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Abstract
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. 
Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately 
and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-
read sequencing enables more accurate quantification of differentially spliced isoform expression than short-
read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess 
differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed 
Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. 
From > 85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), 
differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. 
We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences 
compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, 
with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two 
distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex 
differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. 
Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource 
for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read 
sequencing to better understand AS in the brain.
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Introduction
Alternative splicing (AS) of preRNAs to mRNAs can 
result in multiple transcript isoforms and proteins from 
a single gene. This process contributes to the biological 
heterogeneity between species [1], sexes [2], tissues [3, 4], 
and cell types [5]. Notably, AS is more abundant in the 
brain, and the brain has more tissue-specific transcript 
isoforms than other tissues [3]. AS is associated with 
many psychiatric and neurological disorders (e.g., Autism 
Spectrum Disorder (ASD), schizophrenia, and epilepsy 
[6, 7]). Furthermore, many psychiatric and neurological 
disorders differ in prevalence by sex [8, 9]. For example, 
ASD, more common in males, has been linked to mul-
tiple genetic changes, including disordered splicing [10, 
11]. However, as biomedical research has historically 
failed to study sex as a biological variable [12], there is 
still a need to quantify AS in the brain by sex accurately.

Recent advances in third-generation long-read 
sequencing technologies (i.e., Pacific Biosciences and 
Oxford Nanopore Technologies - ONT) enable high-
throughput sequencing of complete mRNA transcripts 
to more rigorously determine the expressed transcript 
isoforms in a given sample compared to short-read (i.e., 
next- or second-generation) sequencing approaches. 
The resulting “long reads” can measure novel transcripts 
missed with prior studies and reveal extensive isoform-
level diversity. For example, Clark et al. applied long-read 
sequencing to the human psychiatric risk gene CAC-
NA1C and discovered 38 novel exons and 241 novel 
transcripts [13]. While short-read gene expression AS 
data analysis can include calculating the percent spliced-
in of exons or the splice junctions for a given gene, long 
reads enable researchers to quantify splicing across entire 
transcripts directly. Differential transcript usage (DTU), 
sometimes referred to as differential isoform usage, 
quantifies changes in expression of a specific transcript 
as a fraction of the overall expression of a particular gene 
(Methods), complementing differential gene expression 
(DGE) and differential transcript expression (DTE) anal-
yses [14]. This fraction, referred to as the isoform frac-
tion (IF), is essential for including information about a 
given isoform’s expression in relation to other isoforms of 
the same gene. Please note that DTE and DTU are not 
mutually exclusive; a visual example of significant DTE 
with and without significant DTU is available in Fig.  1. 
Recently, researchers identified six candidate genes with 
novel DTU events in a schizophrenia cohort and devel-
oped a method to stratify patient populations using 
multi-gene DTU patterns [15], exemplifying that DTU 
can identify biologically relevant information in hetero-
geneous patient populations. These studies underscore 
how long-read sequencing approaches paired with novel 
analytical frameworks can identify and quantify AS pat-
terns in the brain.

Due to known sex biases in healthy brain gene expres-
sion [2] and brain-related disease phenotypes [8, 9], we 
studied AS across brain regions and sexes. Thus, we 
sequenced the cDNA from C57BL/6J mouse cerebellum, 
cortex, hippocampus, and striatum RNA for each sex 
(n = 5 each) using ONT and calculated DGE, DTE, and 
DTU between conditions. We generated over 85 million 
reads passing quality control metrics. We observed that 
the brain region with the highest DGE, DTE, and DTU 
is the cerebellum and that the most sex differences were 
in the cortex. We also built a web application hosting our 
data for use by the scientific community.

Results
Long-read RNA-Seq profiles across four mouse brain 
regions identified potentially novel genes and transcripts
We sequenced cDNA synthesized from total mRNA from 
the cerebellum, cortex, hippocampus, and striatum of 
20-week-old male and female (n = 5 each) C57BL/6J mice 
using an ONT GridION device (Fig.  2A). We obtained 
85,909,493 reads passing quality control metrics (Meth-
ods), with each brain region receiving at least 16 million 
reads across the ten samples for that region (Fig.  2C). 
The hippocampus had the lowest number of total reads 
(n = 16,739,487), potentially due to our reduced starting 
material as it is smaller than the other brain regions we 
assayed. We aligned and quantified our data using the 
nf-core [16] nanoseq pipeline and Bambu [17], a tool for 
performing machine-learning-based transcript discovery 
and quantification of long-read RNA-sequencing data 
with high precision and recall [18]. When visualizing 
our samples based on variance-stabilization transformed 
(VST) gene counts by principal component analysis 
(PCA), samples are separated by tissue (Fig. 2B). The dif-
ference in cerebellum samples to all other brain region 
samples drove the greatest gene expression variation in 
the data set (PC1, 33% of the total variance, Fig. 2B).

