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Abstract 

 

Importance: By integrating genetic and clinical risk factors into genomic-informed dementia risk 

reports, healthcare providers can offer patients detailed risk profiles to facilitate understanding 

of individual risk and support the implementation of personalized strategies for promoting 

brain health.  

 

Objective: To develop a genomic-informed risk assessment composed of family history, genetic, 

and clinical risk factors and, in turn, evaluate how the risk assessment predicted incident 

dementia. 

 

Design: This longitudinal study included data from two clinical case-control cohorts with an 

average of 6.6 visits. Secondary analyses were conducted from July 2023 - March 2024.    

 

Setting: Data were previously collected across multiple US locations from 1994 to 2023. 

 

Participants: Older adults aged 55+ with whole-genome sequencing and dementia-free at 

baseline. 

 

Exposures: An additive score comprising the modified Cardiovascular Risk Factors, Aging, and 

Incidence of Dementia Risk Score (mCAIDE), family history of dementia, APOE genotype, and an 

AD polygenic risk score.   

 

Main Outcome(s) and Measure(s): The risk of progression to all-cause dementia was evaluated 

using Cox-proportional hazard models (hazard ratios with 95% confidence intervals [OR 9%CI]). 

 

Results: A total of 3,429 older adults were included (aged 75 ± 7 years; 59% female; 75% non-

Latino White, 15% Black, 5.2% Latino, 3.6% other, and 0.4% Asian; 27% MCI), with 751 

participants progressing to dementia. The most common high-risk indicator was a family history 

of dementia (56%), followed by APOE*ε4 genotype (36%), high mCAIDE score (34%), and high 

AD-PRS (11%). Most participants had at least one high-risk indicator, with 39% having one, 32% 

two, 9.8% three, and 1% four. The presence of 1, 2, 3, or 4 risk indicators was associated with a 

doubling (HR = 1.72, CI: 1.34-2.22, p = 2.5e-05), tripling (HR = 3.09, CI: 2.41-3.95, p = 4.4e-19), 

quadrupling (HR = 4.46, CI: 3.34-5.94, p = 2.2e-24), and a twelvefold increase (HR = 12.15, CI: 

7.33-20.14, p = 3.2e-22) in dementia risk. 

 

Conclusion & Relevance: We found that most participants in memory and aging clinics had at 

least one high-risk indicator for dementia. Furthermore, we observed a dose-response 

relationship where a greater number of risk indicators was associated with an increased risk of 

incident dementia.  
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Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting nearly 7 million 

Americans 
1
. This number is projected to more than double by 2060, posing an estimated 

economic burden exceeding one trillion dollars 
1
. To date, there is no cure to stop or reverse 

disease progression; moreover, the recent anti-amyloid immunotherapies, which moderately 

delay progression, face significant barriers such as high costs and require extensive medical 

infrastructure for the administration and monitoring of adverse events 
2
. In the absence of 

widely accessible and highly effective disease-modifying therapies, strategies targeting 

modifiable risk factors to promote brain health represent the primary approach to mitigating 

dementia risk 
3
. Applying these strategies in a primary care setting will require risk assessment 

of genetic and clinical risk factors for risk stratification and communication of risk profiles for 

personalized risk reduction strategies 
3
. 

 

Genomic-informed risk assessments are innovative and recently developed integrated profiles 

that compile information from clinical risk factors, family history, polygenic risk scores (PRS), 

and monogenic mutations 
4,5

. Currently, the eMERGE consortium is evaluating the clinical utility 

of genomic-informed risk assessments for eleven health conditions, including asthma, diabetes, 

hypocholesterolemia, and obesity, within the US healthcare system 
4,5

. The selection of these 

traits was based on PRS analytic viability, feasibility, translatability, and, critically, potential 

clinical actionability—a consideration previously not applicable to AD until recently. Given the 

demonstrated benefits of personalized multi-domain lifestyle interventions, which include 

improved cognitive performance and risk factor profiles among high-risk older adults recruited 

from a primary care setting 
6
, it is now timely to consider such genomic-informed dementia risk 

reports to promote brain health.  

 

As AD is a complex multifactorial disease influenced by genetic and environmental factors, 

genomic-informed dementia risk reports should ideally integrate three components of genetic 

risk – family history, monogenic, and polygenic – along with clinical risk factors.  Highly 

penetrant mutations in APP, PSEN1, and PSEN2 are linked to monogenic forms of AD, while the 

APOE*ε4 allele increases the risk of sporadic AD 
7
. PRS further quantify the genetic risk 

originating from a further 80+ AD-associated loci with small effect sizes 
7
. In the absence of 

these specific genetic tests, a family history of AD may indicate a heightened genetic 

predisposition, especially for first-degree relatives of AD patients 
8
. Finally, up to 12 modifiable 

risk factors contribute substantially – approximately 40% –  to AD risk, with dementia risk 

scores quantifying individual risk arising from environmental factors related to clinical, lifestyle, 

and behavioral risk factors 
9–11

.  

