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Abstract

Conformational heterogeneity is a defining hallmark of intrinsically disordered proteins and 

protein regions (IDRs). The functions of IDRs and the emergent cellular phenotypes they control 

are associated with sequence-specific conformational ensembles. Simulations of conformational 

ensembles that are based on atomistic and coarse-grained models are routinely used to uncover 

the sequence-specific interactions that may contribute to IDR functions. These simulations are 

performed either independently or in conjunction with data from experiments. Functionally 

relevant features of IDRs can span a range of length scales. Extracting these features requires 

analysis routines that quantify a range of properties. Here, we describe a new analysis suite 

SOURSOP, an object-oriented and open-source toolkit designed for the analysis of simulated 

conformational ensembles of IDRs. SOURSOP implements several analysis routines motivated 

by principles in polymer physics, offering a unique collection of simple-to-use functions to 

characterize IDR ensembles. As an extendable framework, SOURSOP supports the development 

and implementation of new analysis routines that can be easily packaged and shared.
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1. INTRODUCTION

Natively unfolded proteins or intrinsically disordered proteins and regions (collectively 

referred to as IDRs,) are a ubiquitous class of proteins and domains that regulate 

various molecular functions and cellular phenotypes1–4. Unlike folded domains, which 

are well-described by a few structurally similar microstates, IDRs are defined by their 

conformational heterogeneity4,5. As a result, the accurate description of IDRs in the solution 

state necessitates a statistical description of the underlying conformational ensembles6. 

These ensembles, which are affected by changes to solution conditions and the types of 

components present in the solvent, are distributions of energetically accessible protein 

conformations that capture the sequence-encoded conformational biases associated with 

a given IDR 4,7,8. Several studies have established direct connections between sequence-

ensemble relationships of IDRs and the molecular functions of these conformationally 

heterogeneous regions8–10. Accordingly, there is a need for facile, ready-to-use methods to 

uncover the molecular grammars that underlie sequence-ensemble-function relationships of 

IDRs9.

Measurements of IDR ensembles in solution allow for quantitative mapping of sequence-

ensemble relationships. Techniques that obtain statistical information on molecular 

conformation without pre-supposing the existence of a single dominant state are well-

equipped to characterize IDR ensembles. These techniques include static and dynamic 

multiangle light scattering (SLS and DLS, respectively), small-angle X-ray scattering 

(SAXS), circular dichroism (CD), infrared spectroscopies, electron paramagentic resonance 

(EPR) spectrosopy, nuclear magnetic resonance (NMR) spectroscopy, multiparameter 

fluorescence spectroscopies, and other single-molecule techniques7,11–16. While these 

experimental techniques offer a window into conformational behaviors, they typically probe 

a single type of conformational characteristic (e.g., global ensemble average dimensions, 

distances between specific positions along the chain, etc.). Accirdingly, alongside these 

experimental approaches, all-atom and coarse-grained molecular simulations are routinely 

deployed to make predictions or interpret data obtained from experimental measurements. 

The joint application of experimental and computational methods enables the integration of 
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multiple conformational inputs, thus affording a holistic assessment of sequence-ensemble 

relationships17–23.

Simulations of all stripes, but specifically all-atom simulations based on explicit or 

implicit representations of solvent are especially useful for describing sequence-specific 

conformational ensembles of IDRs24,25. If a simulation can fully explore the conformational 

landscape and the forcefield being used is accurate enough, then all-atom molecular 

simulations enable the direct prediction of ensembles from sequence. These computationally 

derived ensembles can be compared directly or indirectly with experiments or used 

in isolation to understand functional and evolutionary constraints on IDRs 19,20,25. 

Consequently, there has been substantial interest in developing and applying Molecular 

Dynamics (MD) and Monte Carlo (MC) simulations to study IDRs 26–33. It is worth noting 

that the length of an IDR is not an intrinsic limitation on the generation of converged results 

from all-atom simulations especially MC simulations based on implicit solvent models such 

as ABSINTH. The limitation is invariably the ruggedness of the free energy landscape, 

which is generally a challenge for IDRs characterized by a diverse range of energy scales.

As all-atom simulations have become increasingly routine, various software packages have 

emerged to perform and analyze molecular simulations. Major packages for performing 

all-atom simulations (so-called simulation engines) include, but are not limited to, Amber, 

CAMPARI, CHARMM, Desmond, GROMACS, LAMMPS, OpenMM, and NAMD30,34–

40. Alongside the development of simulation engines, there has also been an emergence 

of stand-alone packages for simulation analysis. Although most simulation engines 

contain their analysis routines, stand-alone analysis packages provide an alternative that, 

in principle, can be relatively lightweight, customizable, and unburdened by coding 

practices or conventions of the inevitably larger simulation engines. General-purpose 

analysis packages include Bio3D, CPPTRAJ, ENSPARA, LOOS, MDAnalysis, MDTraj, 

ST-Analyzer, VMD, and others41–43 (see Supplemental Table S1 for a more extensive list). 

While some packages are general-purpose libraries for analyzing simulation trajectories, 

others are developed with a specific goal in mind 44–46. Decoupling analysis from 

performing simulations allows for ease of use, installation, and portability to be prioritized 

in analysis packages, while performance can be prioritized in simulation engines. It also 

enables familiarity with a single analysis framework that can be applied across different 

simulation engines.

All-atom simulations of IDRs are becoming increasingly common17,19,47. Despite this, there 

is a lack of stand-alone analysis packages specifically catering to the analysis of IDR 

conformational ensembles. Given their inherently heterogeneous ensembles and the lack 

of a relevant single reference structure, many of the structure-centric analyses commonly 

employed in the context of folded may be poorly suited for characterizing IDR ensembles. 

In contrast, concepts and principles from polymer physics have been taken and applied to 

interpret and understand disordered and unfolded proteins to great effect6,11,19,48–51.

Here we introduce SOURSOP (Simulation analysis Of Unfolded RegionS Of Proteins), 

a Python-based software package for the analysis of all-atom simulations of disordered 

and unfolded proteins. SOURSOP combines both analysis routines commonly found for 
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folded proteins with a range of IDR-centric analyses that have been used extensively across 

many publications over the last half-decade. In the remainder of this article, we lay out 

the software architecture of SOURSOP, provide several examples of analysis that can be 

performed, and offer a discussion of practical and conceptual features associated with the 

software.

2. METHODS

SOURSOP is written in Python 3.7+ and built atop the general-purpose simulation 

analysis package MDTraj41. SOURSOP uses MDTraj as a backend for parsing simulation 

trajectories and can accept trajectories in a wide variety of file formats. Although trajectory 

files are parsed into SOURSOP-specific objects, the underlying mdtraj.topology and 

mdtraj.trajectory objects remain user-facing and accessible. In this way, any analysis 

written to work with MDTraj is directly applicable to SOURSOP objects.

SOURSOP reads a simulation trajectory into a SSTraj object. The SSTraj object 

automatically extracts individual protein chains into their SSProtein objects. SSProtein 

objects are the base object upon which single-chain analysis routines are applied as 

object functions. In addition, peripheral modules that include ssnmr and sspre, provide 

modular, protein-independent analyses that work in conjunction with an SSProtein object. 

In this way, SOURSOP abides by the software principle of loose coupling, facilitating 

maintainability and future extension. The overall architecture of SOURSOP is shown in Fig. 

1A.

Where possible and appropriate, SOURSOP engages in memoization, a dynamic 

programming approach where expensive calculations are saved after being executed once52. 

This offers a general strategy that avoids repeated recalculation of (for example) the same 

sets of distances. In addition to intramolecular analysis codified in the SSProtein object, 

intermolecular and multi-chain analysis routines are included in the SSTraj object. In this 

way, a simple and standardized interface for working with protein ensemble data is provided. 

Ensembles to be analyzed could be generated through standard all-atom simulations, but 

PDB ensembles from NMR or ensemble selection procedures are also directly analyzable.

A major goal in developing SOURSOP is to make simulation analysis easy and intuitive, 

both for the user and developers. For example, Fig. 1B offers a simple example of 

computing a protein’s apparent scaling exponent (νapp) for a protein in a simulation 

trajectory. While a straightforward user experience is an obvious goal for any software 

package, providing a consistent, well-defined, and accessible software architecture is 

essential for long-term maintenance and extendibility. Well-structured software is also 

necessary to enable productive and sustainable open-source contributions.

The current working version can be found at https://github.com/holehouse-lab/soursop, 

with documentation at https://soursop.readthedocs.io/. SOURSOP uses PyTest (https://

docs.pytest.org/en/stable/) for unit testing, Sphinx (https://www.sphinx-doc.org/en/master/), 

and readthedocs (https://readthedocs.org/) for documentation, and Git (https://git-scm.com/) 

and GitHub (https://github.com/) for version control. The original repository structure 
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was generated using cookiecutter (https://github.com/cookiecutter/cookiecutter). Explicit 

dependencies include MDTraj41, SciPy53, NumPy54, Pandas55, and Cython56.

In addition to the analyses shown here, we provide a collection of Jupyter notebooks 

along with the full trajectories (where possible) that offer examples of more general IDR-

centric analysis that can be performed on the ensembles studied here (https://github.com/

holehouse-lab/supportingdata/tree/master/2023/lalmansingh_2023). The SOURSOP code is 

consistent and heavily commented. The documentation also provides specific guidance for 

the development and integration of new analysis routines into SOURSOP.

3. RESULTS

To demonstrate the analyses available in SOURSOP, we have analyzed a collection of 

ensembles generated by various methods. The trajectories analyzed were generated using 

CAMPARI (an all-atom Monte Carlo simulation engine) or Desmond (an all-atom MD 

simulation engine)26,57,58. The analyses performed here are offered as convenient examples 

of the types of analyses and insight enabled by SOURSOP. All of the analyses described 

in the results section are based on functions defined in the documentation at https://

soursop.readthedocs.io/ and we note in-line the associated function names the first time 

a specific analysis is referenced. In addition, examples and tutorials for SOURSOP are 

available at https://soursop.readthedocs.io/en/latest/usage/examples.html.

3.1 IDR global dimensions show extensive sequence-dependent conformational biases

A challenge in studying IDRs is the absence of an obvious reference state. While folded 

proteins are typically associated with a native conformation which can serve as a reference 

point for further analysis, the structural heterogeneity of an IDR means that no single state 

serves this purpose. Conveniently, polymer physics offers analytical tools that can serve 

as reference states for disordered and unfolded protein ensembles 30,48,59–63. As a result, 

dimensionless polymeric parameters can be computed, which allows the conformational 

behavior of very different proteins to be quantitatively and directly compared. SOURSOP 

implements the calculation of many of these parameters, facilitating ensemble analysis.

We re-analyzed a series of conformational ensembles using two such dimensionless 

reference parameters. Specifically, we computed instantaneous asphericity (δ∗) 

(.get_asphericity()), which measures the shape of a given conformation64. The 

instantaneous asphericity is defined as

δ∗ = 1 − 3L1L2 + L2L3 + L3L1

(L1 + L2 + L3)2

(1)

Where L1, L2, and L3 are the eigenvalues of the gyration tensor (T), which in turn is defined 

as,

Lalmansingh et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2024 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cookiecutter/cookiecutter
https://github.com/holehouse-lab/supportingdata/tree/master/2023/lalmansingh_2023
https://github.com/holehouse-lab/supportingdata/tree/master/2023/lalmansingh_2023
https://soursop.readthedocs.io/
https://soursop.readthedocs.io/
https://soursop.readthedocs.io/en/latest/usage/examples.html


T = 1
n ∑

i = 1

n
(ri − rc) ⊗ (rc − ri)

(2)

Where the T is calculated for every conformation, n is the number of atoms in the system, ri

is the position vector of atom i in the conformation of interest, rc is the centroid of all atoms 

positions in that conformation, and ⊗ reflects the tensor product (also known as the dyadic 

product). The gyration tensor itself also accessible via the .get_gyration_tensor() 

function.

In addition to the instantaneous asphericity, we can calculate t, (.get_t()) a dimensionless 

parameter that quantifies global dimensions effectively via a normalized radius of gyration 

as originally defined by Vitalis and Pappu as

t = f1(f2(Rg/Lc))f3/N0.33

(3)

where N is the number of residues in the sequence, Lc is the contour length of the 

polypeptide in Angstroms (3.6×N), and f1, f2, and f3, are parameters used to ensure t
remains in the interval of 0 to 165. f1, f2, and f3, are defined as 2.5, 1.75 and 4.0, 

respectively65. By generating 2-dimensional density plots that quantify the simultaneous 

evaluation of δ∗ and t for each conformation, a quantitative and length-normalized 

representation of IDR global conformational preferences can be easily visualized.

Both t and δ∗ are transformations of the eigenvalues from the gyration tensor 

T. They represent global order parameters to describe the size and shape of a 

given conformation. An alternative normalization approach is using polymer models 

as reference states, or considering additional polymeric parameters that report 

on the global chain dimensions (e.g., hydrodynamic radius, end-to-end distance, 

or the apparent polymer scaling exponent)66–69. All of these can be calculated 

in SOURSOP (get_radius_of_gyration(), get_hydrodynamic_radius(), 

get_end_to_end_distance(), get_scaling_exponent()). For convenience, we 

focus here on t, and on the normalized radius of gyration, although other metrics would 

likely report similar conclusions. To normalize the radius of gyration, we make use of an 

analytical model (the Analytical Flory Random Coil, AFRC) that provides the expected 

radius of gyration if the chain behaved as a polymer in a theta solvent66.

We analyzed conformational ensembles with over 3 × 104 distinct conformers obtained from 

previously published simulations that have been directly benchmarked against experiments 

to compare how ensemble size and shape vary across different IDRs (Fig. 2A, Table S1) 
26,57,58,68,70–72. This analysis revealed a wide array of global conformational behaviors for 

IDRs. Our observations highlight properties ranging from heterogeneous compact ensembles 

to highly expanded self-avoiding random chains commensurate with polypeptides under 
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strongly denaturing conditions. To contextualize these global dimensions, we also calculated 

normalized radii of gyration using the dimensions of a sequence-matched chain under 

conditions in which chain-chain and chain-solvent interaction are counterbalanced, with 

similar results (Fig. 2B)66.

The diversity in global IDR properties (size and shape), as illustrated in Fig. 2A, is often 

masked by ensemble-average properties. As a result, two IDRs may appear, on average, to 

be highly similar. The simulation analysis uncovers differences using the full distribution of 

conformations, which is evident even for relatively simple order parameters such as δ∗ and 

t, in agreement with prior work showing ensemble-average properties can mask complexities 

in the underlying conformational ensemble 74–76.

Aromatic residues, charged residues, and proline play an outsized role in dictating the 
conformational behavior of disordered proteins

Next, we applied SOURSOP to identify key sequence determinants of the attractive 

and repulsive intramolecular interactions that determine global and local conformational 

biases in IDR ensembles. To evaluate local chain interactions, we computed the radius 

of gyration over a sliding window of 14 residues to generate a linear profile of local 

density, normalizing for steric effects via an atomistic excluded volume (EV) model (Fig. 

3, [get_local_collapse()] see Supplemental Information). We note the window size 

was chosen to reflect approximately 3x the polypeptide blob length, but the window size 

is a free parameter that can be passed to the function77. To assess long-range interactions, 

we computed scaling maps (Fig. 4, [get_distance_map()]). Scaling maps report inter-

residue distances (distance maps) normalized by the expected distances from some reference 

polymer model, in this case, the EV model. The use of scaling maps accounts for the 

intrinsic contribution that chain connectivity has to inter-residue distances. While we use 

numerical simulations of EV polymers to generate the reference state for our scaling maps 

here, scaling maps can, more broadly, involve any convenient reference state, which may 

include theoretical models or even sequences of different compositions66,78. Moreover, 

SOURSOP also provides the ability to fit an ensemble to an apparent homopolymer 

model and then calculate deviations from that model across intra-molecular distances 

(get_polymer_scaled_distance_map()].

Our analysis here across the set of simulations confirmed prior observations made by many 

groups: that charged, aromatic, and proline residues emerge as key determinants of IDR 

local and global interactions irrespective of the forcefield or simulations approach being 

used (Fig. 3, Fig. 4).

While our analysis is necessarily retrospective and correlative, it is in line with prior 

experimental work57,79–82. To explore this observation further, we performed all-atom 

simulations using the ABSINTH implicit solvent model of the p53
1–91

 with three 

phosphomimetic mutations (S15E, T18E, S20E) and compared the result to previous 

simulations of the wildtype sequence (Fig. 5A)71. While glutamic acid is an imperfect 

analog for the phosphate group, the results revealed that relatively modest changes in linear 

charge density can cause local and long-range changes in the conformational ensemble. 
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Despite substantial local conformational rearrangement, this leads only to a modest change 

of 0.5 Å in the mean radius of gyration (Fig. 5B). Charge effects leading to seemingly minor 

changes in global dimensions while altering local networks of intramolecular interactions 

mirrors prior work on the multi-phosphorylated proteins Ash1, Sic1, and a region of the 

RNA polymerase CTD 58,78,83,84. Taken together, these results suggest that while local 

changes in charge density can induce local conformational changes in ensemble behavior, 

compensatory changes in attractive (and repulsive) interactions that act on different or 

overlapping length scales can mask the effects of large-scale changes when global chain 

dimensions are examined.

Molecular accessibility is context dependent in IDRs

It is often convenient to imagine IDRs as being uniformly solvent accessible.. While 

appealingly simple, given the complex conformational behavior observed in our analyses 

here and elsewhere, it may not be a given that every residue is equally accessible58,75,85–88. 

To examine this idea further, we computed local accessibility across an eight-residue sliding 

window for each IDR using a 10 Å spherical probe ([get_regional_SASA()] Fig. 6). 

Solvent accessibility here was calculated using the Shake Rupley algorithm89. We chose 

eight residues here to provide information on local conformational accessibility only (i.e., 

slightly larger than the blob size), although the window size used can be varied as an input 

parameter to the analysis function. This analysis allows us to assess how accessibility varies 

as a function of local sequence position.

Our analysis reveals substantial variation in molecular accessibility, suggesting that two 

residues of the same type may be differentially accessible depending on their broader 

sequence context (Fig. 6). Clearly, the local sequence environment offers a mechanism 

to control the effective concentration of a local binding motif. The importance of local 

sequence context on molecular interactions can be further expanded if sequence-encoded 

chemistry provides partner-specific attractive and repulsive interactions. Taken together, 

despite the lack of a fixed 3D structure, it seems reasonable to speculate that the binding 

of motifs from IDRs should be considered both in terms of molecular sterics and shape 

complementarity (as is the conventional view for rigid-body molecular recognition) but also 

in terms of if and how the local chain context influences their accessibility and chemical 

context 90,91.

4. DISCUSSION

Here we introduce SOURSOP, an integrative Python-based software package for the 

analysis of all-atom ensembles extracted from simulations of intrinsically disordered 

proteins. SOURSOP is easy to install and use and is accompanied by extensive 

documentation and unit tests. Here we have shown how SOURSOP can be applied 

to analyze all-atom ensembles extracted from two types of simulations (Monte Carlo 

simulations and molecular dynamic simulations) of different IDRs. SOURSOP contains 

a range of additional routines not explored in this work, but have been applied to various 

systems under a range of contexts, including local residual structure, intra-residue contacts, 

and the interaction between folded and disordered regions (Fig. S1) 57,58,92–94.
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SOURSOP as a stand-alone package

SOURSOP was developed as a stand-alone analysis package built on the existing general-

purpose simulation analysis package MDTraj41. The decision to develop SOURSOP as an 

independent package, as opposed to expanding the functionality of MDTraj, was motivated 

by several factors.

First, many of the analysis routines built into SOURSOP are of limited value for the analysis 

of well-folded proteins. At this juncture, MDTraj is a stable and mature software package 

that functions as the backend to a range of tools associated with molecular simulations 
44,95–99. To add features into MDTraj would unavoidably lead to additional technical debt - 

more features to keep track of, manage, and test for. Technical debt adds viscosity, risks the 

introduction of new bugs, and can hamper future development if several coding styles are 

combined100. Accordingly, the drawbacks of integrating the analysis routines into MDTraj 

were judged to be substantially greater than the possible benefits.

Second, our goal is for SOURSOP to provide a general platform where novel analysis 

routines appropriate for disordered proteins can be implemented by the burgeoning 

community of labs performing simulations of disordered proteins. This requires our ability 

to maintain control over a consistent programmatic interface, which can be achieved via 

an interface layer between MDTraj and SOURSOP but becomes challenging if analysis 

routines are implemented directly inside of MDTraj. For this reason, providing SOURSOP 

as a loosely-coupled software component that works with MDTraj, as opposed to within 

MDTraj, enables the best of both worlds.

Finally, applying principles from polymer physics to analyze disordered proteins is not new. 

Several of the analysis routines provided by SOURSOP are also available in extant software, 

notably in the simulation engine CAMPARI (http://campari.sourceforge.net/) 6,30,60,61,101. 

SOURSOP provides a lightweight toolkit that is simple to install, simple to use, and 

interoperable with MDTraj and the collection of existing analysis tools therein. Therefore, 

while some overlap exists, we do not see SOURSOP as replacing the analysis routines 

in MDTraj or CAMPARI. Instead, SOURSOP is a complement to extant routines and 

packages. Furthermore, it makes it relatively straightforward for groups to publish scripts or 

Jupyter notebooks that enable full reproduction of their analysis workflow.

SOURSOP in the broader ecosystem of simulation software

Molecular simulations enables the characterization of biophysical properties that may 

be inaccessible to direct experimental measurement. Simulations typically involve either 

Molecular Dynamics (MD) or Monte Carlo (MC)-based approaches. In addition, the 

underlying molecular system must be represented in some way, be that at all-atom resolution 

or some degree of coarse-graining. All-atom models represent every atom in a system 

explicitly. In contrast, coarse-grain models combine two or more atoms into groups, and may 

included united-atom models (where typically 2-4 atoms are combined together) or lower 

resolution models in which residues or whole domains are represented as single beads.

As model resolution decreases, longer and larger simulations become increasingly 

accessible, yet assumptions and caveats made to justify the loss of details become 
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increasingly broad. While it is tempting to expect all-atom models to be the gold standard, 

if simulations are unable to adequately sample a phenomenon of interest they may be 

inappropriate for a given question. In contrast, while coarse-grained simulations may seem 

appealing given their comparative simplicity when compared to all-atom simulations, the 

many assumptions that underlie their simplicitly can be, inadvertently, misleading. As such, 

the appropriate model depends entirely on the question of interest.

The emergence and refinement of molecular simulations has coincided with significant 

advancements in computational resources in the past thirty years. As a result, simulations are 

now commonly used in hypothesis generation, to aid in the interpretation of experimental 

data, and to build molecular models of complex biological processes. In parallel, as 

molecular simulations have become more common-place, there has been a veritable 

Cambrian explosion of APIs, toolkits, plugins, and frameworks for analyzing molecular 

simulations (see Table S1 for a survey of ~100 analysis packages). These tools help make 

complex, integrative analyses routine, and lower the barrier for scientific discovery.

SOURSOP analysis of coarse-grained simulations

While SOURSOP was built to analyze all-atom simulations, many of the routines provided 

can be directly applied when working with coarse-grained simulations. If an input topology 

(PDB) file defines beads as ‘CA’ (alpha carbon) as their atom type, then SOURSOP will 

correctly parse individual chains into individual residues, and the majority of the analyses 

described here are applicable for the analysis of coarse-grained simulations. It is important 

to emphasize that while we have used SOURSOP extensively to analyze coarse-grained 

simulations, certain functionality may not make sense or may fail (e.g., secondary structure 

analysis, sidechain bond vector analysis etc.)102–104. As such, while SOURSOP does not 

officially support the analysis of coarse-grained simulations at this juncture, unofficially, it 

works relatively well in this capacity.

SOURSOP is an extendable platform for novel analysis routines

Analyzing IDR ensembles to reveal clear and interpretable conclusions remains challenging. 

Absent a native reference state, it can be difficult to generate informative and visually 

coherent representations that fully capture the inherent high dimensionality of an IDR 

ensemble. While various ‘standard’ analyses have emerged for folded proteins (e.g., contact 

maps, per-residue RMSF, the fraction of native contacts), there is less consensus on what the 

standard analyses should be when assessing IDR ensembles.

Rather than a problem, this raises an opportunity, whereby novel analysis and visualization 

approaches are needed. With this in mind, we hope new analysis routines can be integrated 

into SOURSOP, facilitating distribution and packaging. Considering this objective, 

SOURSOP includes a well-defined style guide for new analysis routines and a collection 

of utility functions that provide automatic sanity checking and defensive programming for 

input data. We also provide documentation on how best to introduce a new routine and how 

to integrate it into the main codebase. These features, combined with the broad reach of the 

Python programming language, will lower the barrier to open-source and community-driven 

scientific development.
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5. CONCLUSION

SOURSOP is an open-source Python toolkit for the general analysis of ensembles of 

disordered proteins. In addition to analyzing disordered protein ensembles, SOURSOP 

can also be used to analyze folded protein trajectories or individual PDB files. As 

such, SOURSOP offers a general interface for calculating molecular properties, polymeric 

parameters, and the development of new IDR-centric analysis routines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Architecture and example code for SOURSOP.
(A) Trajectory files are read into an SSTrajectory object. This object automatically parses 

each polypeptide chain into separate SSProtein objects. Each SSProtein object has a set 

of object-based analyses associated with them. Each trajectory must have between 1 and n
protein chains in it. In addition, various stateless method-specific analysis modules exist for 

certain types of analysis. Additional stateless methods can be extended to allow new analysis 

routines to be incorporated in a way that does not alter the SSProtein or SSTrajectory code. 

(B) Example code illustrating how the apparent scaling exponent can be calculated from an 

ensemble.
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Figure 2: 
Global conformational analysis of 10 disordered protein ensembles analyzed with 

SOURSOP. (A) The two-dimensional density plots for instantaneous asphericity (δ∗) and 

normalized dimensions (t) reveal a broad range of conformational landscapes. Ash158, 

p5373, p2772, NTL968, Notch70, and A1-LCD57 are ensembles generated by Monte 

Carlo ensembles with the ABSINTH implicit solvent model60. ACTR, drkN, NTail, and 

Asn (alpha synuclein) are ensembles generated by molecular dynamics simulations with 

Amber99-disp forcefield26. Note that NTL9 is not an IDP, but the ensemble reported here 

represents an unfolded-state ensemble obtained under native conditions68. (B) Normalized 

chain dimensions were calculated by normalizing the instantaneous radius of gyration from 

ensembles by the expected radius of gyration from a sequence-matched chain in the theta 

state, whereby chain-chain and chain-solvent interactions are counterbalanced 6,62,73.
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Figure 3: 
Local chain compaction with residue chemistry superimposed over the local radius of 

gyration (Rg). (A-J) Individual plots showing analysis for each protein ensemble as 

introduced in Figure 2. Local Rg is calculated using a 14-residue sliding window. Colored 

circles on each plot represent different amino acid chemistry groups, highlighted in the 

legend below panel I. (K) Pearson’s correlation coefficient between local Rg obtained 

for each windowed fragment reported in panels A-J and the amino acid chemistry within 

the window in question (see also Fig. S2). Specific sequence properties reported are the 
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Fraction of Charged residues (FCR), absolute net charge per residue (|NCPR|), mean 

disorder score as predicted by metapredict (Disorder), fraction of proline residues (F. 

proline), mean predicted Local Distance Difference Test (pLDDT - a measure of predicted 

AlphaFold2 structure confidence), fraction of aliphatic residues (F. aliphatic), fraction of 

aromatic residues (F. aromatic), Kyte Doolitle hydrophobicity (hydrophobicity) and fraction 

of polar residues (F. polar). The fraction of charged residues (FCR) is the strongest positive 

determinant of expansion, closely followed by the absolute net charge per residue (|NCPR|). 

While polar residues, in principle, correlate as negative determinants of expansion, the 

negative correlation is driven by subregions deficient in charged residues and enriched in 

only polar residues.
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Figure 4: 
Preferential attraction and repulsion quantified via scaling maps that report the normalized 

distance between every pair of residues in the protein. (A-J) Individual plots of analysis for 

each protein ensemble as introduced in Figure 2. Normalized distances are calculated by 

dividing ensemble-average inter-residue distance by the distance obtained for the EV model. 

Attractive interactions emerge as darker colors, while repulsive interactions are lighter. 

Along the diagonal, subsets of residues are colored using the same color scheme used in Fig. 

3.
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Figure 5: 
Comparison of changes in local and global dimensions for wildtype vs. phosphomimetic 

versions of p53. (A) Scaling maps where inter-residue distances for the phosphomimetic 

version of p53 N-terminal domain (p531–91) are normalized by distances for the wild-

type protein. Despite differing by only three residues in the N-terminal quarter of the 

protein, the phosphomimetic version of p53 shows substantial differences in long-range 

and local dimensions, as shown by the emergence of both attractive (blue) and repulsive 

(red) interactions. (B) Despite these rearrangements, a relatively small change in overall 

global dimensions is observed. While the wildtype ensemble-average Rg is 29.4 Å, the 

phosphomimetic variant is 29.1 Å, a difference below the statistical detection limits for most 

experimental techniques.
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Figure 6: 
Normalized local solvent-accessible surface area (SASA) using an eight-residue sliding 

window and a 10 Å probe size. Normalization is done using excluded volume 

(EV) reference simulations to account for side-chain-dependent differences in solvent 

accessibility. Amino acid residues are colored as in Fig 3. Distinct patterns of accessibility 

are observed across different proteins, indicating long- and short-range intramolecular 

interactions can influence the accessibility of local binding sites.
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