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Abstract
Broadly neutralizing antibodies (bNAbs) are promising candidates for the treatment and prevention of
HIV-1 infection. Despite their critical importance, automatic detection of HIV-1 bNAbs from immune
repertoire is still lacking. Here, we developed a straightforward computational method for Rapid
Automatic Identi�cation of bNAbs (RAIN) based on Machine Learning methods. In contrast to other
approaches using one-hot encoding amino acid sequences or structural alignment for prediction, RAIN
uses a combination of selected sequence-based features for accurate prediction of HIV-1 bNAbs. We
demonstrate the performance of our approach on non-biased, experimentally obtained sequenced BCR
repertoires from HIV-1 immune donors. RAIN processing leads to the successful identi�cation of novel
HIV-1 bNAbs targeting the CD4-binding site of the envelope glycoprotein. In addition, we validate the
identi�ed bNAbs using in vitro neutralization assay and we solve the structure of one of them in complex
with the soluble native-like heterotrimeric envelope glycoprotein by single-particle cryo-electron
microscopy (cryo-EM). Overall, we propose a method to facilitate and accelerate HIV-1 bNAbs discovery
from non-selected immune repertoires.

Main text
More than 40 years after its identi�cation, the human immunode�ciency virus-1 (HIV-1) remains a major
global health concern1. The World Health Organization (WHO) estimates that in 2023 there were 38
million HIV-1 infected individuals worldwide, 1.5 million of new HIV-1 infections and 650,000 deaths from
acquired immunode�ciency syndrome (AIDS)-related illness. Despite intense research efforts, there is still
no cure nor vaccine for HIV-1 infection available2. Humoral immune response to HIV-1 targets the
envelope (Env) protein of the virion, a trimeric membrane glycoprotein complex comprising gp120 and
gp413. However, the virus rapidly escapes immune control due to the exceptional Env glycoprotein
diversity generated by HIV-1 error-prone replication machinery4. Moreover, additional mechanisms of
immune evasion exist, such as heavy glycosylation of gp120, promoting a conformational masking of
the receptor-binding site, enhancing immune evasion5. Screening of plasma from HIV-1 seropositive (HIV-
1+) subjects led to the identi�cation of rare individuals possessing sera with broad and potent
neutralizing activities against numerous HIV-1 viruses. Additional studies allowed the cloning and
sequencing of B cell receptors (BCRs) and permitted the identi�cation of broadly neutralizing antibodies
(bNAbs), which can neutralize most viral strains at low concentrations in vitro6. Investigation of the
development and structural properties of these bNAbs, revealed only a low level of sequence identity
between them, but demonstrated that speci�c characteristics are associated with their function. For
example, bNAbs have an extreme level of somatic hypermutations (SHMs) and large nucleotide
insertions leading to long heavy chain complementary determining regions (CDRs)7,8. 

Since their identi�cation, bNAbs have gained intense therapeutic interest. Although approved drugs
against HIV-1 infection exist, passive antibody prophylaxis and immunotherapy could hold a valuable
place in both prevention and treatment9. Passive transfer of bNAbs demonstrated a decrease of viral
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loads10,11, prevention of  infection12,13, delay of viral rebound14,15 and suppression of viremia in
humanized mice, non-human primates and human without notable adverse events or side effects16,17.
BNAbs target distinct sites of vulnerability at the surface of the envelope: the CD4-binding site (CD4bs),
variable loop V1/V2 apex and V3 loop, a larger site spanning the interface between gp41 and
gp120 (interface) including the fusion peptide, and the membrane-proximal external region (MPER).
Recently, a sixth site was discovered, de�ned by the bNAb VRC-PG05, which binds to the center of the so
called “silent face” of gp12018. 

To date, the identi�cation of bNAbs has required B cell isolation and clonal expansion from selected
individuals possessing a serum with broadly neutralizing activity. This step is followed by antibody
cloning and experimental validation of their neutralization potential. While both steps represent an
important research effort, the process has bene�ciated from identi�ed immune donors19 and the
development of high-throughput analyses of antibody repertoires by next-generation sequencing (NGS).
Still, the number of identi�ed HIV bNAbs remains relatively low, with only 250 of them reported3,20. Some
bNAbs have been investigated in registered clinical trials, for prevention, as a component of long-acting
antiretroviral therapy (ART), or as a component of intervention aimed at long-term drug-free remission of
HIV17,21,22. Although, it is likely that the clinical success of bNAb passive immunization strategies will
require a combination of antibodies to increase the overall breadth and potency against diverse HIV-1
isolates and to prevent the emergence of resistance23. The recent deployment of large datasets of human
B cell repertoires on database repositories represents an opportunity for novel bNAbs identi�cation
assuming that computational tools for their automatic identi�cation and classi�cation are developed24.
Arti�cial intelligence (AI)-based prediction tools to �nd the antibodies and antigens have been
developed25. However, most of these tools rely on structural or amino acid sequence similarities of
related antibodies to identify potential target proteins26. Nonetheless, despite important research and
characterization efforts, a precise set of criteria required for classifying bNAbs versus non-bNAbs is still
lacking. 

Here, we developed a computational pipeline named RAIN for Rapid Automatic Identi�cation of bNAbs
from Immune Repertoire. RAIN is based on four different machine learning algorithms, which can be
trained in just a few minutes using a Python script. RAIN only requires the following: a cellranger scBCR
output going through the Immcantation pipeline, and �nally a R script converting the repertoire data into a
features table for bNAbs prediction. We validated RAIN on previously identi�ed bNAbs leading to
a prediction accuracy of 100% and an Area Under the Curve (AUC) value ranging from 0.92 to
1 depending on the antigenic site. In addition, we isolated class switched memory B cell from HIV-1
immune donors and performed single-cell BCR sequencing to demonstrate the method performance.
Importantly, immune repertoire analysis of donors with a serum able to broadly neutralize different HIV-1
isolates led to the identi�cation of three bNAbs, while none was detected in the repertoire of immune
donors with sera that did not possess a broad neutralizing activity. The identi�ed bNAbs were further
characterized for their a�nities to the envelope stabilized prefusion trimer BG505 DS-SOSIP, neutralizing
activities and by cryoelectron microscopy (cryoEM) for one of them.  
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Results
Subset of discrete characteristics discriminate HIV-1 bNAbs from mAbs.

The automatic identi�cation of HIV bNAbs cannot be solely based on amino acid sequence similarity of
the heavy or light chains, due to a large sequence variability resulting from the long a�nity maturation
process. In contrast, HIV-1 bNAbs isolated from chronically infected adults exhibit a signature of
characteristic features, including high somatic hypermutations (SHMs), insertions or deletions (indels),
long complementarity-determining region H3 (CDRH3), high potency, and broad viral neutralization
breadth3. Moreover, the VRC01 class bNAbs, targeting the CD4bs, have also been shown to preferentially
use speci�c germline alleles27,28 and possess an unusually short CDRL3 of �ve amino acids, needed to
contact gp120, while avoiding the glycan at position N267 in the D loop of gp12029. While
bNAbs targeting the V1V2 apex use speci�c IGHV genes and together with bNAbs binding the V3 glycan,
they are characterized by a long (20–34 residues) CDRH3 sequence30,31.

We hypothesized that integrating speci�c parameters characterizing HIV-1 bNAbs in a machine learning
framework, could allow a rapid identi�cation of bNAbs from an immune repertoire (Figure 1). To identify
predictors of HIV-1 bNAbs, we investigated speci�c features associated with these antibodies and
inferred them from their highly diversi�ed amino acid sequences. We collected and curated bNAbs
sequences from the CATNAP (Compile, Analyze and Tally NAb Panels) database32. Data curation
consisted of only considering human a�nity matured sequences, removing incomplete or unpaired
sequences obtained from CATNAP database (Supplementary Table 1). We obtained a total of 255 bNAbs
paired sequences, binding the V1V2 apex (n=98), V3 glycan (n=56), CD4 binding site (n=54), gp120/gp41
interface (n=26) and MPER (n=21). Next, to create a dataset of paired BCR sequences that are unlikely to
recognize an HIV antigen (hereafter named mAbs), we retrieved and curated paired antibodies sequences
from ten healthy seronegative donors to obtain a total of 14’962 sequences (Supplementary Table 2).
Following this step, we investigated if some of the bNAbs distinct properties could be used as predictive
variables for each targeted antigenic site. We considered as potential predictors, the length of the CDR3
for the heavy (H3) and light (L3) chains, the frequency of somatic hypermutation in the V gene (ν)
or improbable acquired mutations in the framework regions only (uν), and the hydrophobicity of
CDRH333,34 (φ) (Figure 2a-e). Interestingly, anti-CD4bs bNAbs analysis demonstrated a statistically higher
somatic hypermutation frequency, a higher frequency of unconventional mutations (outside of the
CDRs)35, and a signi�cantly shorter length of CDRL3 (Figure 2a, b, e and Extended Data Fig 1a) compared
to the control mAbs reported in Supplementary Table 2. For the anti-MPER bNAbs, we observed a longer
CDRH3, with higher hydrophobicity, and a higher mutation frequency in both V gene and framework
(FRW) regions (Figure 2a, b, c, d and Extended Data Fig 1b). The bNAbs targeting the V1V2 apex showed
a higher mutation frequency of V gene, but the difference was mainly due to a higher hydrophobicity of
the CDRH3 and a longer CDRH3 (Figure 2a-d and Extended Data Fig 1c). BNAbs targeting the V3 glycan
have higher frequency of mutations, and slightly higher hydrophobicity of the CDRH3 and a longer
CDRH3 (Figure 2a-d and Extended Data Fig 1d). While bNAbs targeting the interface region, also
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demonstrated an increased frequency of mutations in the V gene and FWR regions (Figure 2a, b
and Extended Data Fig 1e). Part of these results were expected but con�rmed that this set of
characteristics is statistically different between bNAbs and mAbs. To further investigate if these
characteristics could be used to discriminate between bNAbs and mAbs, we decided to use them as
variables in a two-dimensional Principal Component Analysis (Figure 2f-j). Remarkably, the �ve
characteristics were su�cient to separate bNAbs from mAbs into two distinct clusters within each
category of antigenic sites. We observed an explained variation of 0.43 for PC1 and 0.29 for PC2 across
all �ve antigenic sites, while the weights of the features exhibited striking similarities. For PC1, both
frequency of mutation in CDRs and framework regions were important, although hydrophobicity and
length of CDRH3 were important for PC2. Unexpectedly, the length of CDRL3 was a less important
feature. Based on these observations, we decided to use this set of measurable characteristics as
predictors to classify bNAbs from mAbs.

Algorithm selection and validation for the computational pipeline.

To further investigate the feasibility of an automatic identi�cation of potential HIV-1 bNAbs, we decided
to use different machine learning (ML) approaches. First, antibody sequences were converted to a list of
values corresponding to the set of predictors identi�ed previously. BNAbs sequences coming from
CATNAP database were annotated using Igblast and the Immcantation work�ow36-38. The resulting
Adaptive Immune Receptor Repertoire (AIRR) characteristics were converted to a feature format table.
Similarly, mAb sequences obtained from public databases were processed as described previously39 and
converted to a features table. For each antigenic site, bNAbs and mAbs were pooled as one dataset and
subdivided into three: 60% as training set and 20% each as validation and testing set respectively. While
the reported number of HIV-1 bNAbs is limited, a large quantity of mAb sequences is available. We thus
decided to use �rst the anomaly detection algorithm (AD) for the automatic identi�cation of bNAbs. We
used the multivariate gaussian model based on a threshold value (Epsilon) to estimate the probability of
an antibody being �agged as ‘anomaly’ or not. Then, the optimal Epsilon parameter minimizing the
number of false positives was obtained using the validation set (Extended Data Fig. 2a-e), while
evaluation of the AD performance, including computing of the area under the curve (AUC) was done with
the test set (Figure 3a, b). We observed that the AD algorithm discriminates well bNAbs targeting the
V1V2 apex (AUC: 0.93), the CD4bs (AUC: 0.88), the MPER (AUC: 0.82), and the interface (AUC: 0.8).
However, bNAbs targeting the V3 glycan were poorly identi�ed, with an AUC of 0.64. Moreover, a high
number of false positives was obtained, indicating a low precision with the AD (Figure 3a). To increase
recall and precision of our detection method, we used both decision tree (DT) and random forest (RF)
algorithms. First, we used a random forest to analyze the identi�cation pro�le of bNAbs with two
classifying features and found that it allowed a clear decision boundaries plot on the training dataset for
bNAbs targeting the interface or the V1V2 apex (Extended Data Fig 3a, b). The receiver-operating
characteristic (ROC) curve and corresponding AUC of 0.94 was obtained for V1V2 apex (Extended Data
Fig 3a) and 0.9 for interface (Extended Data Fig 3b), indicating good classi�cation performance for both
antigenic sites. Furthermore, a measured AUC of 0.77 was obtained for bNAbs binding the CD4bs
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(Extended Data Fig 3c). However, detection of bNAbs against other antigenic sites such as MPER
(Extended Data Fig 3c), and V3 loop (Extended Data Fig 3e) was not satisfactory with an AUC close to 0.5
and 0.67 respectively. 

Following this result, we allowed the DT and RF algorithms to use all available features, including VH and
VL genes, and further optimized our models. We used the validation dataset to perform hyperparameter
tuning and systematically explore different combinations of hyperparameters. We based the classi�ers’
hyperparameter tuning on the false positives number and for the hierarchical model of the decision tree,
the cost complexity pruning parameter (alpha) was set to zero (Extended Data Fig 4). Next, entropy was
chosen as the quality measurement for the split in both DT and RF (further details are presented in the
Methods section). Finally, we used the test datasets and evaluated performance metrics, including AUC,
precision, recall and accuracy for the DT and RF models (Figure 3a, c, and d). The DT algorithm exhibited
superior recall and precision performance compared to the AD algorithm, while the RF algorithm
demonstrated even higher performance, achieving a minimum AUC of 0.92 for all tested antigenic sites. It
achieved a precision of 1 for almost all antigenic sites (0.83 for the interface). Moreover, an AUC of 1.0
and 0.95 for the MPER and interface site respectively, but also 0.95 for the V3 glycan, demonstrating that
RF had the best performance as expected. Next, we reviewed the selected parameters used as RF
classi�ers. Interestingly, among the seven most important features, some were shared between the
antigenic sites, while others were distinct. Nevertheless, some expected characteristics were found, such
as the frequency of mutation in V genes and unconventional mutations or the length of the CDR3 light
chain, which has been described to be important for anti-CD4bs40. Similar parameters were observed for
interface bNAbs, also characterized by their mutation frequency both conventional and unconventional.
While the V1V2 apex binders were classi�ed based on their CDRH3 lengths. Interestingly, bNAbs targeting
the V3 glycan and MPER have a more balanced classi�cation with features such as CDRH3
hydrophobicity, mutation and CDRH3 length sharing similar weight (Figure 3e). The immunoglobulin
variable VH5-51 gene segment was associated with bNAbs targeting the V3 glycan as previously reported
for 35% of human anti-V3 bNAbs41. As a �nal validation step, we compared the prediction results of each
algorithm. Altogether, we observed that the different methods (AD, DT, and RF) identi�ed the same true
positives, while there was minimal overlap in false positives (Extended Data Fig 5). 

In an effort to combine the different ML algorithms used above, we chose to incorporate the Super
Learner Ensembles algorithm (SL) as an additional validation step42. SL is an algorithm combining
multiple models to make an “ensemble” prediction. The SL algorithm exhibited very high accuracy and
precision performance with a score of 1 for all antigenic sites (Extended Data Fig 6a) and achieved high
performance for the MPER, V1V2 apex, and interface antigenic sites with a minimum AUC of 0.92
(Extended Data Fig 6b). In contrast, AUC was lower for the CD4bs, and V3 glycan antigenic sites (0.77
and 0.68), with a recall score of 0.53 and 0.35 respectively (Extended Data Fig 6a). Based on the
performance of our machine learning approach for Rapid Automatic Identi�cation of bNAbs from
Immune Repertoire (RAIN), we decided to use it on experimental samples in an effort to discovery new
bNAbs. 
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Experimental validation of pipeline using de novo immune repertoires. 

To identify potential bNAbs, we investigated the neutralizing activity of puri�ed immunoglobulin G (IgG)
from the sera of different HIV-1 infected donors. Polyclonal IgGs from the serum of donors were puri�ed
with protein G resin and tested on the global HIV-1 panel of reference strains, containing strains that are
representative of the global epidemic43,44. Interestingly, we observed that sera of donors 3, 11 and to
some extent donor 9 had a broad neutralizing activity (Figure 4a). In contrast, sera from donors 1, 2, 5, 6,
7 and 8 were able to neutralize only one or two viruses (Figure 4a). Based on this result, we selected the
donor 3 as test sample for bNAbs identi�cation, while donors 1 and 2 were selected as negative
control. We isolated IgG-class-switched B cells from peripheral blood mononuclear cells (PBMCs) of the
different donors and performed single-cell sequencing of the B cell receptors (BCRs) (B3, G3, S4, and
G4). Importantly, no enrichment step was applied for B cell sorting to ensure an unbiased repertoire for
the downstream analysis. After �ltering for error-corrected and productive sequences, we successfully
reconstituted a set of 15,713 IgG sequences for donor 3. As a negative control, we sequenced BCRs from
IgG+ memory B cells of donors 1 and 2 (that did not have sera with broad neutralization activity), which
resulted in the acquisition of 8,347 IgG sequences (D1 and D2). Interrogation of the RAIN pipeline on the
sequences obtained from donor 3, led to the identi�cation of several potential bNAbs, but only 3 were
recognized by the three algorithms out of 15’713 paired sequences (Extended Data Fig 7a). To
further con�rm this result, we used the SL model, which identi�ed thirteen potential bNAbs in donor 3: six
predicted to bind to the CD4 binding site, one to V1V2 apex, and six interface binders (Extended Data Fig
7b). Interestingly, SL con�rmed our predicted bNAbs, but also identi�ed an anti-V1V2 apex binder in donor
2. Three potential bNAbs were constantly identi�ed as CD4 binders (bNAb2101, bNAb4251, and
bNAb1586) belonging to the VRC01-class and derived from the VH1-2*02 variable heavy chain gene
segment (Extended Data Fig 8). 

Binding and neutralization properties of the bNAbs. 

To validate these �ndings, we cloned the potential bNAbs and some additional antibodies as negative
control (hereafter referred as mAbs). BNAbs and mAbs were recombinantly produced to test their
speci�city and neutralizing activities. We �rst assessed their binding to the envelope trimer SOSIP (using
the clade A gp140 envelope stabilized prefusion trimer BG505 DS-SOSIP trimers)45,46, which is known to
bind bNAbs that are representative of the majority of the known gp120 neutralizing antibody class47,48.
Using biolayer interferometry (BLI), we detected a high-a�nity interaction between all the identi�ed bNAbs
and SOSIP, characterized by an equilibrium dissociation constant (KD) of 75nM, 3nM and 0.4nM for
bNAbs 1586, 2101 and 4251 respectively. In contrast, no interaction could be detected between the
control mAb and SOSIP (Figure 4b). To investigate the neutralization potency of our bNAbs, we sought of
determining their IC50 using global HIV-1 panel strains on TZM-bl cells43,44. We observed a broad
neutralization activity across tiers and viral clade for bNAb4251, with a geometric mean IC50 of 1.8µg/ml
(Figure 4c). BNAb2101 could also neutralize different strains and speci�cally clade AE viruses, however
its neutralization pro�le could not be considered as broad (Figure 4c). Finally, bNAb1586 was a relatively
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poor neutralizer, only able to inhibit the CNE55 strain at 38µg/ml (Figure 4d). Importantly, none of the
antibodies had an effect on the SIVmac251.30.SG3 virus indicating a speci�c neutralization
activity. Overall, bNAb4251 could neutralize about 80% of the tested viruses but was not active against
the TV1.29 and BJOX002000, similarly to VRC01, which targets the CD4 binding site49. Since the
potentials bNAbs were predicted to target the CD4 binding site, we further tested their neutralization
potential on virus strains lacking the glycosylation surrounding the CD4bs such as BG505.W6M.C2 strain
with residue T332N (C2) or N197, N276, N363, and N462 (gly4) and other mutations previously
described50 (Figure 4d). While the additional clade B viruses: JRCSF.JB (modi�ed at D167N) to be more
susceptible to VRC01 neutralization and YU2.DG, a tier 2 strain.  Finally, clade C strains were also used as
the glycan at 362 was naturally absent. The neutralization pro�le demonstrated a gain of potency
speci�cally for the mutation surrounding CD4bs (Figure 4d). 

Cryo-EM structures of BG505 SOSIP- FAb4251 complex.

To con�rm the epitope and explore the binding mode of bNAb4251, we decided to perform cryo-electron
microscopy (cryo-EM) of the antigen-binding fragment (Fab)4251 in complex with the soluble native-like
trimer (BG505 DS-SOSIP)51. After several rounds of 2D and 3D classi�cations (Extended Data Fig 9), we
could segregate trimers with zero, or one Fab attached and solved the structure of the complex at the
resolution of 3.7Å (Figure 5a and, Supplementary Table 3). As predicted by our method RAIN,
Fab4251 interacts with the CD4bs of the trimer and makes multiple contacts with both heavy and light
chain (Figure 5a and b). In total, �fty-one residues of the Fab interact with �fty-six residues on gp120,
to bury a surface area (bsa) of 950Å2. The interaction is principally dictated by the heavy chain
with 700Å2 bsa, while the light chain buries 250Å2 of the gp120 surface (Figure 5c). The CDR-H2 makes
most of the contact, totaling a bsa of 528Å2, a binding mode that have similarity to the previously
described interaction of the CD4 receptor with gp120 (Figure 5d). The previously solved interaction of
CD4 with gp120 revealed that two amino acids, F43 and N59 of CD4 make multiple contacts centered on
residues N368, E370 and W427 of gp12052-54 (Figure 5d). Interestingly, H54 of CDR-H2 also mediates
interaction with N368 and E370 of the “P43 cavity” located at the interface between the inner and outer
gp120 domains (Figure 5c and d). 

Previously reported bNAbs targeting the CD4-binding site (CD4bs) have been classi�ed in two groups
based on their mode of recognition, the VRC01 class (3BNC117, N6, N49P7, 3BNC60, VRC-PG20, NIH45-
46, VRC-CH31 and 12A12) and the non-VRC01 classes (CH103, 8ANC131, VRC13 and VRC16)55.
Structural investigation revealed that Fab4251 possesses an angle of approach similar to
VRC01 (Figure 5e), a result in agreement with its CDR-H2 mediated contact on gp120, indicating that it
belongs to the same antibody class. Moreover, hydrogen bounds are also present between the heavy
chain R53, K62 and Q428, S460 of gp120, respectively (Figure 5e) and a salt bridge between R71 and
N368 of gp120. The CDR-H3 also contact the gp120 with N100 contributing a hydrogen bond with N279
in loop D of gp120, as it was already reported for other VRC01 class bNAbs (Figure 5f). The light chain
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also participates in the interaction with the 5-residue LCDR3 QxxEx motif and a deletion in CDRL1 to
accommodate the gp120 N276-glycan28, a feature also associated to VRC01-class antibodies.

Discussion
The advent of single-cell technologies resulted in the growing availability of paired full-length variable
heavy and light chain BCR sequences. Therefore, immune repertoire sequencing coupled to arti�cial
intelligence holds great promise to improve diagnostic and treatment for numerous immune-related or
infectious diseases56. The identi�cation of speci�c sequences involved in an immune response has
already been successfully used in research settings to elucidate the role of immune dysregulation in
conditions such as systemic lupus erythematosus, rheumatoid arthritism, type 1 diabetes, multiple
sclerosis, Grave’s disease, Crohn’s disease, and many others57. However, limitations exist and only few
studies examined the bene�t of incorporating full length variable regions from heavy and light chain
sequences to predict antibody speci�city. Those studies are based on sequence-based embedding
models58,59. Other efforts have focused on �nding amino acid sequence similarity to an already known
antibody. The similarity approaches led to important scienti�c and medical successed60-62, but hold
some limitations when sequences are very divergent. 