 

Our goal was to develop a genomic-informed risk assessment for non-demented patients 

evaluated at memory and aging clinics based on their family history, genetic, and clinical risk 

factors and, in turn, evaluate how the risk assessment predicted incident dementia. 

 

Methods 

Cohort  
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We used the genetic and phenotypic data from participants who contributed to the National 

Alzheimer’s Coordinating Center (NACC) database and Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). The NACC consists of over 45,000 participants from 30+ past and present US-

based Alzheimer Disease Core Centers and Alzheimer Disease Research Centers funded by the 

National Institute on Aging 
12

. ADNI was launched in 2003 as a public-private partnership with 

the primary goal of testing whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessments 

can be combined to measure the progression of mild cognitive impairment (MCI) and early AD 
13

. Participants provided informed consent, and institutional review board approval was locally 

obtained.  

We analyzed longitudinal data for participants with 2+ visits, who were cognitively unimpaired 

(CU) or had a primary diagnosis of MCI at baseline, who were at least age 55 at their initial visit 

or whose estimated age-of-onset of cognitive impairment was at least 55, and who had been 

whole genome-sequenced. Diagnostic criteria for NACC and ADNI have been previously 

described 
12,13

. 

 

Demographic and Clinical Risk Factors  

Race/ethnicity  

Race and ethnicity were self-reported by study participants, with categories defined by the 

National Institutes of Health, including American Indian or Alaska Native, Asian, Black or African 

American, Native Hawaiian or Other Pacific Islander, and White. Ethnicity categories included 

Hispanic or Latino or not Hispanic or Latino. If individuals did not identify with these racial and 

ethnic categories, they could report “other.” 

 

Modified Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score 

The Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (CAIDE) was 

developed in a Finnish population-based cohort to estimate 20-year dementia risk based on an 

individual’s midlife risk factor profile, including age, gender, education, systolic blood pressure, 

body mass index, total cholesterol, and physical activity 
14

. The Modified Cardiovascular Risk 

Factors, Aging, and Incidence of Dementia Risk Score (mCAIDE) recalibrated the CAIDE risk 

score to predict late-life dementia in a diverse US population using the same risk factors 
15

. The 

mCAIDE risk scores for each participant were calculated using the published equations for 

mCAIDE using the following variables: age, sex, education, hypertension, obesity, and 

hypercholesteremia. We utilized self-reported data for age, sex, and educational attainment. 

Obesity was defined as a Body mass index (BMI) >30, and hypertension as a sitting systolic 

blood pressure >140 mmHg. For NACC, hypercholesteremia was identified through self-

reported medical history or clinician assessment. In ADNI, it was determined by a fasting total 

cholesterol level exceeding 6.21 mmol/L. Physical activity assessments were unavailable; 

however, CAIDE remains predictive of dementia when physical activity is not included 
16

. 

Missing data was imputed using a Random Forrest algorithm via the `MissForest` R package 
17

. 

A mCAIDE score of ≥ 6 was determined to be “high-risk”.  

 

Family History of Dementia 
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A family history of dementia (FHx) was determined based on at least one self-reported first-

degree blood relative living/lived with dementia. Participants with a family history of dementia 

were determined to be “high-risk”. 

 

Genetic Risk Factors  

Whole-Genome Sequencing  

Whole genome-sequencing data for NACC and ADNI participants was generated by the 

Alzheimer’s Disease Sequencing Project (ADSP). ADSP is a collaborative research effort that 

seeks to identify novel genetic risk factors for AD 
18

. The data collected and generated through 

the ADSP included whole exome sequencing and whole genome sequencing (WGS) from family, 

case-control, and cohort study designs 
18

. The Release 4 WGS dataset contains 35,569 

participants from 40 cohorts that have undergone standardized data management pipelines for 

variant calling and quality control 
19,20

. Briefly, samples were sequenced by multiple centers 

with different platforms and libraries. The Genome Center for Alzheimer’s Disease (GCAD) 

mapped short reads against the hg38 reference genome using BWA MEM, called variants using 

the GATK HaplotypeCaller for each sample, and subsequently jointly called genotypes across all 

samples using GATK. QC checks included those without a GATK pass, monomorphic across all 

samples, or low call rate across all studies (<80%), DP<10, GQ<20, mean average depth >500, 

and ABhet ratio outside of 0.25 to 0.75.  

 

Variants flagged by GCAD for removal were excluded, with additional variant and sample QC 

conducted using GenoTools 
21

. Variants were excluded if the call rate <0.95, not in Hardy–

Weinberg equilibrium (p < 1×10-4); samples were excluded if the call rate was <0.95, discordant 

sex was reported based on X chromosome heterozygosity, cryptic relatedness, and either 

insufficient or excessive heterozygosity. Genetic ancestry was determined using the PGS 

Catalog Calculator, which projects samples onto principal components from known ancestral 

populations in the jointly called 1000 Genomes Projects and Human Diversity Project 

(1KG+HGDP) and uses a Random Forests classifier to assign participants to a continental genetic 

ancestry group 
22

.  

 

Autosomal Dominant AD mutations  

Carriers of monogenic AD variants will be identified by examining 220 variants in PSEN1 (n = 

191), PSEN2 (n = 8), and APP (n = 21) previously implicated with Autosomal Dominant AD 

mutations (ADAD) 
23

. WGS was used to match variants based on chromosome, position, 

reference allele, and alternate allele (mutant allele in contrast to the reference allele). 

Individuals with at least one alternate allele in the ADAD-linked variants were classified as 

ADAD variant carriers. 

 

APOE genotype  

The SNPs defining the APOE genotype (rs7412 & rs429358) were extracted from the WGS data 

and combined to define APOE genotype: ε4 carriers had either the ε2/ε4, ε3/ε4, or ε4/ε4 

genotype.  

 
AD Polygenic Risk Score 
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PRS-CSx was used to construct a cross-ancestry AD-PRS excluding the APOE region (variants 

located ± 250 kb from the APOE ε4 defining SNP rs429358) using ancestry-specific EUR 
24

, AFR 
25

, EAS 
26

, and AMR 
27

 summary statistics with ancestry-matched LD reference panels from 1000 

Genomes using the ‘auto’ and ‘meta’ flags to automatically estimate the phi parameter of the 

inverse-variance weighted meta-analysis of the summary statistics in the Gibbs sampler 
28

.  

Ancestry-normalized cross-ancestry AD-PRS were subsequently estimated in the whole of ADSP 

using the Polygenic Score Catalog Calculator using the score file generated by PRS-CSx 
22

. The 

Ancestry normalization uses a two-step ancestry adjustment procedure that regresses out 

ancestry PCs from the raw PRS such that the mean and variance of the PRS distribution are 

consistent across all populations 
29,30

. Principal components for the 1KG+HGDP reference were 

estimated using FRAPOSA, with ADSP projected into the reference PCA space and a Random 

Forest classifier used to determine the population to which each individual is genetically similar 
22

. Risk stratification within ADSP, excluding participants from NACC and ADNI, was determined 

by establishing a percentile cutoff. This cutoff was defined as where the odds ratio for dementia 

risk in the high-risk group was significantly greater than 2 compared to the rest of the cohort 

(Supplementary Figure 1) 
4
. The 85

th
 percentile was the cutoff used to determine a “high-risk” 

AD-PRS in NACC and ADNI. Due to sample overlap between ADSP and participants contributing 

to the AFR AD GWAS, we used PLINK to estimate pairwise genetic relatedness between 

participants in ADSP and ADGC and excluded ~3,000 participants from PRS estimation and 

subsequent statistical analysis. 

 
Statistical Analysis  

Baseline characteristics of the joint NACC and ADNI cohorts were summarized across 

participants progressing from CU or MCI to all-cause dementia and non-progressors as 

percentages for categorical variables and mean (SD) for continuous variables, with differences 

between progressors/non-progressors determined using t-tests for continuous variables and 

Chi-square tests for categorical variables. To estimate the proportion of participants identified 

as high-risk for dementia in our genomic-informed risk assessment, we analyzed the prevalence 

of each risk indicator, including carriers of ADAD variants, APOE*ε4 allele carriers, those with a 

family history of dementia, and individuals with high mCAIDE (≥6) and AD-PRS (≥85
th

 

percentile). We summed the presence of these risk indicators weighted equally to derive a 

cumulative risk score for each participant for a score ranging from 0-5. Cox-proportional hazard 

models were used to estimate the risk of dementia progression associated with increasing risk 

burden, adjusting for cohort and race/ethnicity. Age in years was used as the time-to-event 

scale, with AD age of onset used for incident dementia cases and age at last visit for 

participants who did not progress to dementia during the course of the study. Censoring was 

accounted for in the analysis to allow for valid inferences. Hazard Ratios (HR) with 95% 

confidence intervals (95% CI) were calculated for each group by comparing the hazard rates for 

individuals with one or more risk indicators to those with no risk indicators. P-values were 2-

sided with statistical significance set at less than 0.05. All analyses were performed using R 

version 4.3.3.  

 
Results 
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The majority of individuals attending memory and aging clinics exhibit at least one high-risk 

indicator for dementia.  

A total of 3,429 older adults, with an average age of 75 years (SE = 7), were included (Table 1). 

This cohort was comprised of 59% females and had a racial composition of 75% non-Latino 

White, 15% Black, 5.2% Latino, 3.6% other races, and 0.4% Asian; 27% of these individuals were 

diagnosed with MCI. Throughout the study, which was conducted over an average of 6.6 visits 

(SE = 3.4), 751 participants progressed from CU/MCI to all-cause dementia. The most common 

high-risk indicator identified was a family history of dementia, affecting 56% of the participants. 

This was followed by possession of at least one APOE*ε4 allele (36%), a high mCAIDE score 

(34%), and high AD-PRS (11%). No participants carried an ADAD mutation. Most participants 

had at least one risk factor, with individuals who developed dementia having a significantly 

higher risk indicator burden (Table 1). Specifically, 18% of participants had no identified risk 

indicators, 39% had one, 32% had two, 9.8% had three, and 1% had four (Figure 1).   

 

An Increasing burden of dementia risk indicators is associated with an increased risk of 

dementia, exhibiting a dose-response relationship.       

We evaluated the association of risk indicator burden with incident dementia using Cox 

proportional hazard models. We observed that each additional risk indicator was linked to a 

71% increase in the risk of dementia onset (HR = 1.71, 95% CI: 1.58-1.84, p = 2.6e-42; 

Supplementary Table 1). Specifically, the presence of 1, 2, 3, or 4 risk indicators was associated 

with a doubling (HR = 1.72, CI: 1.34-2.22, p = 2.5e-05), tripling (HR = 3.09, CI: 2.41-3.95, p = 

4.4e-19), quadrupling (HR = 4.46, CI: 3.34-5.94, p = 2.2e-24), and a twelvefold increase (HR = 

12.15, CI: 7.33-20.14, p = 3.2e-22) in dementia risk, respectively (Figure 2; Supplementary Table 

2).  

 

Discussion 

Genomic-informed risk assessments provide a way for healthcare providers to convey 

integrated risk profiles to patients, encompassing clinical risk factors, family history, PRS, and 

monogenic mutations. In this study, we evaluated the prevalence high-risk indicators for 

dementia among participants, including family history, presence of ADAD mutations, APOE 

genotype, AD-PRS, and mCAIDE risk score. We found that the majority of participants in 

memory and aging clinics had at least one high-risk indicator for dementia. Furthermore, we 

observed a dose-response relationship where a greater number of risk indicators was 

associated with an increased risk of incident dementia. 

 

The primary application for genomic-informed dementia risk scores and personalized reports 

would be to assist in the risk prediction of dementia, especially among patients experiencing 

subjective cognitive decline 
3
. These reports can also be used in primary prevention efforts in a 

primary care setting by enabling effective risk stratification and clear communication of risk 

profiles to patients and highlighting modifiable risk factors that can improve an individual’s risk 

profile 
3
. Furthermore, to enhance their utility, genomic-informed dementia risk reports should 

be integrated with blood-based biomarkers and comprehensive neuropsychological 

assessments. This integration would assist in the early identification of patients with early or 

pre-clinical AD, who could then be referred to dementia specialists for further evaluation using 
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cerebrospinal fluid (CSF) and PET biomarkers 
31

. Ultimately, confirmation of amyloid pathology 

would facilitate the initiation of secondary prevention, including disease-modifying therapies 

such as anti-amyloid immunotherapies 
32

.  

 

The clinical utility of genomic-informed risk assessments has been demonstrated for 

atherosclerotic cardiovascular disease (ASCVD). In a prospective cohort of middle-aged patients 

(n = 7,342), 42% of individuals identified as high risk for ASCVD undertook proactive measures 

to reduce their disease risk, subsequently improving blood lipid and blood pressure profiles 
33

. 

This finding demonstrates that communication of personalized ASCVD risk motivates changes in 

health behavior and supports the integration of genomic information into clinical care for 

disease prevention. The ongoing GenoVA and eMERGE studies are now evaluating the clinical 

utility of genomic-informed risk assessments for 11 health conditions, including asthma, 

diabetes, hypocholesteremia, and obesity, in the U.S. healthcare system 
4,5,29

. These initiatives 

could provide valuable insights into the development of genomic-informed dementia risk 

reports.  

 
Before implementing genomic-informed risk assessments for dementia in clinical practice, 

several limitations need to be addressed. First, as different dementia risk scores are composed 

of different predictors and algorithms, the discriminative performance of different dementia 

risk scores needs to be validated across diverse populations. Our use of mCAIDE was 

determined by the lack of extensive lifestyle and social determinants of health data, precluding 

the use of more comprehensive dementia risk scores. Second, the predictive accuracy of PRS 

models is affected by the sample size ratio between the EUR and minor GWAS, between-

ancestry genetic architecture differences (LD, MAF, genetic correlation, heritability, effect size), 

and LD reference panels 
34,35

. As such, the choice of PRS model to use for portability across 

populations will differ between traits. We used PRS-CSx due to good overall performance when 

ancestry-specific GWAS from multiple populations are available; however, it is critical to assess 

the validity of different PRS models to determine the best approach to use 
28

. Third, NACC 

participants — typically older, more educated, predominantly female, and with a lower 

prevalence of hypertension, diabetes, and depressive symptoms but a higher prevalence of 

subjective cognitive decline — do not represent the broader U.S. population 
36

. This may lead to 

overestimates of genetic risk indicators and underestimations of environmental risk factors. 

Finally, we treated each risk indicator as contributing to dementia risk equally in line with the 

eMERGE genomic-informed risk assessment design, however, more predictive models may be 

developed that weight each risk indicator by its relative risk. As such, before genomic-informed 

risk assessments can be routinely applied in clinical settings, it is crucial to validate the 

performance of both clinical and polygenic risk scores across diverse populations. Moreover, 

strategies for effectively communicating these risk assessments to patients must be developed 

and tested to ensure they are understood and can inform patient care appropriately. 

 

Conclusions 

In conclusion, most participants in memory and aging clinics possess at least one high-risk 

indicator for dementia. Furthermore, a higher burden of risk indicators is significantly 

associated with a higher likelihood of developing dementia. By integrating genetic and clinical 
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risk factors into genomic-informed dementia risk reports, healthcare providers can offer 

patients detailed risk profiles. This comprehensive approach not only facilitates a better 

understanding of individual risk but also supports the implementation of personalized 

strategies for promoting brain health.  
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Aging Study (IMAS) (R01 AG019771), Indianapolis Ibadan (R01 AG009956, P30 AG010133), the 

Memory and Aging Project (MAP) ( R01 AG17917), Mayo Clinic (MAYO) (R01 AG032990, U01 

AG046139, R01 NS080820, RF1 AG051504, P50 AG016574), Mayo Parkinson’s Disease controls 

(NS039764, NS071674, 5RC2HG005605), University of Miami (R01 AG027944, R01 AG028786, 

R01 AG019085, IIRG09133827, A2011048), the Multi-Institutional Research in Alzheimer’s 

Genetic Epidemiology Study (MIRAGE) (R01 AG09029, R01 AG025259), the National Centralized 

Repository for Alzheimer’s Disease and Related Dementias (NCRAD) (U24 AG021886), the 

National Institute on Aging Late Onset Alzheimer’s Disease Family Study (NIA- LOAD) (U24 

AG056270), the Religious Orders Study (ROS) (P30 AG10161, R01 AG15819), the Texas 

Alzheimer’s Research and Care Consortium (TARCC) (funded by the Darrell K Royal Texas 

Alzheimer’s Initiative), Vanderbilt University/Case Western Reserve University (VAN/CWRU) 
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(R01 AG019757, R01 AG021547, R01 AG027944, R01 AG028786, P01 NS026630, and 

Alzheimer’s Association), the Washington Heights-Inwood Columbia Aging Project (WHICAP) 

(RF1 AG054023), the University of Washington Families (VA Research Merit Grant, NIA: 

P50AG005136, R01AG041797, NINDS: R01NS069719), the Columbia University Hispanic Estudio 

Familiar de Influencia Genetica de Alzheimer (EFIGA) (RF1 AG015473), the University of Toronto 

(UT) (funded by Wellcome Trust, Medical Research Council, Canadian Institutes of Health 

Research), and Genetic Differences (GD) (R01 AG007584). The CHARGE cohorts are supported 

in part by National Heart, Lung, and Blood Institute (NHLBI) infrastructure grant HL105756 

(Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is supported by the 

National Institute on Aging (NIA) R01 grant AG033193. 

 

The CHARGE cohorts participating in the ADSP include the following: Austrian Stroke Prevention 

Study (ASPS), ASPS-Family study, and the Prospective Dementia Registry-Austria 

(ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities (ARIC) Study, the Cardiovascular 

Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the Framingham Heart Study 

(FHS), and the Rotterdam Study (RS). ASPS is funded by the Austrian Science Fond (FWF) grant 

number P20545-P05 and P13180 and the Medical University of Graz. The ASPS-Fam is funded 

by the Austrian Science Fund (FWF) project I904), the EU Joint Programme – 

Neurodegenerative Disease Research (JPND) in frame of the BRIDGET project (Austria, Ministry 

of Science) and the Medical University of Graz and the Steiermärkische Krankenanstalten 

Gesellschaft. PRODEM-Austria is supported by the Austrian Research Promotion agency (FFG) 

(Project No. 827462) and by the Austrian National Bank (Anniversary Fund, project 15435. ARIC 

research is carried out as a collaborative study supported by NHLBI contracts 

(HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, 

HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and 

HHSN268201100012C). Neurocognitive data in ARIC is collected by U01 2U01HL096812, 

2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, 

NIA and NIDCD), and with previous brain MRI examinations funded by R01-HL70825 from the 

NHLBI. CHS research was supported by contracts HHSN268201200036C, HHSN268200800007C, 

N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, 

N01HC85086, and grants U01HL080295 and U01HL130114 from the NHLBI with additional 

contribution from the National Institute of Neurological Disorders and Stroke (NINDS). 

Additional support was provided by R01AG023629, R01AG15928, and R01AG20098 from the 

NIA. FHS research is supported by NHLBI contracts N01-HC-25195 and HHSN268201500001I. 

This study was also supported by additional grants from the NIA (R01s AG054076, AG049607 

and AG033040 and NINDS (R01 NS017950). The ERF study as a part of EUROSPAN (European 

Special Populations Research Network) was supported by European Commission FP6 STRP grant 

number 018947 (LSHG-CT-2006-01947) and also received funding from the European 

Community’s Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4- 

2007-201413 by the European Commission under the programme “Quality of Life and 

Management of the Living Resources” of 5th Framework Programme (no. QLG2-CT-2002- 

01254). High-throughput analysis of the ERF data was supported by a joint grant from the 

Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research 

(NWO-RFBR 047.017.043). The Rotterdam Study is funded by Erasmus Medical Center and 
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Erasmus University, Rotterdam, the Netherlands Organization for Health Research and 

Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of 

Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European 

Commission (DG XII), and the municipality of Rotterdam. Genetic data sets are also supported 

by the Netherlands Organization of Scientific Research NWO Investments (175.010.2005.011, 

911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the 

Research Institute for Diseases in the Elderly (014-93-015; RIDE2), and the Netherlands 

Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Netherlands 

Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are grateful to their 

participants, faculty and staff. The content of these manuscripts is solely the responsibility of 

the authors and does not necessarily represent the official views of the National Institutes of 

Health or the U.S. Department of Health and Human Services. 

 

The FUS cohorts include: the Alzheimer’s Disease Research Centers (ADRC) (P30 AG062429, P30 

AG066468, P30 AG062421, P30 AG066509, P30 AG066514, P30 AG066530, P30 AG066507, P30 

AG066444, P30 AG066518, P30 AG066512, P30 AG066462, P30 AG072979, P30 AG072972, P30 

AG072976, P30 AG072975, P30 AG072978, P30 AG072977, P30 AG066519, P30 AG062677, P30 

AG079280, P30 AG062422, P30 AG066511, P30 AG072946, P30 AG062715, P30 AG072973, P30 

AG066506, P30 AG066508, P30 AG066515, P30 AG072947, P30 AG072931, P30 AG066546, P20 

AG068024, P20 AG068053, P20 AG068077, P20 AG068082, P30 AG072958, P30 AG072959), 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (U19AG024904), Amish Protective Variant 

Study (RF1AG058066), Cache County Study (R01AG11380, R01AG031272, R01AG21136, 

RF1AG054052), Case Western Reserve University Brain Bank (CWRUBB) (P50AG008012), Case 

Western Reserve University Rapid Decline (CWRURD) (RF1AG058267, NU38CK000480), 

CubanAmerican Alzheimer’s Disease Initiative (CuAADI) (3U01AG052410), Estudio Familiar de 

Influencia Genetica en Alzheimer (EFIGA) (5R37AG015473, RF1AG015473, R56AG051876), 

Genetic and Environmental Risk Factors for Alzheimer Disease Among African Americans Study 

(GenerAAtions) (2R01AG09029, R01AG025259, 2R01AG048927), Gwangju Alzheimer and 

Related Dementias Study (GARD) (U01AG062602), Hillblom Aging Network (2014-A-004-NET, 

R01AG032289, R01AG048234), Hussman Institute for Human Genomics Brain Bank (HIHGBB) 

(R01AG027944, Alzheimer’s Association “Identification of Rare Variants in Alzheimer Disease”), 

Ibadan Study of Aging (IBADAN) (5R01AG009956), Longevity Genes Project (LGP) and LonGenity 

(R01AG042188, R01AG044829, R01AG046949, R01AG057909, R01AG061155, P30AG038072), 

Mexican Health and Aging Study (MHAS) (R01AG018016), Multi-Institutional Research in 

Alzheimer’s Genetic Epidemiology (MIRAGE) (2R01AG09029, R01AG025259, 2R01AG048927), 

Northern Manhattan Study (NOMAS) (R01NS29993), Peru Alzheimer’s Disease Initiative (PeADI) 

(RF1AG054074), Puerto Rican 1066 (PR1066) (Wellcome Trust (GR066133/GR080002), 

European Research Council (340755)), Puerto Rican Alzheimer Disease Initiative (PRADI) 

(RF1AG054074), Reasons for Geographic and Racial Differences in Stroke (REGARDS) 

(U01NS041588), Research in African American Alzheimer Disease Initiative (REAAADI) 

(U01AG052410), the Religious Orders Study (ROS) (P30 AG10161, P30 AG72975, R01 AG15819, 

R01 AG42210), the RUSH Memory and Aging Project (MAP) (R01 AG017917, R01 

AG42210Stanford Extreme Phenotypes in AD (R01AG060747), University of Miami Brain 

Endowment Bank (MBB), University of Miami/Case Western/North Carolina A&T African 
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American (UM/CASE/NCAT) (U01AG052410, R01AG028786), and Wisconsin Registry for 

Alzheimer’s Prevention (WRAP) (R01AG027161 and R01AG054047). 

 

The four LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine 

(U54 HG003273), the Broad Institute Genome Center (U54HG003067), The American Genome 

Center at the Uniformed Services University of the Health Sciences (U01AG057659), and the 

Washington University Genome Institute (U54HG003079). Genotyping and sequencing for the 

ADSP FUS is also conducted at John P. Hussman Institute for Human Genomics (HIHG) Center 

for Genome Technology (CGT). 

 

Biological samples and associated phenotypic data used in primary data analyses were stored at 

Study Investigators institutions, and at the National Centralized Repository for Alzheimer’s 

Disease and Related Dementias (NCRAD, U24AG021886) at Indiana University funded by NIA. 

Associated Phenotypic Data used in primary and secondary data analyses were provided by 

Study Investigators, the NIA funded Alzheimer’s Disease Centers (ADCs), and the National 

Alzheimer’s Coordinating Center (NACC, U24AG072122) and the National Institute on Aging 

Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the University 

of Pennsylvania, funded by NIA. Harmonized phenotypes were provided by the ADSP 

Phenotype Harmonization Consortium (ADSP-PHC), funded by NIA (U24 AG074855, U01 

AG068057 and R01 AG059716) and Ultrascale Machine Learning to Empower Discovery in 

Alzheimer’s Disease Biobanks (AI4AD, U01 AG068057). This research was supported in part by 

the Intramural Research Program of the National Institutes of health, National Library of 

Medicine. Contributors to the Genetic Analysis Data included Study Investigators on projects 

that were individually funded by NIA, and other NIH institutes, and by private U.S. 

organizations, or foreign governmental or nongovernmental organizations. 

 

The ADSP Phenotype Harmonization Consortium (ADSP-PHC) is funded by NIA (U24 AG074855, 

U01 AG068057 and R01 AG059716). The harmonized cohorts within the ADSP-PHC include:bthe 

Anti-Amyloid Treatment in Asymptomatic Alzheimer’s study (A4 Study), a secondary prevention 

trial in preclinical Alzheimer's disease, aiming to slow cognitive decline associated with brain 

amyloid accumulation in clinically normal older individuals. The A4 Study is funded by a public-

private-philanthropic partnership, including funding from the National Institutes of Health-

National Institute on Aging, Eli Lilly and Company, Alzheimer's Association, Accelerating 

Medicines Partnership, GHR Foundation, an anonymous foundation and additional private 

donors, with in-kind support from Avid and Cogstate. The companion observational 

Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) Study is funded by the 

Alzheimer's Association and GHR Foundation. The A4 and LEARN Studies are led by Dr. Reisa 

Sperling at Brigham and Women's Hospital, Harvard Medical School and Dr. Paul Aisen at the 

Alzheimer's Therapeutic Research Institute (ATRI), University of Southern California. The A4 and 

LEARN Studies are coordinated by ATRI at the University of Southern California, and the data 

are made available through the Laboratory for Neuro Imaging at the University of Southern 

California. The participants screening for the A4 Study provided permission to share their de-

identified data in order to advance the quest to find a successful treatment for Alzheimer's 

disease. We would like to acknowledge the dedication of all the participants, the site personnel, 
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and all of the partnership team members who continue to make the A4 and LEARN Studies 

possible. The complete A4 Study Team list is available on: a4study.org/a4-study-team.; the 

Adult Changes in Thought study (ACT), U01 AG006781, U19 AG066567; Alzheimer’s Disease 

Neuroimaging Initiative (ADNI): Data collection and sharing for this project was funded by the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 

AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI 

is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's 

Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; 

Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli 

Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company 

Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy 

Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 

LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; 

Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; 

Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes 

of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector 

contributions are facilitated by the Foundation for the National Institutes of Health 

(www.fnih.org). The grantee organization is the Northern California Institute for Research and 

Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at 

the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro 

Imaging at the University of Southern California; Estudio Familiar de Influencia Genetica en 

Alzheimer (EFIGA): 5R37AG015473, RF1AG015473, R56AG051876; Memory & Aging Project at 

Knight Alzheimer’s Disease Research Center (MAP at Knight ADRC): The Memory and Aging 

Project at the Knight-ADRC (Knight-ADRC). This work was supported by the National Institutes 

of Health (NIH) grants R01AG064614, R01AG044546, RF1AG053303, RF1AG058501, 

U01AG058922 and R01AG064877 to Carlos Cruchaga. The recruitment and clinical 

characterization of research participants at Washington University was supported by NIH grants 

P30AG066444, P01AG03991, and P01AG026276. Data collection and sharing for this project 

was supported by NIH grants RF1AG054080, P30AG066462, R01AG064614 and U01AG052410. 

We thank the contributors who collected samples used in this study, as well as patients and 

their families, whose help and participation made this work possible. This work was supported 

by access to equipment made possible by the Hope Center for Neurological Disorders, the 

Neurogenomics and Informatics Center (NGI: https://neurogenomics.wustl.edu/) and the 

Departments of Neurology and Psychiatry at Washington University School of Medicine; 

National Alzheimer’s Coordinating Center (NACC): The NACC database is funded by NIA/NIH 

Grant U24 AG072122. NACC data are contributed by the NIA-funded ADRCs: P30 AG062429 (PI 

James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley 

Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, 

PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 

AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI 

Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, 

MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 

AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI 
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Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, 

MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 

AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 

(PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI 

Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI 

Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry 

Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, 

MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 

AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 

(PI James Leverenz, MD); National Institute on Aging Alzheimer’s Disease Family Based Study 

(NIA-AD FBS): U24 AG056270; Religious Orders Study (ROS): P30AG10161,R01AG15819, 

R01AG42210; Memory and Aging Project (MAP - Rush): R01AG017917, R01AG42210; Minority 

Aging Research Study (MARS): R01AG22018, R01AG42210; Washington Heights/Inwood 

Columbia Aging Project (WHICAP): RF1 AG054023;and Wisconsin Registry for Alzheimer’s 

Prevention (WRAP): R01AG027161 and R01AG054047. Additional acknowledgments include the 

National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, 

U24AG041689) at the University of Pennsylvania, funded by NIA. 

Data for this study were prepared, archived, and distributed by the National Institute on Aging 

Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24- 

AG041689), funded by the National Institute on Aging. 

 

The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by 

the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar 

Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas 

Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 

AG066507 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI 

Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, 

MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 

AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI 

Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), 

P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 

AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI 

Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell 

Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen 

Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI 

Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha 

Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, 

PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 

AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD). 

 

Data collection and sharing for this project was funded by the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD 

ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the 

National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, 
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and through generous contributions from the following: AbbVie, Alzheimer's Association; 

Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers 

Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and 

Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; 

Fujirebio; GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & 

Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; 

Lumosity; Lundbeck; Merck & Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; 

Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; 

Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes 

of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector 

contributions are facilitated by the Foundation for the National Institutes of Health 

(www.fnih.org). The grantee organization is the Northern California Institute for Research and 

Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at 

the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro 

Imaging at the University of Southern California. 

Author Contributions: Dr. Andrews had full access to all the data in the study and takes full 

responsibility for the integrity of the data and the accuracy of the data analysis. The code to 

support the analysis of this study is available at:  

https://github.com/AndrewsLabUCSF/GIDRR  
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* Data used in preparation of this article were obtained from the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 
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be found at: http://adni.loni.usc.edu/wp-
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Tables 

 

Table 1: Cohort Description 

 Non-progressors 

N = 2,678 
Progressors 

N = 751 
P 

Cohort    
    NACC 1,986 (74%) 479 (64%)  

    ADNI 692 (26%) 272 (36%)  

Visits
1 6.9 (3.4) 5.5 (3.1) <0.001

2
 

Age
1 74 (7) 77 (6) <0.001

2
 

Female 1,654 (62%) 364 (48%) <0.001
3
 

Baseline Diagnosis   <0.001
3 

    Cognitively Unimpaired 2,303 (86%) 214 (28%)  

    Mild Cognitive Impairment 375 (14%) 537 (72%)  

Race/Ethnicity   <0.001
3 

    NLW 1,955 (73%) 630 (84%)  

    Asian 12 (0.4%) 2 (0.3%)  

    Black 464 (17%) 64 (8.5%)  

    Latinx 141 (5.3%) 38 (5.1%)  

    Other 106 (4.0%) 17 (2.3%)  

Education
1 15.74 (3.07) 15.69 (3.17) 0.7

2
 

BMI
1 27.7 (5.1) 26.2 (4.3) <0.001

2
 

Systolic Blood Pressure
1 134 (18) 137 (18) <0.001

2
 

Hypercholesterolemia 1,123 (42%) 295 (39%) 0.2
3
 

mCAIDE
1 4.64 (2.03) 4.89 (1.81) <0.001

2
 

AD-PRS
1 -0.13 (1.10) 0.26 (1.05) <0.001

2
 

Risk Indicators    

    Family History of Dementia 1,454 (54%) 450 (60%) 0.006
3
 

    APOE ε4+ 834 (31%) 414 (55%) <0.001
3
 

    AD-PRS ≥ 85% 258 (9.6%) 122 (16%) <0.001
3
 

    mCAIDE ≥ 6 886 (33%) 266 (35%) 0.2
3
 

Risk Indicator Burden   <0.001
3 

    0 546 (20%) 81 (11%)  

    1 1,084 (40%) 240 (32%)  

    2 811 (30%) 297 (40%)  

    3 222 (8.3%) 114 (15%)  

    4 15 (0.6%) 19 (2.5%)  
1
Mean (SD); 

2
 t-test, 

3 
chi-square test  
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Figures  

 

Figure 1: Upset plot showing the total number of participants with a given risk indicator

(horizontal bars) and the number of participants in which risk indicators co-occurred (vertica

bars). 
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Figure 2: Kaplan-Meier Estimates of Dementia Progression by Number of Risk Indicators 
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