Next, we determined any potentially novel genes and 
transcripts we had captured with Bambu [17]. We identi-
fied 285 genes and 382 transcripts not previously anno-
tated in mouse GENCODE release M31 (Fig. 2D and E) 
and considered them “novel.” These 382 potentially novel 
transcripts correspond to 354 unique genes. Of the 382 
novel transcripts, 309 (81%) transcripts belonged to 
novel genes, and 73 (19%) belonged to previously anno-
tated genes (Additional File 1). Interestingly, when we 
examined the overall expression distributions of these 
novel transcripts compared to annotated transcripts, 
novel transcripts were expressed significantly more than 
annotated transcripts (one-sided Wilcoxon rank sum 
test, p = 7.850072e-114, Additional File 8 - Supplemen-
tary Fig. 1A), potentially due to the stringent expression 
thresholds Bambu has to identify novel transcripts. Of 
these novel transcripts, 279 out of 382 (79%) had a mean 
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Fig. 1  Two examples of DGE, DTE, and DTU for two genes. These cartoon examples portray two genes with three transcript isoforms in two conditions. 
Both genes have significant DTE, but Gene 1 has no significant DTU (A, C, and E), while Gene 2 has significant DTU (B, D, and F). (A and B) Cartoon exam-
ples representing the overall gene expression: (A) shows down-regulation of Gene 1 in condition one compared to condition two, and (B) shows about 
equal expression of Gene 2 across both conditions. (C and D) Cartoon examples representing transcript isoform expression between the two conditions. 
(E and F) Cartoon examples showing isoform fraction (IF) in these two genes, where (E) shows no change in IF across the two conditions and, therefore, 
no significant DTU. (F) Cartoon showing significant changes in IF across conditions, revealing significant DTU. IF is calculated by the number of counts for 
a specific isoform divided by the total number of read counts for that gene (including all isoforms)
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counts per million (CPM) of at least one across all sam-
ples. To test if transcript discovery thresholds contributed 
to the effect that novel transcripts were expressed higher, 
we performed Wilcoxon rank sum tests at four mean 

CPM thresholds (1 CPM, 2 CPM, 5 CPM, and 8 CPM 
- top 10%, Additional File 8 - Supplementary Fig.  1B-
E), and the result was still significant each time (One-
sided Wilcoxon rank sum tests, p < 1e-11). Therefore, on 

Fig. 2  Long-read Nanopore RNA sequencing across four mouse brain regions. (A) Overview of the study design. (B) PCA plot (PCs 1 and 2) of VST gene 
counts. Here, we colored samples by brain region. (C) Bar graph of the total number of long reads sequenced for each tissue. (D and E) Bar graphs of the 
number of novel and annotated genes and transcripts. (F) Histogram of the transcript counts per gene, truncated to 25 transcripts per gene. Supplemen-
tary File 2 includes the numbers of all transcripts measured for each gene
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average, novel transcripts were still expressed more than 
annotated transcripts. This differs from other studies that 
identified novel transcripts using long read data, though 
these studies used different transcript discovery tools 
[19–21], and bambu consistently discovers fewer false 
positives [18]. However, all genes had a mean of 3.2 tran-
scripts, while novel genes had a mean of 1.1 transcripts, 
though a subset of all genes (n = 76) had over 25 tran-
scripts expressed (Fig.  2F, Additional File 2). Two long 
non-coding RNA (lncRNA) genes, Gas5 and Pvt1, had 
the most transcripts (149 and 129, respectively). In short, 
we generated a lrRNA-seq dataset for four brain regions 
and both sexes of C57BL/6J mice, in which we identified 
potentially novel genes, transcripts, and patterns of gene 
expression variance across mouse brain regions.

Differential gene expression and differential transcript 
expression and usage identified across brain regions
We calculated DGE and DTE using the R package 
DESeq2 [22], a ‘gold-standard’ method that performs 
consistently well for DTE in long-read sequencing data 
[18]. We show a cartoon example representing significant 

DGE between two conditions in Fig. 3A. We found 8,055 
(Wald test with Benjamini-Hochberg (BH) correction 
p < 0.05) pairwise brain region DGE events involving 
3,546 unique genes (Fig. 3B), where the cerebellum, com-
pared to the striatum, had the most DGE (n = 2,229, Wald 
test with BH correction p < 0.05), and the cortex, com-
pared to the hippocampus, had the least DGE (n = 349, 
Wald test with BH correction p < 0.05) (Fig. 3B). Consis-
tent with our PCA (Fig. 2B), each brain region compared 
to the cerebellum had the most DGE, with 920 genes 
consistently differentially expressed in the cerebellum 
compared to the other regions (Fig.  3B). We calculated 
DTE for each expressed transcript, and we considered a 
gene to have DTE if it had at least one transcript with dif-
ferential expression for that comparison (a cartoon exam-
ple representing significant DTE between two conditions 
is in Fig. 3C). We identified 11,138 DTE events (Wald test 
with BH correction p < 0.05) associated with 4,126 unique 
DTE genes (Fig. 3D). Unlike DGE, the greatest difference 
in DTE genes was between the cerebellum and cortex 
(n = 2,620, Wald test with BH correction p < 0.05), and 

Fig. 3  DGE, DTE, and DTU across pairwise brain region comparisons. Cartoon representations of a gene with three isoforms (actual genes may have more 
or fewer isoforms) exemplifying (A) differential gene expression (DGE - violet), (C) differential transcript expression (DTE - turquoise), (E) and differential 
transcript usage (DTU - green). UpSet plots of the overlap of genes with (B) DGE (Wald test with BH correction p < 0.05), (D) DTE (Wald test with BH correc-
tion p < 0.05), and (F) DTU (t-test with BH correction p < 0.05) between pairwise brain region comparisons. The bar plot above denotes intersection size, cir-
cles denote which comparisons have overlap, and the set size reflects the total number of genes with DTU for that comparison. We omitted intersections 
of fewer than 40 genes from the chart for legibility for panels B and D. We omitted intersections of fewer than five for legibility in panel F. (G) Stacked bar 
chart representing pairwise brain region comparison overlap across DGE, DTE, and DTU. Genes included in the chart must express at least two transcripts

 



Page 6 of 16Jones et al. Molecular Brain           (2024) 17:40 

the least was between the cortex and the hippocampus 
(n = 345, Wald test with BH correction p < 0.05) (Fig. 3D).

Next, we calculated DTU for each pair of brain regions 
using the DTU method SatuRn [23] with the R pack-
age IsoformSwitchAnalyzeR [24]. We show a cartoon 
example representing significant DTU between two 
conditions in Fig.  3E. Here, we considered a gene to be 
a DTU gene if it had a t-test statistic (calculated from the 
log-odds ratio and variance of the quasi-binomial gen-
eralized linear model) BH-corrected p-value < 0.05 for at 
least one of its transcripts where genes had at least two 
expressed transcripts (Methods). We analyzed DTU 
across brain regions and found 1,051 DTU events in 648 
unique genes (Fig. 3F). The most DTU genes were in the 
cerebellum compared to the striatum (n = 355, t-test with 
BH correction p < 0.05), and the least were in the cortex 
compared to the hippocampus (n = 31, t-test with BH 
correction p < 0.05) (Fig.  3F). Consistent with our other 
analyses (65% for DGE and 71% for DTE), we identi-
fied the majority of DTU genes (66%) from comparisons 
including the cerebellum (Fig.  3B, D, F). Interestingly, 
the number of DTU genes (n = 63, t-test with BH correc-
tion p < 0.05) shared across all three comparisons includ-
ing the cerebellum was a smaller percentage (10%) of 
the total unique DTU genes (Fig. 3F) than DGE (26%) or 
DTE (25%) (Fig. 3B, D), suggesting that DTU analysis is 
less driven by the cerebellum. We also directly compared 
which genes were identified for each analysis (DGE, 
DTE, and DTU) that expressed at least 2 transcripts and 
qualified for DTU analysis. We found that DGE and DTE 
genes had the most overlap across comparisons, with a 
small proportion of significant genes for each compari-
son identified by all three methods (Fig. 3G).

We also performed functional enrichment analysis 
using gprofiler2 [25] of DGE, DTE, and DTU genes for all 
comparisons (Additional Files 3–5). For the cortex com-
pared to the cerebellum DGE, DTE, and DTU genes, we 
found enrichment (Fisher’s exact test with g: SCS correc-
tion, p < 0.05) for 1742, 2431, and 54 terms. Strikingly, we 
found a much larger percentage of terms associated with 
the neuronal synapse in DTU (24/54, 44%; e.g., synapse, 
glutamatergic synapse, post-synapse, synaptic signaling, 
neuron-to-neuron synapse, and postsynaptic membrane) 
compared to DGE (50/1742, 2.9%) and DTE (77/2431, 
3.2%). Because a larger proportion of DTU genes were 

enriched for pathways required for synaptic neurotrans-
mission, this suggests that DTU potentially identifies 
biologically distinct molecular signatures from DGE and 
DTE. To see if any ontology terms were enriched in genes 
specific to DTU, we performed functional enrichment 
analysis on the DTU genes that did not have significant 
DGE or DTE. We identified multiple ontologies enriched 
for genes with DTU (Fisher’s exact test with g: SCS cor-
rection, p < 0.05), including histone deacetylation, TCF/
WNT signaling, cytoplasmic ribosomal proteins, Kir4.1-
dystrophin complex, and muscle-derived dystrobrevin-
syntrophin complex (Additional File 6). The term with 
the most significant enrichment for DTU genes between 
cerebellum and cortex was histone deacetylation (adj. 
p = 0.014), suggesting that these genes (Mta1, Arid4b, and 
Suds3) play an integral role in isoform-specific chromatin 
remodeling between the two regions (Additional File 6). 
Overall, a pairwise comparison of DGE, DTE, and DTU 
between brain regions revealed marked heterogeneity 
for each analysis per comparison, with a greater overlap 
in DGE and DTE than in either analysis with DTU. This 
underscores that isoform usage may be masked when 
only considering differential expression, hiding biologi-
cally distinct molecular signatures.

DTU sex differences are brain region-specific
Due to known sex biases in healthy brain gene expres-
sion [2] and in brain-related disease phenotypes [8, 9], we 
asked if there were sex-biased DGE, DTE, or DTU events 
by brain region. First, we measured DTU across sexes, 
combining brain regions, and identified four genes with 
DTU: Zfp862-ps, Gm10605, Shisa5, and Zfp324 (t-test 
with BH correction p < 0.05) (Additional File 8 - Supple-
mentary Fig. 2). Zfp862-ps and Zfp324 are a pseudogene 
and gene, respectively, for zinc finger proteins that con-
tain a DNA-binding domain. While pseudogenes have 
traditionally been considered non-coding, they have been 
shown to regulate other genes and form viable proteins 
[26, 27]. Notably, the human ortholog of Shisa5, SHISA5, 
has been previously identified as having sex-biased splic-
ing in human brain white matter [2], in line with our 
finding of sex-biased splicing in mouse brain regions. 
Finally, Gm10605 is a predicted lncRNA gene. We did 
not identify any of these genes in our within-brain region 
analyses, suggesting that for these genes, we were under-
powered to identify DTU in each region alone.

We next calculated DGE, DTE, and DTU across sexes 
within each brain region (Table 1; Fig. 4). We identified 
23 region-specific genes with DTU by sex (analysis of 
deviance chi-squared test with BH correction p < 0.05): 
14 in the cortex, seven in the striatum, and two in the 
cerebellum (Table  1). Despite documentation of pheno-
typic sex differences in the hippocampus [28], we did not 
find sex DTU in the hippocampus (Fig. 4C). None of the 

Table 1  Genes with brain-region-specific DTU across sexes
Brain Region Genes with DTU across sexes
Cortex 6430548M08Rik, Anxa7, Plppr2, Sel1l, Zmiz2, 

Mtcl1, Kifap3, Leprot, Bcar1, Arhgap12, Washc3, 
Fbxw2, Bmal1, Lmtk3

Striatum Fbxo25, Dhrs4, Rab28, Cacnb2, Cstpp1, Rsrc1, Celf2
Cerebellum Camk2d, Srgn
Legend: Bolded genes are highlighted in the results and Figs. 4 and 5
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23 genes overlapped between brain regions, suggesting 
these sex differences may be brain region-specific. When 
we compared these DTU genes to DGE genes for each 
region, none overlapped (Fig. 4A-D), and only three of 23 
overlapped with DTE. Therefore, by analyzing DTU, we 
identified 20 additional genes with differential sex effects.

We highlighted one of these sex-significant cor-
tex DTU genes, Anxa7, for its many known connec-
tions to sex-associated phenotypes in humans (Fig.  4E). 
Human ANXA7 is a member of the annexin family, and 
humans express this gene in all tissues [29]. ANXA7 has 
multiple links to sex hormones; for example, ANXA7 
promoter activity is affected by estrogen and proges-
terone nuclear receptors [30]. In addition, patients with 
schizophrenia express this gene lower than healthy 
controls [31]. In our study, we measured three distinct 
Anxa7 isoforms: ENMUST00000100844.6 (the Ensembl 
canonical transcript), ENMUST00000065504.7, and 
ENMUST00000224975.2 (Fig.  4E). When we aggregate 
transcript expression, Anxa7 does not have differential 
gene expression between males and females in any region. 
However, there was DTU of ENMUST00000065504.7 
and ENMUST00000100844.6 across sex (Fig. 4E). Males 

expressed ENMUST00000100844.6 (the only transcript 
that included exon 5) higher than females. Humans have 
a documented clinical variant of uncertain significance 
(gnomAD variant 10-75143086-T-A) in the conserved 
male-biased exon [32]. Strikingly, 11/16 reported cases 
with this variant were in XY males and only 5/16 in XX 
females [32]. In the alternatively spliced exon 5, multi-
ple transcription factor binding sites exist, including for 
FOXO1, which is strongly sex-associated and a key tran-
scription factor associated with early pregnancy [33]. In 
summary, analysis of sex-significant DTU genes revealed 
differential isoform usage by sex within brain regions that 
would have otherwise been undetected by gene or tran-
script expression analyses, including genes with known 
sex-associated phenotypes.

There are two main patterns of sexually dimorphic 
transcript usage: sex-divergent and sex-specific
In addition, we noticed distinct patterns in sex DTU 
genes expressing two transcripts (Fig.  5A-B). First, we 
identified sex-divergent switches, i.e., sexually dimor-
phic transcript expression, where a single domi-
nant transcript switch is in the opposite direction 

Fig. 4  DGE, DTE, and DTU across sex within brain regions. (A-D) Euler diagrams represent the overlap of genes with significant DGE (Wald test with BH 
correction p < 0.05, purple), DTE (Wald test with BH correction p < 0.05, cyan), and DTU (analysis of deviance chi-squared test with BH correction p < 0.05, 
green). The brain regions represented are (A) cerebellum, (B) cortex, (C) hippocampus, and (D) striatum. (E) Switchplot displaying a transcript summary, 
gene expression, isoform expression, and isoform usage of the gene Anxa7 across female (F; light color) and male (M; dark color) cerebral cortex. In the 
indicated comparison, ns denotes not significant, * denotes P < 0.05, ** denotes P < 0.01, and *** denotes P < 0.001
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Fig. 5  Sex-divergent and sex-specific DTU. (A-B) Representative cartoons exemplify two transcript expression patterns of isoform switching: sex-diver-
gent (A) and sex-specific (B). (C) Switchplot displaying a transcript summary, DGE (Wald test with BH correction p < 0.05, purple), DTE (Wald test with BH 
correction p < 0.05, cyan), and DTU (analysis of deviance chi-squared test with BH correction p < 0.05, green) of the sex-divergent gene Mtcl1 in the cortex 
between females (F; light color) and males (M; dark color). (D) Switchplot displaying a transcript summary, DGE (Wald test with BH correction p < 0.05, 
purple), DTE (Wald test with BH correction p < 0.05, cyan), and DTU (analysis of deviance chi-squared test with BH correction p < 0.05, green) of the sex-
specific gene Rab28 in the striatum between females (F; light color) and males (M; dark color). Please note that these plots do not display all possible 
transcript structures of this gene, only the ones measured in our dataset. In the indicated comparison, ns denotes not significant and * denotes P < 0.05
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for both sexes (Fig.  5A). We identified sex-divergent 
switches in Mtcl1, Sel1l, 6430548M08Rik, Srgn, and 
Lmtk3. For example, the sex-divergent gene Mtcl1 
has two transcripts, ENMUST00000086693.12 
and ENMUST00000097291.10, where 
ENMUST00000086693.12 is dominant in males and 
ENMUST00000097291.10 in females (Fig.  5C). Mtcl1 
codes for Microtubule Crosslinking Factor 1 and is 
expressed highly in the cerebellum in the literature and 
our dataset [29]. Human MTCL1 is known to be essen-
tial for the development of Purkinje neurons [34]. 
Despite its connections to the cerebellum, we only 
saw DTU in Mtcl1 by sex in the cortex. We also identi-
fied sex-specific isoform switches, i.e., where one sex 
expresses one isoform, but the other sex had almost 
equal expression of both isoforms (Fig.  5B). We iden-
tified sex-specific isoform switches in Rab28, Fbxo25, 
Leprot, Kifap3, and Plppr2. Rab28 (Fig.  5D) has a 
female-specific isoform, ENMUST000000201422.4, 
which had approximately equal expression as the 
other isoform, ENMUST00000031011.12, in females, 
while ENMUST00000031011.12 was the only isoform 
expressed in males. RAB28 is an essential gene for vision, 
and loss of function mutations in RAB28 cause cone-rod 
dystrophy in humans [35, 36]. Thus, in addition to iden-
tifying significant differences in isoform usage between 
sexes, we also found distinct patterns of sex DTU gene 
expression, with sex-significant DTU genes showing 
either sex-divergent or sex-specific transcript expression.

A web application for visualizing DGE, DTE, and DTU in 
mouse brain lrRNA-seq data
Finally, we built an R Shiny application for our data set. 
Users may create custom gene expression heatmaps 
(Fig.  6A) or examine switch plots for individual genes 
using the IsoformSwitchAnalyzeR package (Fig. 6B). We 
also provide the option for users to download the inter-
mediate gene expression and isoform switch test result 
data and plots directly. Our Shiny application has been 
made publicly available at https://lasseignelab.shinyapps.
io/mouse_brain_iso_div/.

Discussion
In summary, we produced a high-quality, publicly-avail-
able ONT lrRNA-Seq dataset across four brain regions 
from C57BL/6J mice, balanced for sex. We processed 
this data and identified 285 potentially novel genes and 
382 novel transcripts, mostly (81%) associated with novel 
genes. We then calculated DGE, DTE, and DTU across 
brain regions and by sex. As expected, we identified DGE, 
DTE, and DTU between the four brain regions. The cer-
ebellum had the most differences, potentially driven 
by cell type composition compared to the other three 
regions. Additionally, we found region-specific DTU 

between sexes, with the most differences in DTU in the 
cortex. We also report two distinct patterns of sex DTU 
in our data: sex-divergent and sex-specific. Finally, we 
built a Shiny web application for researchers to explore 
our lrRNA-Seq results.

Our study aligns with multiple prior studies identify-
ing changes in isoform regulation across brain regions 
in mice [37–39] and humans [13, 40–42]. Additionally, 
we found the most differences in bulk DGE in the cer-
ebellum, which agrees with other studies examining 
AS across multiple brain areas [43]. For example, the 
gene with the highest DGE for all pairwise comparisons 
including the cerebellum is Pcp2, Purkinje cell protein 
2. We suspect this reflects brain region-specific differ-
ences in cell type composition, as Purkinje neurons are 
unique to the cerebellum. However, confirmation of 
this hypothesis requires future studies at the single-cell 
level. Additionally, we found that some of these signifi-
cant DTU genes across brain regions are known psychi-
atric risk genes (Additional File 7), potentially linking to 
region-specific differences in disease manifestation [44]. 
We were not surprised by the low amount of DTU we 
observed across sexes when we grouped all brain regions 
because of the variability between different brain regions’ 
cell type compositions. Therefore, we also investigated 
AS across sexes within brain regions and found differ-
ences in the gene expression and transcript expression 
and usage of multiple brain-region-specific genes. Inter-
estingly, we found the brain region with the most DTU 
by sex was the cortex, which is involved in high-level cog-
nition. Many psychiatric phenotypes are associated with 
the cortex, and several of these are sex-biased in preva-
lence (e.g., ASD [8], schizophrenia [9], and major depres-
sive disorder [45]). We also noticed that these DTU genes 
had two separate patterns of sex-significant transcript 
usage, either sex-divergent or sex-specific. These patterns 
demonstrate that while some transcripts are specific to 
one sex, others may shift in abundance between sexes, 
exemplifying nuanced sex differences. To see if these pat-
terns could be related to epigenetic patterns of inheri-
tance, such as genomic imprinting, we compared our list 
of sex DTU genes to a list of 261 known imprintied genes 
in mice [46], but found no overlaps. This suggests that 
other epigenetic mechanisms could be at play in regulat-
ing these sexually dimorphic patterns and could warrant 
further study.

We analyzed differences in gene expression on three 
fronts: DGE, DTE, and DTU, which together reveal more 
information on gene expression patterns by region and 
sex. While our work had many strengths, some limita-
tions include using a bulk RNA-seq approach, read depth 
as a general limitation for transcript discovery, sample 
number constraints, and using mice instead of human 
tissues for translation to human disease. Future work 

https://lasseignelab.shinyapps.io/mouse_brain_iso_div/
https://lasseignelab.shinyapps.io/mouse_brain_iso_div/
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would benefit from single-cell resolution to determine 
the extent to which brain region differences stem from 
cell-type composition differences. Researchers could 
investigate this effect of cell-type composition through 
computational cell-type deconvolution, fluorescence-
activated cell sorting (FACS), or new single-cell lrRNA-
Seq methods, such as scISOr-Seq and scISO-Seq [47, 48]. 
While we sequenced an average of two million reads per 
sample and found 285 potentially novel genes and 382 
novel transcripts, deeper sequencing depth may allow 
for greater novel isoform detection, as demonstrated by 
recently published Alzheimer’s Disease (AD) data with 
extremely high-depth long-read sequencing (averaged 
35.5 million reads per sample, discovered 3,394 new iso-
forms and 1,676 new gene bodies) [49]. We reported on 
novel genes and transcripts with any level of expression, 

and additional work is needed for our study and others 
to confirm these ORFs are actually novel genes and not 
a result of sequencing bias or some other artifact. We 
attempted to reduce the number of false positives by 
using the stringent transcript quantification tool Bambu, 
which is specially designed for long-read sequencing data 
and found that novel transcripts were expressed more 
highly than annotated transcripts. We speculate that 
this finding suggests that long-read technologies enable 
the identification of additional biologically relevant tran-
scripts at various expression levels.

Furthermore, more samples may allow greater sta-
tistical power to detect smaller expression differences 
approaching significance with our current sample size. 
Intuitively, ​​we would expect most DTU genes to have 
DTE but not all DTE genes to have DTU. In our data, 

Fig. 6  Shiny app presents a user-friendly interface for exploring our mouse brain dataset. Screenshots of our web application (A) The “Custom Gene 
Expression Heatmap” lets users examine and download the gene-level expression of any gene(s) of interest in our dataset. Users can also download the 
expression and isoform switch test result data to analyze further or download the plots as-is. (B) In the “Pairwise Brain Region Comparison” tab, users can 
visualize their gene of interest in pairwise brain region comparisons in real-time and download expression and isoform switch test result data and plots
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this assumption was not correct. Although SatuRn and 
DEXSeq use transcript expression information as the 
basis for their DTU analyses, these inconsistencies in 
significance between DESeq2 and SatuRn/DEXSeq may 
stem from using different models to calculate statisti-
cal significance (Methods). Therefore, it is possible that 
larger sample sizes and thus increased statistical power 
to detect significant differences in transcript expression 
and usage may result in the two methods agreeing more 
often for genes with DTU. Additionally, while mice and 
humans share many genetic similarities, our findings 
may not be directly translatable to humans. Surpris-
ingly, we could not detect sex differences in alternatively 
spliced transcripts in the hippocampus, despite known 
sex differences in humans with hippocampal diseases 
(e.g., AD [50]). This may have been due to the sample 
input amount, sample numbers, species, or sequencing 
depth. To investigate if this was due to statistical power, 
we examined the hippocampal genes approaching sig-
nificance in our data, such as Tsr2. In the hippocampus, 
female samples expressed three transcripts of Tsr2, but 
males expressed only one transcript (Additional File 8 
- Supplementary Fig. 3). We speculate the lower expres-
sion of these transcripts is why this is not significant 
(analysis of deviance chi-squared test with BH correction 
p = 0.1652978), but would require more follow-up data 
generation and analyses to confirm.

We aimed to examine and quantify differences across 
sexes and brain regions in C57BL/6J mouse brain tissue 
to better understand AS regulation. To our knowledge, 
this work is the first paper to use lrRNA-Seq to focus 
on brain-region-specific AS sex differences in a mam-
malian brain. We harnessed the power of lrRNA-Seq to 
investigate differences in AS with higher confidence than 
short-read and compared the results from three separate 
differential analyses. Here, we used novel sequencing 
technology to study sex as a biological variable, which is 
a necessary effort to resolve the long-standing practices 
of single-sex studies in preclinical biomedical research 
[12]. In addition to making all our data and code publicly 
available, we created an easily accessible web application 
for researchers to interact with the data. This research 
also serves as a launchpad for future directions involv-
ing additional time points, species, and disease contexts. 
Specifically, long-read spatial transcriptomics [51] and 
long-read ATAC [52] present opportunities for discern-
ing patterns of AS and could be used to examine tran-
scriptomic sex differences in isoform regulation at the 
spatial and epigenetic levels. Another future direction 
includes investigating classes of transcript diversity and 
structure (i.e., promoter usage and 3′ end choice) as done 
in ENCODE4 [53], but with an emphasis on studying dif-
ferences across sexes in the brain. There is also a need to 
investigate sex differences in splicing across the lifespan, 

including early development [54, 55] and aging [41]. 
Finally, future research could combine long-read tran-
scriptomics with measures of neuronal activity to discern 
the effects of AS on signal transmission across sexes [56]. 
Our findings provide insight into sex differences in mam-
malian brains, and the data produced by this research can 
serve as a useful resource for the scientific community.

Materials and methods
Mouse sample collection and RNA isolation
We obtained flash-frozen hippocampus, striatum, cer-
ebellum, and cortex C57BL/6J mouse brain tissues from 
The Jackson Laboratory (JAX #000664, age = 20 weeks) 
from five male and five female mice. The samples arrived 
on dry ice, and we stored them at -70 °C upon arrival. For 
each sample, we transferred ~ 30 mg of each brain region 
(or the entire brain region, in the case of hippocampus 
and striatum tissue) into an MP Biomedical Lysis D 
Matrix, 2 ml tube (#6913500) containing 500 µl of TRIzol 
reagent (Invitrogen #15596018) and lysed cells from each 
tissue on the FastPrep-24 5G bead beating grinder and 
lysis system (MP Biomedical #116005500). After lysis, 
we added 100  µl of chloroform to the tube, centrifuged 
at 12,000×g for 15  min, and then transferred the clear 
top layer of the supernatant into a fresh tube. We next 
added an equivolume amount of isopropanol and cen-
trifuged at 12,000×g for 10 min. We decanted the super-
natant, washed the pellet twice with 75% ethanol, and 
resuspended the air-dried pellet in RNAse-free water. We 
incubated the final RNA product with TURBO DNase 
(Invitrogen #AM1907) for 30 min and assessed for RNA 
quality using a Qubit fluorometer and Agilent Fragment 
Analyzer. All RNA samples had an RNA quality number 
(RQN) score > 7.