In this study, we present RAIN, a pipeline based on two innovative technologies, single-cell BCR
sequencing and machine-learning to identify bNAbs against HIV-1, based on their binding site. Our
approach differs from other methods as the parameters required for the identi�cation derived from
selected characteristics, that are inferred from the amino acid sequences using Immcantation
annotations. We demonstrate that �ve speci�c characteristics were su�cient to separate bNAbs from
mAbs (non-bNAbs) into two distinct clusters within each category of antigenic sites. In addition, we
identify the frequency of unconventional mutations as key factor to de�ne a HIV-1 bNAbs. Former studies
reported the presence of mutations in the frameworks of bNAbs and correlated with binding a�nity to the
CD4bs34,63. Our results suggest it is an important characteristic for all bNAbs. This can be interpreted as
a consequence of the time needed for the maturation process or as a modi�cation of the immune system
in response to chronic infection.   

Performing a PCA analysis across all �ve antigenic sites, we observed that despite their sequence
divergences, the weights of the features exhibited striking similarities. This result could be interpreted as
an additional level of immune escape that was not studied yet64,65.  The RAIN approach can achieve a
precision of 1 for almost all antigenic sites and be applied easily on any immune repertoire or already
isolated antibody sequences to identify HIV-1 bNAbs. Importantly, another unique aspect of our work is
the experimental validation with de novo data. Data were corroborated by functional cloning, expression
and puri�cation of the antibodies, and functional neutralization assays. Moreover, we characterized the
bNAb4251 binding to DS-SOSIP at almost atomic resolution using cryoEM.  In summary, we believe that
our approach offers an innovative, straightforward method to search and identify antibodies in immune
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repertoires, accelerate antibody discovery, and might shed light on potentially unexplored mechanism of
HIV-1 immune escape. 

 

Material and Methods
Sample collection

Samples were obtained under study protocols approved by the Ethikkomission beider Basel(EKBB; Basel,
Switzerland; reference number 342/10), the Ifakara Health Institute Institutional Review Board (Reference
number IHI/IRB/No.24-2010), and the National Institute for Medical Research (NIMR; Dar es Salaam,
United Republic of Tanzania; reference number NIMR/HQ/R.8a/Vol.IX/1162).

Serum IgG isolation

Serum samples from HIV-1-infected individuals were heat-inactivated at 56°C for 40 min and incubated
with Protein G Sepharose (GE Life Sciences) overnight at 4 °C. IgGs were eluted from chromatography
columns using 0.1Mglycine (pH= 3.0) into 0.1MTris (pH= 8.0). Buffer

was exchanged to PBS through Amicon 30 kDa spin membranes (Millipore). Concentrations of puri�ed
IgGs were determined by UV/Vis spectroscopy (A280) on a Nanodrop 2000 and samples were stored at
-20 °C.

B cell sorting

The CD19+ cell fraction was enriched from PBMCs by positive selection with CD19
magnetic microbeads (Miltenyi Biotech) and subsequently stained on ice for 20 min
with the following �uorochrome-labeled mouse monoclonal antibodies: CD3-
APC/Cy7 (dilution 1:40, clone HIT3a, catalogue no. 300317, BioLegend), CD27-
Bv650 (dilution 1:50, clone O323, catalogue no. 302827, BioLegend), CD20-PE-Cy7
(dilution 1:50, clone L27, catalog no. 335793, BD Biosciences) and F(ab')2-Goat anti-
Human IgG Fc secondary antibody, APC (dilution 1:100, RRID:AB_2337695, Jackson
ImmunoResearch). Cells were sorted to over 98% purity on a FACS Aria III (BD)
using the following gating strategy: circulating memory B cells were sorted as
CD3–CD20+CD27+IgG+ cells. FACS-sorted cells were collected in 6μl FCS in
Eppendorf tubes that were pre-coated overnight with 2% BSA.

Single-cell BCR-seq library preparation and sequencing

10X Genomics: The 5� single-cell VDJ libraries were generated using Chromium Next GEM Single Cell
V(D)J Reagent kit v.1, 1.1 or v.2 (10X Genomics) according to the manufacturer’s protocol. Paired heavy
and light chain BCR libraries were prepared from the sorted B cell populations. Brie�y, up to 20,000
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memory B cells per well of 10X chip were loaded in the 10X Genomics Chromium Controller to generate
single-cell gel beads in emulsion. After reverse transcription, gel beads in emulsion were disrupted.
Barcoded complementary DNA was isolated and used for the preparation of BCR libraries. All the steps
were followed as per the manufacturer’s instructions in the user guide recommended for 10X Genomics
kit v.1, 1.1 or 2. The puri�ed libraries from each time point were pooled separately and sequenced on the
NextSeq550 (Illumina) as per the instructions provided in 10X Genomics user guide for the read length
and depth.

BD Rhapsody: Memory B cells were targeted for single-cell targeted RNA-seq and BCR-Seq analysis using
the BD Rhapsody Single-Cell Analysis System66 (BD Biosciences). Brie�y, the single-cell suspension was
loaded into a BD Rhapsody cartridge with >200,000 microwells, and single-cell capture was achieved by
random distribution and gravity precipitation. Next, the bead library was loaded into the microwell
cartridge to saturation so that the bead was paired with a cell in a microwell. The cells were lysed in a
microwell cartridge to hybridize mRNA molecules onto bar-coded capture oligos on the beads. These
beads were then retrieved from the microwell cartridge into a single tube for subsequent cDNA synthesis,
exonuclease I digestion, and multiplex-PCR–based library construction. Sequencing was performed on
NovaSeq paired-end mode.

Singleron: Single-cell suspensions with 1 × 105 cells/mL in PBS were prepared. Then, the suspensions
were loaded onto micro�uidic devices, and scRNA-seq libraries were constructed according to the
Singleron GEXSCOPE protocol in the GEXSCOPE Single-Cell RNA Library Kit (Singleron
Biotechnologies)67. Individual libraries were diluted to 4 nM and pooled for sequencing. Pools were
sequenced on an Illumina HiSeq X with 150 bp paired end reads.

Recombinant antibody production

Expi293 cells (ThermoFisher Cat No. A14527) were diluted to a �nal volume of 0.5 L at a concentration of
2.5 × 106 cells. mL-1 in Expi293 media. Heavy chain and light chain plasmids were complexed with
Polyethyleneimine (ThermoFisher) and added to the cells. On day �ve, cells were cleared from cell culture
media by centrifugation at 10,000g for 30 min and subsequently passed through a 0.45-μm �lter. The
supernatant containing the recombinant antibody was incubated with protein A resin (ThermoFisher)
overnight at 4 °C. The resin was washed with 25 mL of phosphate-buffered saline (PBS). A total of 30 mL
of 10 mM glycine pH 2.4, 150 mM NaCl were used to elute the antibody off the protein A resin. The acidic
pH of the eluted antibody solution was increased to approximately 7 by the addition of 1M Tris pH 8.0.
The antibody solution was buffer exchanged into PBS with successive rounds of centrifugation, �ltered,
and stored at −80 °C.

Fragment antigen binding (Fab) generation

For the Fab production, the heavy chain was engineered with a two amino acids glycine serine linker
followed by a six-histidine tag and stop codon. Light and mutated heavy chains were transfected as
described in the previous section. Cell supernatant was harvested �ve days post transfection and puri�ed
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by IMAC chromatography, followed by size exclusion chromatography on a Superdex 16/600 HiLoad
column (Cytiva).

Recombinant HIV-1 envelope SOSIP gp140 production

BG505 DS-SOSIP trimer68 production and puri�cation were performed as previously described46. Brie�y,
prefusion-stabilized Env trimer derived from the clade A BG505 strain was stably transfected in CHO-
DG44 cells and expressed in ActiCHO P medium with ActiCHO Feed A and B as feed (Cytiva). Cell
supernatant was collected by �ltration through a Clarisolve 20MS depth �lter followed by a Millistak +
F0HC �lter (Millipore Sigma) at 60 LMH. Tangential Flow Filtration was used to concentrate and buffer
exchange clari�ed supernatant in 20 mM MES, 25 mM NaCl, pH 6.5. The trimer was then puri�ed by ion
exchange chromatography as described46. Fractions containing theBG505 DS-SOSIP protein were pooled,
sterile-�ltered, snap-frozen, and stored at −80 °C.

IgG neutralization assay

Neutralization assays with IgGs against the 12-strain “global" virus panel, were performed in 96-well
plates as previously described43,69,70. Brie�y, 293T-derived HIV-1 Env-pseudotyped virus stocks were
generated by cotransfection of an Env expression plasmid and a pSG3ΔEnv backbone. Animal sera were
heat-inactivated at 56°C for 1 hour and assessed at 8-point 4-fold dilutions starting at 1:20 dilutions.
Monoclonal antibodies were tested at 8-point 5-fold dilutions starting at 50 μg/ml or 500 μg/ml. Virus
stocks and antibodies (or sera) were mixed in a total volume of 50 μL and incubated at 37°C for 1 hr.
TZM-bl cells (20 μl, 0.5 million/ml) were then added to the mixture and incubated at 37°C. Cells were fed
with 130 μL cDMEM on day 2, lysed and assessed for luciferase activity (RLU) on day 3. A nonlinear
regression curve was �tted using the 5-parameter hill slope equation. The 50% and 80% inhibitory
dilutions (ID50 and ID80) were determined for sera and the 50% and 80% inhibitory concentrations (IC50
and IC80) were determined for mAbs. All samples were tested in duplicates.

Biolayer interferometry

The biolayer interferometry experiments using SOSIP were performed as follows. All experiments were
performed in reaction buffer (TBS pH 7.4 + 0.01% (w/v) BSA + 0.002% (v/v) Tween 20) at room
temperature (RT) using an Octet K2 instrument (ForteBio). Protein A (Fortebio) biosensor probes were �rst
equilibrated in reaction buffer for 60 s. IgGs were diluted to 10 µg/ml in reaction buffer and immobilized
onto the protein A probes for 300 s, followed by a wash for 60 s in reaction buffer. The binding of SOSIP
trimers to the IgGs was then measured at various concentrations for 300 s, followed by dissociation for
800 s in reaction buffer. Analysis was performed using the Octet software and GraphPad Prism version
9.0.

Cryo-EM sample preparation
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BG505 DS-SOSIP trimers complexes were prepared using a stock solution of 2 mg/ml trimer incubated
with a six-fold molar excess of bNAb4251. To prevent interaction of the trimer complexes with the air-
water interface during vitri�cation, the samples were incubated in 0.085 mM n-dodecyl β-D-maltoside
(DDM). Samples were applied to plasma cleaned QUANTIFOIL holey carbon grids (EMS, R2/2 Cu 300
mesh). The grid was blotted in an automatic plunge freezing apparatus Vitrobot MarkIV (Thermo Fisher,
Hillsboro, USA) to control humidity and temperature.

Cryo-EM data collection
Grids were screened for particle presence and ice quality on a TFS Glacios microscope (200 kV), and the
best grids were transferred to a TFS Titan Krios G4. Cryo-EM data were collected using a TFS Titan Krios
G4 transmission electron microscope, equipped with a Cold-FEG on a Falcon IV detector in electron
counting mode. Falcon IV gain references were collected just before data collection. Data were collected
using TFS EPU v2.12.1 utilizing the aberration-free image shift protocol, recording 4 micrographs per ice
hole. Movies were recorded at a magni�cation of ×165,000, corresponding to the 0.73 Å pixel size at the
specimen level, with defocus values ranging from −0.9 to −2.4 µm. Exposures were obtained with 39.89 
e− Å−2 total dose, resulting in an exposure time of approximately 2.75 s per movie. In total, 15,163
micrographs in EER format were collected.

Cryo-EM Data processing and structure �tting

Data processing was performed with cryoSPARC including Motion correction and CTF determination71.
Particle picking and extraction (extraction box size 350 pixels2) were carried out using cryoSPARC71. Next,
several rounds of reference-free 2D classi�cation were performed to remove artifacts and selected
particles were used for ab-initio reconstruction and hetero-re�nement. After hetero-re�nement, 72’497
particles contributed to an initial 3D reconstruction of 3.7 Å resolution (Fourier-shell coe�cient (FSC)
0.143) with C1 symmetry. A model of a SOSIP trimer (PDB ID 4TVP)72 or AlphaFold2 (ColabFold
implementation) models of the 4251 Fab were �tted into the cryo-EM maps with UCSF Chimera. These
docked models were extended and rebuilt manually with re�nement, using Coot and Phenix73,74. Figures
were prepared in UCSF Chimera, UCSF ChimeraX and Pymol75. The numbering of Fab 4251 is based on
Kabat numbering of immunoglobulin models76. Buried surface area measurements were calculated
within ChimeraX and PISA77.

CATNAP sequences

For all antigenic sites, paired bNAb sequences were collected from the CATNAP database32 as of 1st

January 2022 as nucleotide and amino acid sequences. First, the 249 heavy chain and 240 light chain
nucleotides sequences were annotated with Igblastn36. Sequences were then processed and analyzed
using the Immcantation Framework (http://immcantation.org) with MakeDB.py from Change-O v1.2.0
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(with the options --extended –partial). Next, bNAbs were �ltered by a dedicated Java script to keep only
sequences with an annotated CDR3 and paired sequences (VH+VK/L). Each paired antibody was
associated with its targeting Env antigenic site, information provided by the database CATNAP text �le
(abs.txt as of 1st January 2022). The 27 CATNAP antibodies with only the protein sequences available
were annotated with IgBlastp followed by MakeDB.py from Change-O v1.2.0 (with the options igblast-aa --
extended). In parallel, using the fasta protein sequences, ANARCI78 was used to identify the junction
region. As for nucleotide sequences, paired and annotated-CDR3 bNAbs were �ltered in. In total, 255
bNAbs sequences were collected. Repartition of the antigenic site is as follows: 54 bNAbs target the
CD4bs, 21 MPER, 98 V1V2, 56 V3, and 26 interface.

Paired B-cell receptor repertoires

For the training and evaluation of the machine learning models, paired BCRs repertoires of ten healthy
donors were collected. The repertoires were obtained from various sources (Extended Data Table 1) and
sequenced using 10X genomics technology. Annotation and processing of the sequences were done as
previously described39 and resulted in the generation of a customized AIRR format table containing
14’962 paired BCRs. For HIV-1 immune donors three different sequencing technologies were employed:
10X genomics (D1, D2, G3, and G4), Singleron (S4), and BD Rhapsody (B3). Single-cell sequencing of
selected HIV-1 immune donors using Singleron technology was processed using celescope v1.14.1
(https://github.com/singleron-RD/CeleScope) with ‘�v_CR’ mode utilizing cellranger v7.0.1. BD rhapsody
single cell sequencing was �rst processed using BD Rhapsody Targeted mRNA Analysis Pipeline (version
1.11) and then, using a custom script, the generated ‘VDJ_Dominant_Contigs.csv’ �le was converted into
cellranger-like output �les, namely �ltered_contig_annotations.csv and �ltered_contig.fasta. Lastly, the
10X Genomics single cell sequencing was processed with cellranger v7.0.1. The cellranger output �les of
the different HIV-1 repertoires enabled us to annotate and process them as described earlier, resulting in a
table of paired BCRs with AIRR characteristics. The six different experiments resulted in 2’152 BCRs for
D1, 6’195 BCRs for D2, 4’008 BCRs for B3, 3’794 BCRs for G3, 3’112 BCRs for S4, and 4’799 BCRs for G4.

Data pre-processing

Using a custom script, AIRR characteristics were converted into our features of interest. The ‘mutation
frequency’ was calculated using the difference of residues between the protein sequence of the BCR and
its germline sequence in the FWR1+CDR1+FWR2+CDR2+FWR3 regions (VH gene). The ‘framework
mutation frequency’ was calculated similarly but using only FWR1+FWR2+FWR3. The ‘hydrophobicity’ of
the CDRH3 sequences was computed using a customized score, aromatic residues having a highest
value (1 for W, 0.75 for Y and 0.5 for F). Residues A, L, I, M, P, and V were set to 0.1, while the rest of the
resides were set to zero. The values of all residues were summed up for each CDRH3. In addition, length
of the CDRH3, CDRL3, VH and VL/K genes were considered as features. Two extra features were added to
be used by the anomaly detection algorithm: ‘VH1+CDRL3 length of �ve residues’ with a zero or one value
designed for the bNAbs targeting the CD4bs and ‘VH1-69+VK3-20+GW motif in the CDRH3’ with a zero or
one value for the bNAbs targeting MPER.
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Training and evaluation of machine learning models
Three ML-based approaches were trained on the features table generated using BCRs obtained from
healthy donors and bNAbs datasets, using Python v3.8.16 and scikit-learn v1.0.2. These algorithms were:
Anomaly Detection (AD), Decision Tree (DT) and Random Forest (RF). For each antigenic site, dataset
was partitioned into training, validation, and test sets with an 60:20:20 ratio, setting random.seed to 1 for
all models. For the AD model, bNAbs data were removed from the training set, since this algorithm only
trains with non-anomaly data. For this model, the features with discrete values were �rst normalized
using the preprocessing.normalize method (axis=0) from the scikit-learn library. Features exhibiting
signi�cantly different values from the normal distribution, were selected for each antigenic site, which
included the frequency of mutations in the V genes and in the frameworks. For CD4bs, we added the
combined feature VH1+CDR3L with a length of 5 residues. For MPER, we included the combined feature
VH1-69, VK3-20, and the GW motif in CDRH3. Additionally, CDRH3 hydrophobicity was added for MPER,
V1V2, and V3. Lastly, CDRH3 length was incorporated for V1V2 and V3. Using the validation test, a
multivariate normal random variable was calculated with the mutivariate_normal function from the scipy
package v1.8.0 and used for setting the optimal Epsilon parameter (�) minimizing the false positive
numbers. The Epsilon value was set to 619.55 for CD4bs, 231501.41 for MPER, 866803.64 for V1V2,
845445.99 for V3 and 24.36 for interface. Those threshold values were used on the test set to predict a
BCR as an anomaly (bNAb) or not. For DT and RF models, V genes (for heavy and light chains) were one-
hot encoded as a pre-processing step, resulting in a total of 122 features in the features table.
Hyperparameter tuning was conducted using the validation dataset, minimizing the number of false
positives. DT models were trained with a balanced class weight, the Entropy criterion for measuring the
quality of splits and the cost complexity pruning parameter alpha of zero. RF models were trained with
100 estimators, a balanced class weight, the Entropy criterion for measuring the quality of splits,
maximum samples were set to 1.0, maximum depth of tree of ‘none’, maximum features of 11 (√122),
and bootstrapping to build trees. Matplot library v3.6.2 was used to generate ROC plots from
performance results and to generate the Venn diagrams showing the intersection of the number of true
positives or false positives between the three models. The Super Learner Ensembles algorithm was
implemented using the ML-Ensemble (mlens) v0.2.3 library. For each antigenic site, the dataset was
partitioned into train and test sets with a 75:25 ratio. The SuperLearner was created with the precision
score as scorer parameter, a k-fold cross validation of 10 folds and the option shu�e set to true. The
following classi�ers were used as based models in the Super Learner algorithm: DecisionTreeClassi�er,
SVC (Support Vector Classi�cation), KNeighborsClassi�er, AdaBoostClassi�er, BaggingClassi�er,
RandomForestClassi�er and ExtraTreesClassi�er. A LogisticRegression was used as the meta-model, with
the solver parameter set to ‘lbfgs’.

Statistical analysis

Flow cytometric data were acquired using BD FACSDiva (v.9.0) software. Flow cytometric data were
analyzed using FlowJo (v.10.7.1). Statistics were conducted using R Statistical Software (v4.2.1) and
ggstatsplot package79. The Complex Heatmap package was used for visualization80. No statistical
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methods were used to predetermine the sample size. The experiments were not randomized, and
investigators were not blinded to allocation during experiments and outcome assessment.
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RAIN pipeline for automatic identi�cation of bNAbs. Data collected from the CATNAP database (bNAbs)
and healthy donor repertoires (mAbs) were converted as a feature table to train and validate four machine
learning models: anomaly detection (AD), decision tree (DT), random forest (RF) and super learner (SL).
We performed single-cell BCR sequencing from HIV-1 seropositive donors with (illustrated by orange arm)
or without (illustrated by white arm) sera broadly neutralizing activities. BCR sequences are processed by
Immcantation work�ow and analyzed as a features table. Next, the predicted bNAbs found by the four
algorithms were produced and tested in neutralization and binding assays.
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Figure 2

Characteristics discriminating HIV-1 bNAbs from mAbs. Speci�c properties of antibodies that allow
differentiation between bNAbs and mAbs depending on the antigenic site. (a)-Mutation frequency (ν), (b)-
Unconventional mutation frequency (uν), (c)-CDRH3 length (H3), (d)-CDRH3 hydrophobicity (φ), and (e)-
CDRL3 length (L3) were statistically compared with Kruskal-Wallis’s test followed by Dunn’s post hoc test.
Only signi�cant comparisons with mAbs are shown, with: * p<0.05, ** p<0.01, and *** p<0.005. f-j-
Principal component analysis (PCA) of the immunoglobulins using �ve features (ν, uν, H3, φ, and L3).
The feature weight for PC1 (Principal Component 1) and PC2 (Principal Component 2) is shown by black
arrows. Each bNAbs category is represented by a single plot per antigenic site, (f)-CD4bs, (g)-MPER, (h)
V1V2 apex, (i)-V3 glycan, and (j)-gp120/gp41 interface.
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Figure 3

Performance of RAIN machine learning models. (a)-Performance metrics of the three algorithms using
the test dataset with Accuracy = (TP+TN) / (TP+FP+TN+FN), Recall = TP / (TP+FN) and Precision = TP /
(TP+FP). (b-d)-Receiver-operating characteristic (ROC) curves and corresponding area under the curve
(AUC) statistics for each bNAb antigenic site with test dataset. Each row represents one algorithm, (b)-AD,
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(c)-DT, and (d)-RF, (e)-Most important features with their scores for each bNAb classi�ed by binding
antigenic site using the Random Forest classi�er.

Figure 4

HIV Env binding and neutralization assays of serum and IgG samples. (a)-Neutralization assays were
performed against twelve viruses from clades A, AC, AE, B, BC, C and G of tiers 2. The colors of the
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heatmap correspond to the IC50 of the sera in micrograms per ml. The SIVmac251.30.SG3 virus is used
as negative control. (b)-Antibody SOSIP interactions were determined by biolayer interferometry (BLI). The
mAbs or bNAbs were loaded on a protein G biosensor, dipped into solution of the SOSIP trimer at different
concentrations (ranging from 5 to 400 nM) and the nm shift was recorded. BLI sensorgrams are
representative examples of experiments repeated two times. (c)-Neutralization assays were performed
against twelve viruses from clades A, AC, AE, B, BC, C and G of tiers 2. The colors of the heatmap
correspond to the IC50 in micrograms per ml, for each antibody. The SIVmac251.30.SG3 virus is used as
negative. (d)-Neutralization assays were performed against glycan mutated viruses to support epitope
mapping to the CD4 binding site.
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Figure 5

Cryo-EM map and structure of Fab SOSIP complexes. (a)-Side and top views of the cryo-EM density map
of the Fab4251-DS-SOSIP complex, with gp120 in light grey, gp41 in dark gray, VH in violet and VL in pink.
(b)-Atomic model of Fab4251-DS-SOSIP complex shown in cartoon representation. (c)-Foot print
representation of the heavy and light chain binding surface on DS-SOSIP, colored according to a. Inlet on
the right in represent the HCDR2 loop in violet, with H54 in the Phe-43 cavity. (d)-Overlay of CD4 receptor
(green) bound to SOSIP (PDB.5U1F) and Fab4251 (violet). Inlet highlights positions N368, E370 on gp120
and F43 on CD4 and H54 of the VH. (e)-Overlay of VRC01 class antibodies on SOSIP with Fab4251
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(violet), VRC01 (PDB.6V8X, green), PG04 (PDB.4I3S, red), and 3BNC60 (PDB.4GW4, orange). (f)-Contact
residues at the Fab4251-gp120 interface. Contact residues are de�ned as two residues containing any
atom within 4 Å of each other.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementoryInformation.docx

https://assets.researchsquare.com/files/rs-4023897/v1/cc1d76a80c669e8efcdecd1c.docx

