experimental results emerge naturally during task learning in a dual module neural 
network model.
A. Schematic illustrating the architecture of our neural network model. DLS weights 

(orange) are trained on the cued and automatic tasks and interact with downstream recurrent 

motor circuits already trained to perform cued movements. B. Example trajectories on 

the simulated task. The network controls the velocity of a ‘forelimb’ and must move 

it into three circular regions (representing ‘level-presses’) in the correct sequential order 

(in this example, RCL for both the CUE and AUTO modes). C. Average Z-scored 

activity of model neurons in the DLS population during execution of successful AUTO 

and cued trials with the same target sequence. Neurons are sorted by the time of their 

peak activity, and displayed in the same order in both plots. D. Histogram of correlation 

coefficients between CUE and AUTO tasks over all model DLS neurons of correlation, 

as in Fig. 4d. E. Correlation between input to DLS units across tasks. Line segments 

indicate individual simulations; bars indicate averages cross simulations (n=10 runs). Left: 

correlation between DLS inputs on AUTO and cued trials for the same sequence. Right: 

same measurement but shown for cued trials with other target sequences (averaged over 

all other sequences). F. Correlation of the neural activity patterns associated with the same 

sub-sequence of orienting and pressing movements in different sequential contexts, as in 

Fig. 5d. G. Effects of DLS removal on sequencing. Average success rate in producing the 

prescribed sequence., averaged across ten network simulations for each condition. Lines 

depict individual simulations. H-I. Effects of DLS removal on kinematics. H. Trial time 

(i.e., number of simulation steps) and J. trial speed (average magnitude of velocity, in 

arbitrary simulation units) averaged across ten network simulations for each condition.

Mizes et al. Page 47

Nat Neurosci. Author manuscript; available in PMC 2024 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	A discrete sequence production task for rats
	Rats master the ‘piano playing’ task
	Kinematic similarities across task conditions and movement elements
	Single overtrained motor sequences show the signatures of automaticity
	DLS represents motor sequences similarly across task conditions
	The DLS does not encode high-level aspects of the sequence
	DLS encodes detailed movement kinematics
	Probing DLS function by lesions
	DLS lesions affect high-level sequence structure on automatic and working-memory, but not visually cued, trials.
	DLS lesions affect learned movement kinematics equally across task conditions
	The DMS is not required for motor sequence execution in either task condition
	A simple neural network model can account for the results in both CUE and AUTO tasks

	Discussion
	DLS’s role in specifying low-level kinematics of task-specific learned movements
	DLS role in generating high-level sequential structure?
	DLS role in ‘chunking’ and action selection?
	Circuits controlling sensory-guided motor sequences need to be elucidated

	Methods:
	Animals:
	Statistics and Reproducibility:
	Behavioral apparatus:
	Behavioral training:
	Stages of training

	Behavior analysis
	Definition of expert performance
	Calculation of performance metrics
	Success rate:
	Trial time:
	Error variability:
	Error modes:
	Average forelimb speed:
	Movement smoothness:

	Trial selection for behavioral analysis
	Kinematic tracking
	Kinematic analyses

	Electrophysiological recordings
	Lesion surgeries
	Histology
	Neural analysis
	Spike sorting
	Unit type identification
	Criteria for unit selection
	Neural metrics
	Trial averaged, z-scored activity:
	Average firing rates:
	Average activity:
	Correlation across task conditions:
	Correlating neural activity associated with behavioral elements across sequences:
	Principal components:

	Neural decoding analysis

	Neural network model

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	Extended Data Fig. 10
	References
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:

