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Abstract 
Spillovers of viruses from animals to humans occur more frequently under warmer conditions, particularly arboviruses. The invasive 
tick species Haemaphysalis longicornis, the Asian longhorned tick, poses a significant public health threat due to its global expansion and 
its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected 
between 2016 and 2019 in 22 provinces across China encompassing diverse ecological conditions. Generalized additive modeling 
revealed that climate factors exerted a stronger influence on the virome of H. longicornis than other ecological factors, such as ecotypes, 
distance to coastline, animal host, tick gender, and antiviral immunity. To understand how climate changes drive the tick virome, we 
performed a mechanistic investigation using causality inference with emphasis on the significance of this process for public health. 
Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host 
diversity, leading to increased diversity of the tick virome, particularly the evenness of vertebrate-associated viruses. These findings may 
explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events 
involving tick-borne pathogens. Deep learning projections have indicated that the diversity of the H. longicornis virome is expected to 
increase in 81.9% of regions under the SSP8.5 scenario from 2019 to 2030. Extension of surveillance should be implemented to avert the 
spread of tick-borne diseases. 

Keywords: ecological modeling, deep learning network, tick virome, tick-borne viruses, climate changes, meta-transcriptomics. 

Introduction 
Recent climate changes leading to warmer temperatures are 
thought to increase the possibility of more cross-species 
transmission events by viruses, especially arboviruses, which 
are considered capable of infecting wider ranges of mammalian 
hosts than other viruses [1, 2]. Manifestations of climate 
sensitivity span pathogens and vectors, with changes in climate 
having varied effects on arthropod vector populations and 
their viruses. These effects include biological impacts such as 

enhanced development rate, increased population size, and 
expanded geographic range, as well as behavioral impacts 
including enhanced biting rate, broadened host preference, and 
temperature induced host-seeking activity [3–8]. Climate change 
can also affect the dynamics of arbovirus infections. For example, 
warmer temperatures may facilitate amplified virus proliferation 
rates as well as elevated rates of infections with tick-borne viral 
illnesses, including Crimean-Congo hemorrhagic fever, tick-borne 
encephalitis, and severe fever with thrombocytopenia syndrome
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(SFTS) [9–11]. Considering that most climate-sensitive diseases, 
41% of which are tick borne, are transmitted by arthropods [8], 
collectively their impacts may lead to more opportunities for 
cross-species transmission of arboviruses. 

Current research has focused largely on the impacts of climate 
change in the context of single specific disease-causing viruses, 
with studies conducted under simulated climate parameters [9, 
10]. However, actual long-term changes in climate have not shown 
a consistent observable pattern, a situation that leads to mul-
tifaceted nonlinear effects on viruses in terms of the variation 
of individual viruses, their community inside a vector, and their 
interactions with different viruses, all of which have impacts on 
their potential for emergence [12, 13]. Therefore, developing a 
holistic perspective of how climate influences a viral community 
within a vector under natural conditions will provide broader 
insights regarding arbovirus dynamics and the potential risks they 
pose to ecosystems. 

The invasive species Haemaphysalis longicornis is a significant 
emerging threat to public health due to its increasing global 
distribution and ability to carry a high diversity of pathogens. 
H. longicornis native habitats are in eastern and central Asia, but 
it has successfully invaded Australia, New Zealand, the Pacific 
Islands, and the United States, probably because it is capable of 
parthenogenetic reproduction, whereby a single female tick can 
generate a population [14–19]. Predictive modelling suggests that 
the future habitable range of H. longicornis will span all continents 
except Antarctica, including regions that lie between latitudes 
18◦–53◦ north and 16◦–45◦ south [18], with coastal areas being 
most suitable [18]. H. longicornis is also a competent vector capable 
of transmitting a high diversity of pathogens, including the Powas-
san virus, Khasan virus, tick-borne encephalitis virus, and SFTS 
virus (SFTSV), the incidence and range of which have increased 
to the detriment of human health and animal welfare [20–22]. 
Beyond the public health burden imposed by H. longicornis due to 
its vector competence and broad climate envelope, H. longicornis 
may be considered a suitable model of a virus vector for studying 
climate change impacts on virome–vector dynamics. 

In this study, the associations between ecological factors, 
climate factors, and virome diversity within H. longicornis ticks 
from China were examined, with a particular emphasis on viruses 
capable of cross-species transmission among vertebrate hosts. 
Meta-transcriptomic sequencing was utilized to characterize 
the viral community and generate estimates of virome diversity. 
Generalized additive modelling (GAM) results were subsequently 
analyzed to identify ecoclimate determinants that might be 
involved in shaping the diversity of vertebrate-associated 
viruses and assess their associations. Causality analysis was 
incorporated to gain a better understanding of their causal 
relationships. Finally, a deep learning (DL) model was employed 
to forecast changes in vertebrate-associated virome diversity 
globally through the coming decade under different paradigms of 
atmospheric carbon dioxide levels. 

Materials and methods 
Sample preparation and sequencing 
Adult H. longicornis ticks were collected by flag-dragging or from 
animal hosts from 22 provinces of China, covering steppe, farm-
land, desert, shrubland, and forest. The related geographic and 
ecological characteristics, i.e., latitude, longitude, tick gender, and 
tick host animals, were recorded. 

Ticks were sterilized by washing twice in 70% ethanol for 
30 seconds and homogenized in RLT solution under liquid 
nitrogen. RNA extraction was performed using the AllPrep 

DNA/RNA Mini Kit (Qiagen, United States) and sent for transcrip-
tome sequencing (RNA-seq). After rRNA removal and sequencing 
library preparation, paired-end (2×150 bp) sequencing was 
conducted on a HiSeq 4000 platform (Illumina) at Novogene Tech 
(Beijing, China). 

Analyses of vertebrate-associated virome 
diversity 
Clean reads were generated after adapter removal and quality 
check using Trimmomatic v0.39 [23]. Virus genomes were 
recovered by de novo assembly using Trinity v2.8.5 [24]. Assembled 
contigs were filtered based on the results of BLASTN on the 
bacteria and host nonredundant nucleotide databases with 
a cutoff of 85% identity [25]. Taxonomic classifications were 
performed by comparing the contigs to the RNA virus nucleotide 
and protein databases from NCBI using local implementations 
of BLAST programs [25]. The pairwise identities of downloaded 
reference amino acid sequences were calculated against all 
references of the same arbovirus family (Phenuiviridae, Rhabdoviri-
dae, Flaviviridae, Chuviridae, Nodaviridae, Reoviridae, Nairoviridae, 
Orthomyxoviridae, Peribunyaviridae) using BLASTP [25]. The Q1– 
1.5 IQRs of pairwise identities were set as the cutoff for 
each viral family. Those virus contigs showing more than 
their corresponding identity cutoff to any virus species of the 
arboviruses families listed above were extracted to determine 
quantification of viral abundance. The 90% amino acid similatirity 
was set to the cutoff of determining viral contigs to be virus or 
virus like from the extracted BLASTX results mentioned above. 
The non-rRNA reads from each library were mapped against the 
identified arbovirus sequences using a Bowtie2 local alignment 
with very sensitive parameters [26]. Mapped sequences were 
grouped into operational taxonomic units (OTUs) based on 
95% nucleotide identity determined by CD-HIT v4.8.1 [27]. The 
abudance of each OTU was summarised as the read counts 
of all sequences of the same OTU and normalized using TPM 
(transcripts per million). The Shannon index, Simpson index, ACE, 
Chao1, Simpson E index, and McIntosh E index were computed 
with the Python package “skbio” (http://scikit-bio.org/) based on 
the relative abundance. Statistical differences in alpha diversity 
among groups of different ecotypes were accessed with the Mann– 
Whitney U-test or Kruskal-Wallis test using SPSS version 20.0 
[28]. The viral abundance and prevalence of reported human 
pathogenic viruses were summarized according to ecotypes. 

The shapefiles of the South China Sea, East China Sea, Yel-
low Sea, Persian Gulf, Gulf of Thailand, Japan Sea, Andaman 
Sea, Arabian Sea, Bay of Bengal, Laccadive Sea (under Inter-
national Hydrographic Organization Sea Area place type), and 
Caspian Sea (under Worldlake place type) were downloaded from 
Marineregions.org (https://www.marineregions.org). The latitude 
and longitude coordinates of the downloaded coastlines were 
extracted from the shapefiles using the sf , sp, and  methods pack-
ages in R 3.6.1 [29]. The distance from each sample site to the 
downloaded coastline was calculated according to the Haversine 
method (radius of earth = 6371 km) using the geosphere package in 
R.3.6.1 [30]. The shortest distance was selected as the distance to 
the closest coastline. Coastline grouping was performed from 100 
to 600 km with a step size of 100 km. Diversities of the vertebrate-
associated virome of each coastline-distance group were com-
pared by using the Mann–Whitney U-test and Kruskal-Wallis test. 

Tick immunity pathway analysis 
The assembly contigs for all RNA-sequencing datasets were 
annotated according to the H. longicornis reference genome 
(GWHAMMI00000000). The antiviral immunity–related genes
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were extracted and used as the reference dataset for aligning 
reads back to estimate their expression level with Bowties2 v2.4.3 
[26]. The relative abundance of antiviral immunity genes was 
obtained by performing the fragments per kilobase of transcript 
per million mapped reads normalization. 

Ecoclimate predictors preparation 
Climate factors were obtained from the China National Meteoro-
logical Center according to the sampling coordinates and collec-
tion date of each library. Mammal host biodiversity and domestic 
animal density data were downloaded from the Global Mammal 
Assessment database (https://globalmammal.org/) and the Grid-
ded Livestock of the World database (https://dataverse.harvard. 
edu/dataverse/glw), respectively. We summed domestic animal 
headcount (poultry, goat, buffalo, cattle, sheep, and pig) into a 
single predictor (Shannon index as representative of livestock 
mammal biodiversity) using the Python package “skbio” (http:// 
scikit-bio.org/). Mammal host biodiversity and livestock mammal 
biodiversity were assigned to each library by identifying the near-
est coordinates compared with the above two global databases. 

Association between virome and occurrence of 
pathogenic viruses 
We conducted a meta-review for occurrences of tick-borne 
pathogenic virus from sequence information in GenBank and 
published H. longicornis studies in PubMed. Missing coordinates 
were extracted for each record using the “Geocoding” API from 
Google Maps. We summed the species number of tick-borne 
pathogenic viruses (TBPVs) around the coordinate of each RNA-
sequencing dataset with a radius of 50, 100, or 150 km. We divided 
the TBPV occurrence into three group: non-TBPV occurrence, 
single-TBPV occurrence, and multiple-TBPV occurrence if more 
than one TBPV species was reported around the RNA-sequencing 
dataset. Virome Shannon index values were compared among the 
three groups with the nonparametric Mann–Whitney U-test and 
Kruskal-Wallis test. 

GAM fitting for accessing climatic factors 
A generalized additive model was applied to study the effects of 
eight meteorological factors (monthly mean temperature, max-
imum temperature, minimum temperature, air pressure, wind 
speed, relative humidity, average precipitation, and maximum 
precipitation from 2016 to 2019) and other ecological variables 
(ecotypes, geographic closeness to coastline, feeding host species, 
mammal biodiversity, livestock biodiversity, tick antiviral immu-
nity, tick gender) on the diversity of the vertebrate-associated 
virome in H. longicornis. The full dataset was randomly split into 
a 90% training set and a 10% leave-out testing set. A variance 
inflation factor was used to remove factors showing colinearity 
(those larger than 10 were removed). The variable minimum tem-
perature was removed due to its significant colinearity observed 
in both the full dataset and the training set. The overall inter-
sectional and specific individual effects from the selected vari-
ables were fitted using the GAM to examine the diversity of the 
vertebrate-associated virome with respect to these factors (REML 
[restricted maximum likelihood] method) [31] according to their 
explained deviances by use of the MGCV package (version 1.8-12) 
in R 3.6.1 [32]. Categorical and binary variables were fitted as ran-
dom effects of each variable level. Five-fold cross-validation was 
applied for model optimization on the training set. A quasipoisson 
GAM was used to analyze the effects of the selected variables 
on explanations of the change in the relative abundances of 
pathogenic viruses, as the relative abundances are all positive 

values. The leave-out testing dataset was used as an independent 
dataset to evaluate the final performance of the best model after 
it had been trained and tuned using the training data, and to 
estimate how well it would generalize to unseen data. 

Causality effects were analyzed between the virome diversity 
index and ecoclimate factors by using the LiNGAM method from 
the pcalg package (version 2.7-9) [33]. We randomly subsampled 
90% of our dataset 100 times and estimated the 95% confidence 
interval (CI) for the causality effect power. 

Deep learning model for global virome diversity 
maps 
A DL model, comprising a deep neural network, was developed for 
predicting vertebrate-associated virome diversity in H. longicornis 
based on the six climate factors (mean temperature, maximum 
temperature, air pressure, wind speed, relative humidity, and aver-
age precipitation) that have been used in the GAM. The model had 
a sequential architecture consisting of five fully connected (dense) 
layers to eliminate overfitting (238 samples in this study) [34]. The 
best predictive model, with a prediction accuracy of 0.75, had 128, 
256, 256, 256, and 1 neurons in each dense layer. The model was 
optimized with the Adam algorithm (learning rate = 0.001) using 
a mean absolute error (MAE) loss function [35]. Five-fold cross-
validation was applied for model optimization on the training set 
used for the GAM model (90% of the data randomly split from 
the full dataset). The best model was selected from 50 training 
models using 10 000 epochs each with a minibatch size of 128. 
The performance of the best selected model was evaluated on the 
leave-out dataset. 

Global climate data, including near-surface air temperature 
(“tas”, ), daily maximum near-surface air temperature (“tasmax”, ), 
sea level pressure (“psl”, Pa), precipitation (“pr”, kg m-2 s-1), near-
surface relative humidity (“hurs”, %), and near-surface wind speed 
(“sfcWind”, (m s-1), under three shared socioeconomic pathway 
(SSP) scenarios (SSP2.6, SSP4.5, and SSP8.5) of the CNRM-CM6–1-
HR climate model [36] from year 2016 to year 2030 were obtained 
from the World Climate Research Programme Coupled Model 
Intercomparison Projects (CMIP6) [37, 38]. The data had a spatial 
resolution of 50 km and were downloaded in a monthly temporal 
frame. The units of precipitation were converted from kg m-2 s-
1 to mm. Each climate variable was then transformed into a 4-
year average value. For example, for the year 2019, the 4-year 
average value of each variable was calculated using the data from 
the years 2016, 2017, 2018, and 2019. Effect sizes among different 
years or SSPs were estimated by using the R package “effsize” 
(version 0.8.1). 

Results 
Ecological environment affecting tick virome 
diversity 
A total of 3595 H. longicornis ticks were collected from 20 provinces 
in mainland China during 2016–2019. Six ecotypes (farmland, 
subtropical shrubland, temperate forest grassland, temperate 
grassland, temperate forest, and desert) were sampled. A meta-
virome sequencing approach was applied to 238 RNA libraries to 
recover viral genomes and quantify viral abundance (Table S1). 
Orthomyxoviridae was the most abundant virus family in five 
ecotypes, with Phenuiviridae most abundant in deserts. At the 
species level, the Wellfleet Bay virus was like the most abundant 
outside of deserts, where the Thogoto thogotovirus was most 
abundant (Fig. 1A and B). H. longicornis ticks collected from desert 
and subtropical shrubland were found to carry the greatest
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Figure 1. Vertebrate-associated virome of Haemaphysalis longicornis in different ecotypes. (A) Mean relative abundance of each vertebrate-associated 
viral family in different ecotypes. (B) Mean relative abundance of each vertebrate-associated viral species in different ecotypes. Human pathogenic 
viruses are indicated by asterisk. The mean relative abundance has been normalized by reads per million (viral reads number × 106/total reads 
number) and taken to Log10 for better visualization. Yellow color represents higher mean viral abundance, whereas green represents lower 
abundance. (C) Diversity of vertebrate-associated viromes (Shannon index) in different ecotypes. ∗∗∗P < .001; ∗∗P < .01; ∗P < .05; ns indicates P > .05. (D) 
Prevalence of each human pathogenic virus in different ecotypes. Severe fever with thrombocytopenia syndrome virus (SFTSV), Songling virus (SLV), 
Tacheng tick virus (TGTV), Jingmen tick virus (JMTV), Beiji nairovirus (BJNV), and Nairobi sheep disease virus (NSDV). 

diversity (Shannon index) of vertebrate-associated viruses 
(Wilcoxon signed-rank test, P < .05, Fig. 1C).  The prevalence of  
viruses pathogenic to humans was high in temperate forest 
grassland (20.4%), subtropical shrubland (19.6%), and farmland 
(19.5%) (Fig. 1D). Ticks collected from farmland had five species of 
pathogenic viruses, including Jingmen tick virus, Beji nariovirus, 
Nairobi sheep disease virus, Thogoto thogotovirus, and SFTSV, 
which potentially pose a higher risk of infection to animals and 
humans in that ecosystem (Fig. 1D). 

As coastline regions have been considered suitable habitats 
for H. longicornis [18, 39], the 238 libraries were classified into 
groups according to their distance from the nearest coastline. 
Several incremental grouping definition strategies were tested, 
using distance ranges from 100 to 600 km, with increments of 
100 km. The grouping strategy based on a step-size of 200 km 
yielded the most significant difference of vertebrate-associated 
viruses among groups based on a Kruskal–Wallis rank-sum test 
(Tables S2 and S3) and also had the highest explained variance 
for virus diversity, suggestive of the highest effect from a GAM 
model (Table S2). Groups located within 400 km from the nearest 
coastline (0–200 and 200–400 km) had significantly lower virome 
diversity compared to more distant groups (Wilcoxon signed-rank 
test, adjusted P < .05, Fig. 2A and B), irrespective of the distribu-
tion of low-diversity habitats (Fig. S1). 

GAM modelling and causality analysis for the 
association between ecoclimate factors and tick 
virome 
Ecotypes and geographic closeness to the nearest coastline, both 
of which would be expected to have different climatic conditions, 
had significantly different vertebrate-associated virome diversity. 
Therefore, a generalized additive model was applied to further 
infer the effects of ecoclimate factors on vertebrate-associated 
virome diversity in H. longicornis. Six meteorological factors (mean 
temperature, maximum temperature, air pressure, wind speed, 
relative humidity, and precipitation [Fig. S2]), ecological variables 
(ecotypes, geographic closeness to coastline), biological variables 
(gender and antiviral immunity), and host-related variables (feed-
ing host species, mammal biodiversity, livestock biodiversity) after 
removal of colinear variables, were included for GAM fitting. 

Among six diversity indices tested, the Shannon index showed 
the strongest effect and was chosen for use in downstream 
analyses (Fig. 3A). Viral evenness (Simpson E index and McIntosh 
E) revealed higher explained variance from GAM models (Fig. 3A) 
and higher correlation with higher Shannon index than richness 
(linear regression, P < .05, Fig. S3, Table S4). These results 
suggested that climate-induced factors may have a major impact 
on the evenness of virome structure. The Wellfleet Bay virus 
like was mostly dominant in samples of low Shannon index,
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Figure 2. (A) Geographic map of sampling sites and the diversity of the vertebrate-associated virome (Shannon index) at that site.-(B) 
Vertebrate-associated virome diversity (Shannon index) grouped by geographic closeness to the coastline. ∗∗∗P < .001; ∗∗P < .01; ∗P < .05; ns P > .05. 

whereas its viral abundance significantly decreased as Shannon 
index increased (Pearson coefficient: −-0.75, P < .05, Fig. 3B and 
Table S5). Besides, it showed significant negative association 
with other resident virus (P < .05, Table S4), especially pathogenic 
viruses including Nairobi sheep viruses and Thogoto thogotovirus, 
whose abundance significantly increased in samples of high 
Shannon index (P < .05, Fig. 3B and Table S5). The observed nega-
tive correlation in abundance of the Wellfleet Bay virus like and 
other resident viruses suggests that changes in virome structure 
may be associated with interactions between viruses (Fig. 3B). 

Each categorical individual factor was fit to a GAM to access 
their importance by strength (percentage of deviance explained 
in the change in Shannon index). Geographic closeness to a 
coastline (deviance explained: 39.6%, Fig. 4A) and ecotypes 
(deviance explained: 26.1%, Fig. 4A) had a higher contribution 
to the explained variance of virome diversity, indicating that 
climate variations derived from different geographical conditions 
(the six ecotypes and distance from coastline) might also have an 
impact on the tick-borne virome. Host ranges and hematophagy 
have been considered to be the key contributors in shaping 
their vertebrate-associated virome [5]; thus animal biodiversity 
(deviance explained: 39.5%, Fig. 4A) and domestic animal diversity 
(deviance explained: 25.7%, Fig. 4A) showed important impacts 
from GAM modelling. The reason might be related to H. longicornis 
as a generalist that can feed on a broad range of land animals 
and may have significant associations with the host range [18]. 
Other biological factors including tick gender, antiviral immunity 
response, and feeding host species had a minor role in the GAM 
model analysis (Fig. 4A). 

We furthered assessed the association between meteorological 
factors and virome diversity. GAM fitting of 6 meteorological 
factors explained 68% of the total deviance, with maximum 
temperature ranked as the most important predictor (deviance 
explained: 32.1%, Fig. 4A), followed by average temperature 
(deviance explained: 26.9%, Fig. 4A). The response curve for 
maximum temperature below 29◦C or above 32◦C and increasing 
mean temperature overall suggested a positive effect on 
increasing virome diversity (Fig. 4B and C), whereas virome diver-
sity appeared to decrease for maximum temperatures between 

Figure 3. (A) Explained variation of ecoclimate factors by GAM under six 
index measurements of virome diversity. All ecoclimate factors were 
included to fit a joint model for six virome diversity index values, 
successively. (B) Proportions of the 10 virus species with the largest 
abundance in different virome diversity groupings (by Shannon index). 
Pathogenic virus is indicated by asterisk. ∗∗∗P < .001; ∗∗P < .01; ∗P < .05. 

29◦C and  32◦C (  Fig. 4B). Relative humidity showed a minimum of 
diversity at 70%; precipitation, wind speed (after early maxima), 
and air pressure (overall) showed negative associations with 
vertebrate-associated virome diversity (Fig. 4D–G). The leave-
out dataset demonstrated an explained variance of 0.88 with
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Figure 4. The effects of ecoclimate factors that explain the vertebrate-associated virome diversity and viral abundance of human pathogenic viruses 
under the GAM. (A) Explained variation of vertebrate-associated virome diversity and human pathogenic viral abundance for all ecoclimate factors. 
Each ecoclimate factor was individually fitted to the model for vertebrate-associated virome diversity or pathogenic viral abundance. (B-G) Partial 
effect plots showing the relative effect of each variable for vertebrate-associated virome diversity (Shannon index). All ecoclimate factors were 
included to fit the best-fit GAM model. Shaded area is the 95% confidence interval of the mean partial effect. (H) Actual Shannon index and predicted 
Shannon index using the GAM model. (I) Actual Shannon index and predicted Shannon index using the deep learning model. 
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an MAE of 0.32 and showed consistent variation between actual 
and predicted values (Fig. 4H). 

Following GAM analysis, we used the LiNGAM causality 
test (a linear model that distinguishes between cause and 
effect) to identify the strength and significance of causal 
linkages in the environment–host–virome network. The causality 
analysis showed that humidity (coefficient: 1.13) and minimum 
temperature (coefficient: 1.60) lead to variation of animal host 
diversity. Animal host diversity had causality effects (coefficient: 
4.52) on vertebrate-associated virome diversity (Fig. 5A). Based 
on the meta-review for TBPV cases and comparison of Shannon 
index among different TBPV occurrence groups, we found that 
those areas with single or multiple TBPV occurrences had higher 
vertebrate-associated virome diversity (Shannon index) than 
non–TBPV occurrence areas with a radius of 50 , 100, and 
150 km (Fig. 5B). This finding revealed the mechanism that 
climate influences virome through direct effects on the diversity 
of animal hosts. Moreover, it emphasizes the public health 
significance of regions with higher diversity, as these areas tend 
to experience a higher number of tick-borne virus cases. 

GAM modelling of ecological factors with viral 
abundance 
Six species of pathogenic viruses were detected from 43 libraries. 
The best model, fitted with relative humidity and antiviral 
immunity, explained 89.6% of the total deviance (Fig. 4A). Relative 
humidity showed the strongest association with the abundance of 
pathogenic viruses (deviance explained: 44.2%, Fig. 4A). Anti-viral 
immune response had a higher association on the abundance 
of pathogenic viruses (deviance explained: 26.4%, Fig. 4A) than  
vertebrate-associated virome diversity (deviance explained: 5.0%, 
Fig. 4A). Three highly prevalent viruses, including the Wellfleet 
Bay virus, Tacheng Tick Virus 3, and Nayun tick rhabdovirus, 
have been analyzed as depicted in Fig. 3B, as these viruses have a 
sufficient sample size for GAM modeling. The explained deviances 
for all factors were as follows: 95.2% for the Wellfleet Bay virus, 
55.8% for the Tacheng Tick Virus 3, and 70% for the Nayun tick 
rhabdovirus (Table S6). Climate factors exhibited significantly 
high associations with viral abundance, accounting for 89.2% of 
the explained deviance for the Wellfleet Bay virus, 45.7% for the 
Tacheng Tick Virus 3, and 50.4% for the Nayun tick rhabdovirus. 
These findings highlight the diverse effects of ecoclimate factors 
on individual viruses. Specifically, the Wellfleet Bay virus appears 
to have a strong association with ecoclimate factors, particularly 
climate factors. 

Deep learning network for extension worldwide 
Based on the indicators from the GAM described above, which 
showed the strong effect of six meteorological factors, DL net-
works were performed to predict global hotspots of tick-borne 
virus diversity. The DL model was trained on the 238 datasets 
with the best 75% accuracy and used to forecast global hotspots. 
The leave-out dataset demonstrated an explained variance of 0.93 
with a MAE of 0.075 and consistent variation (Fig. 4I), indicating 
that climate factors have substantial predictive performance in 
the tick virome. Eight sets of publicly available RNA-sequencing 
data from the SRA database of NCBI from countries other than 
China (United States and South Korea) were also analyzed (for 
their vertebrate-associated virome diversity) and were used to 
assess the accuracy of predictions resulting from the DL model. 
Both the actual Shannon index and the predicted Shannon index 
for each dataset were lower than the corresponding overall mean 
Shannon index (averaged Shannon index of all locations of the 

corresponding sampling year), suggesting consistency in identi-
fying the level of diversity of regions through DL–based model 
prediction (Table S7). 

Under three separate SSP scenarios (SSP 2.6, 4.5, and 8.5), 
regions predicted to have higher tick-borne virus diversity than 
the overall average predicted virus diversity included Southeast 
Asia, in particular India; Thailand; Myanmar; coastal areas of 
Malaysia and Indonesia; the northern coastline of Australia; 
multiple areas in the New World, including the western coastline 
of the United States, coastal areas of Mexico, and the majority 
of South America; and the most part of Sub-Saharan Africa, as 
well as Madagascar. Though much of the area predicted to have 
hotspots of high tick-borne virus diversity occurs in the tropics, 
there is significant overlap with regions between 18◦ and 53◦ north 
latitude and 16◦ and 45◦ south latitude, previously predicted to be 
suitable H. longicornis tick habitat [18] (Fig. 6, Fig. S4–S8, Table S8). 
The western coastline of the United States and the northeastern 
coastline of Australia, which have been considered as the 
most suitable habitats for H. longicornis [39], could potentially 
experience higher cross-species transmission in these regions 
due to its more diverse vertebrate-associated virome. Regions 
located between 45◦ and 53◦ in the Northern Hemisphere were 
predicted to have relatively lower risk, especially eastern Russia 
and the Qinghai-Tibet Plateau of Asia (Table S8). 

Given that the objective of WHO SDG Target 3.3 is to erad-
icate epidemics of AIDS, tuberculosis, malaria, and neglected 
tropical diseases and combat hepatitis, water-borne diseases, and 
other communicable diseases by 2030, we strongly emphasize 
the significance of predicting tick-borne viral diversity by 2030 to 
enhance the prevention and control of tick-borne illnesses [40]. 
Virome diversity was predicted to increase from 2019 to 2030 by 
0.19% (95% CI: −0.42%, 0.81%) and by 0.33% (95% CI: −0.37%, 
1.03%) under the SSP4.5 and SSP8.5 scenarios, respectively, in the 
tick-reported regions including 289 previously reported locations 
and the 238 locations sampled in this study (Table S9) [18]. A 
decrease of 0.09% (95% CI: −0.95%, 0.75%) in the diversity of 
viruses was predicted under SSP2.6 (Table S8). The predicted 
virome diversity was observed to increase in 41.2% (95% CI: 33.9%, 
48.5%), 71.2% (95% CI: 64.5%, 77.9%), and 81.9% (95% CI: 76.2%, 
87.6%) of above tick reported regions under the SSP2.6, SSP4.5, and 
SSP8.5 scenarios, respectively. For the same sampling locations in 
2030, the Shannon index increased in 73.9% (95% CI: 68.3%, 79.5%) 
and 76.1% (95% CI: 70.7%, 81.5%) of the locations under SSP4.5 and 
SSP8.5, respectively. Under SSP2.6, 30.4% (95% CI: 24.6%, 36.3%) 
of the locations showed an increase (Table S9). Shannon index 
slightly increased in above regions by 0.43% (95% CI: 0.044%, 
0.99%), 0.35% (95% CI: 0.057%, 0.74%) and 0.33% (95% CI: 0.024%, 
0.8%) under SSP2.6, SSP4.5 and SSP8.5, respectively. From the 
2030–2019 diversity difference map (Fig. S9), the region with the 
largest increase in diversity is southwestern India, whereas the 
largest decrease is observed in the southern part of South Africa. 
The effect size (Cohen’s d) for diversity changes between 2030 
and 2019 are −0.038 (95% CI: −0.052, −0.024) for SSP2.6, −0.034 
(95% CI: −0.048, −0.019) for SSP4.5 and − 0.052 (95% CI: −0.066, 
−0.038) for SSP8.5, respectively. These values indicate relatively 
low differences between 2030 and 2019. 

The recurring pattern of major pandemics (such as SARS-CoV 
in 2003, H1N1 in 2009 and COVID-19 in 2019) occurring approx-
imately every 10 years, has also increased attention towards the 
ecological and genetic patterns of viruses over a decade. However, 
considering the near future of 2030, we have conducted projec-
tions for 2040 and 2050 to gain insights into the changing trend of 
tick virome in the more distant future. These projections indicate

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
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https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
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Figure 5. The causality mechanism of ecoclimate factors that have an impact on the vertebrate-associated virome diversity. (A) Causality effect of 
ecoclimatic factors on vertebrate-associated virome diversity. The number on the arrow indicates the power of the causality effect of humidity and 
minimum temperature on mammals, and mammals on the tick virome. Causality power for 90% subset dataset: 95% CI: [0.50, 0.59] for humidity; 
[1.00, 1.06] for minimum temperature; [3.06, 3.16] for mammals. (B) Comparing virome diversity in regions with varying tick-borne pathogenic virus 
occurrences (multiple occurrences, single occurrence, and non–tick-borne pathogenic virus) within a 50-, 100-, and 150-km radius. 
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Figure 6. Global prediction of vertebrate-associated virome diversity under SSP4.5 in 2019. 

that virome diversity in ticks inhabiting tropical and subtropical 
regions between latitude 35◦N and  45◦S is expected to increase in 
both 2040 and 2050 ( Fig. S10-S15). 

Discussion 
In this study, comprehensive metagenomic sequencing was 
utilized to extend the understanding of ecoclimate impacts on 
viruses from the level of individual viruses to the whole viral com-
munity within a specific vector species, H. longicornis. Compared  
to primer-based PCR detection of viruses, metagenomic data can 
be more readily used for gauging changes in virome richness 
and composition, assessing interactions between viruses, vectors 
and environmental factors [41, 42]. Based on our understanding, 
this study provides novel evidence from a comprehensive 
virome-scale analysis, establishing a macroecological link with 
ecoclimate factors. We observed that climate factors exerted 
a more pronounced influence compared to other variables 
on the diversity of tick-borne vertebrate-associated virome. Of 
particular interest was the finding that elevated temperature 
and lower humidity were associated with increased diversity 
in animal hosts, potentially leading to variations in tick-borne 
vertebrate diversity. This phenomenon may be attributed to rapid 
environmental changes prompting animal hosts to expand their 
habitats through migration as a means of survival. Consequently, 
these findings raise the possibility of increased exposure of host 
animals to TBPV. carried by ticks. This may result in more frequent 
cross-species transmission of viruses between animal hosts and 
ticks, with estimates suggesting a 4000-fold increase compared 
to previous levels [1]. Our findings illuminate how climate 
impacts the virome through influencing the diversity of animal 
hosts. This highlights the importance of regions with greater 
diversity, as they often occur a higher incidence of tick-borne 
virus cases, which has implications for public health. We believe 
that this mechanism not only explains the relationship between 
ecoclimate factors and tick virome but also offers valuable 
insights for future research. 

Our findings revealed that climate-related factors appeared 
to have a stronger association with the evenness of the virome 
rather than its richness (Fig. 3A, Fig. S3), driving a more evenly 
distributed virome. This suggests that the viruses carried by ticks 
may have a more equal opportunity to be involved in spill-over 

events, potentially favouring their successful establishment in 
multiple animal hosts. This finding could potentially explain 
the phenomenon of tick-borne viruses being more inclined to 
act as generalists in infecting vertebrate hosts, which results in 
their relatively higher genetic diversity compared to other arthro-
pods, such as mosquitoes [43, 44]. Furthermore, we observed that 
regions with higher virome diversity in ticks had a greater occur-
rence of tick-borne pathogen (TBP) infections, underscoring the 
public health significance of climate-induced changes in the tick 
virome. Wellfleet Bay virus like showed potential antipathogen 
capabilities, as it was significantly associated with other resi-
dent viruses and highly abundant in regions with lower virome 
diversity. However, further investigation is needed to explore this 
potentiality in more depth. 

An expanding diversity of tick-borne viruses spread more uni-
formly across the geographic distribution of their vector, coupled 
with the predicted temperature-induced changes in host ecology 
likely increasing host-seeking and an expanded invasive range, 
together indicated that H. longicornis epitomized a significant and 
burgeoning risk to global public health. As the strong association 
between climate factors and virome diversity indicated from H. 
longicornis in China, the prediction was conducted to forecast more 
problem areas in the rest regions worldwide and in the future. Fur-
thermore, it is likely that this risk will be shared unevenly across 
geographic regions from the prediction results, and developing 
nations located in emergent hotspots will bear a disproportion-
ate amount of risk. For example, the eastern coastline of China 
had lower virome diversity, contrast to coastal areas of India, 
Malaysia, Indonesia, Australia, Mexico, the United States, South 
America, and Southern Africa predicted to had higher virome 
diversity. This was consistent with the higher precipitation in 
coastal versus interior regions of China and the negative asso-
ciation between precipitation and vertebrate-associate virome 
diversity detected in the GAM analysis (Fig. S16) [45, 46]. Another 
observation was that tropical and subtropical regions, particularly 
across South America, Africa, and Asia, were likely to have the 
highest vertebrate-associated virome diversity (Fig. 5A, Fig. S4-S8, 
Table S7), and previous research suggested these areas to be 
more prone to viral emergence [47]. H. longicornis has not been 
reported from tropical localities to date. Nonetheless, previous 
results predicted that tropical regions are suitable habitats. H. 
longicornis’s invasive characteristics and broad climate envelope

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
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https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae087#supplementary-data
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indicated that it might become established in these regions in the 
future [48, 49]. Indeed, it might have been already present in the 
tropics but unreported, similar to the finding that H. longicornis 
had been an established species in New Jersey, United States 
for at least several years despite only being publicly reported 
in 2017 [14, 16]. Although the virome data used for training the 
predication model were only taken from China, which may not 
be sufficient to represent the situation in other areas, a limited 
number of datasets available from the SRA database have been 
downloaded and applied for verification. They were identified 
to be low-diversity regions, both from the actual and predicted 
diversity, which indicated the consistency of identifying diversity 
levels for these regions from the prediction. Regardless, the find-
ing suggests that tropical regions and some coastal regions are 
potential problem hotspots of high–tick-borne virome diversity; 
thus, allocation of surveillance resources are warranted to better 
understand the possibility of viral spillover events in these areas. 

Climate scenarios are developed based on different assump-
tions about future greenhouse gas emissions, socioeconomic fac-
tors, and climate system responses. These scenarios provide a 
range of possible future climate conditions, considering a wide 
range of uncertainties. In this study we used SSP2.6, SSP4.5, and 
SSP8.5, which represent low, medium, and high emissions scenar-
ios. The climate model (CNRM-CM6–1-HR) was used here, which 
simulated a global mean warming close to historical observations 
[36]. To make the developed DL model more precise and capture 
the genuine climate impact on viromes, we utilized actual and 
specific climatic data from meteorological observation stations to 
train the DL model. For global predictions, we employed climatic 
data from CMIP6, which has a resolution of 1 value per 50 km 
× 50 km. If we use climatic data from CMIP6 to train our DL 
model could result in most of our collected samples sharing 
the same climatic data but with different Shannon index values, 
potentially leading to model distortion. We acknowledge that 
this approach introduces potential biases that could result in 
disparities between the predicted and actual values. The future 
climate data predicted from this climate model were used to 
explore their impact on virome over the time and suggested 
that most regions (81.9%) were expected to have increased tick-
borne virome diversity under the highest carbon dioxide emission 
scenario (SSP8.5) in 2030, (Fig. 6, Table S8). The use of climate 
scenarios helps address the inherent uncertainty associated with 
predicting future climate conditions accurately and provides a 
more comprehensive understanding of the potential range of 
climate outcomes on tick virome. 

There are several limitations in this study. First, the viromes 
dataset used in this study is limited to samples collected from 
China, which may not be representative enough for training mod-
els and making global projections. Second, due to the limited 
sampling time (only 39 sampling time points), we were unable to 
conduct time-series predictions. The meteorological factors were 
averaged using 4-year monthly data to mitigate the temporal 
effects in the climate model predictions, which could potentially 
result in underestimations or overestimations. Third, the associ-
ation between pathogenic viruses and antiviral immunity genes 
might be biased by human pathogenic viruses. In Fig. 4A, the  rela-
tively lower explained variance of 5% suggests that the association 
may have been underestimated due to the unexplored aspects 
of antiviral immunity. However, that antiviral immunity showed 
a higher explained variance of 26.4% for pathogenic abundance 
in Fig. 4A. Updating the database to include a broader range of 
immunity genes may lead to a more precise understanding of the 
association. 

Generally, the results in this study are in keeping with the 
putative benefits that higher temperatures convey to tick-borne 
virus-vector dynamics and suggest that global warming may 
induce more frequent spillover events and thus emergence or 
re-emergence of more tick-borne viruses. Policies that constrain 
carbon output and limit carbon dioxide emissions to lower 
trajectories might reduce this threat. Given the significant 
impact of climate on the tick virome and the resulting potential 
for cross-transmission events, it is imperative to extend this 
study to other invasive species (such as Ixodes scapularis, Ixodes 
ricinus, and  Rhipicephalus sanguineus) to assess their viromes 
under changing ecological conditions. This research will help 
clarify the level of risk associated with emerging tick-borne virus 
outbreaks. 
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