Oxford Nanopore Technologies lrRNA-Seq library 
preparation
We processed RNA samples for nanopore sequencing 
using the PCR-cDNA Barcoding Kit (SQK-PCB111.24) 
according to manufacturer instructions and prepared 
libraries in equimolar amounts based on fragment length 
and concentration to make 15 fmol of cDNA library per 
flow cell. Because the barcoding kit only included 24 bar-
codes and we had 40 samples, we prepped and pooled 
two batches with 20 samples each. We loaded 11  µl of 
each pooled library with 1  µl Rapid Adapter T (12  µl 
total) onto 12 R9.4 flow cells (FLO-MIN106D). Because 
the ONT GRIDion (GRD-MK1) sequencing device can 
sequence five flow cells simultaneously, we sequenced 
these libraries in three separate sequencing runs for 72 h 
each.
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Nanopore settings and software versions
We ran our nanopore with active channel selection 
turned on, a 1.5-hour pore scan frequency, a -170 mV 
initial bias voltage, and a -185 mV final bias voltage. We 
selected to have reserved pores off with high-accuracy 
base calling turned on. We used the following GridION 
software versions: MinKNOW 22.05.7, Bream 7.1.3, Con-
figuration 5.1.5, Guppy 6.1.5, and MinKNOW Core 5.1.0.

Raw sequencing data processing
We transferred demultiplexed FASTQ files to UAB’s 
supercomputer cluster, Cheaha, merged FASTQs pass-
ing a minimum Phred quality score of 9 for each sample 
and processed using the nf-core [16] nanoseq pipeline 
(https://doi.org/10.5281/zenodo.1400710) with the fol-
lowing options: version 2.0.1, protocol cDNA, flow cell 
FLO-MIN106, kit SQK-PCB109, skip_basecalling, skip_
demultiplexing, skip_differential_analysis, profile cheaha, 
and a custom configuration file specifying nanoplot ver-
sion 1.32.1. The packages we used for alignment and 
transcript quantification in this pipeline framework were 
Minimap2 version 2.17 [57], samtools version 1.13 [58], 
and Bambu version 1.0.2 [17]. We mapped reads using 
the GENCODE mm39 release M31 (available at: https://
www.gencodegenes.org/mouse/) primary assembly 
genome and annotation. We retrieved transcript counts 
from the Bambu outputs of the nextflow results for fur-
ther analysis.

Data normalization
We processed and normalized data in R version 4.3.0 and 
RStudio version 2023.06.2 + 561. Because nanopore read 
lengths vary depending on the input cDNA length, we 
normalized by counts per million (CPM) instead of tran-
scripts per million (TPM) since Bambu already accounts 
for length in its expression abundances. We calculated 
CPM by multiplying the number of read counts by 1 mil-
lion and dividing by the sum of the total read counts for 
that sample. We found no outliers or batch effects by 
visual inspection when we performed principal compo-
nent analysis (PCA).

Differential gene and transcript expression analysis
For DGE and DTE analysis, we used the R package 
DESeq2 version 1.40.0 [22] using the negative bino-
mial Wald test function. We considered a differentially 
expressed gene or transcript significance with a BH-
adjusted p-value of less than 0.05 and an absolute log2 
fold change > 1.5 value. Therefore, we used three models:

1.	 Region compared to another region (e.g., the 
cerebellum directly compared to the cortex).

2.	 Sex within a region (e.g., female compared to male in 
the cerebellum).

3.	 Sex across all regions (e.g., female compared to 
male).

We performed this analysis with gene-level counts for 
differential gene expression (DGE) and again with tran-
script-level counts for differential transcript expression 
(DTE). We then incorporated these results into the Iso-
frmSwitchAnalyseR switchList format for downstream 
plotting.

Differential transcript usage analysis
We performed Differential Transcript Usage (DTU) anal-
ysis with the R package IsoformSwitchAnalyzeR pack-
age version 1.99.17 [24], using the satuRn version 1.8.0 
[23] algorithm, and within brain regions, the DEXSeq 
version 1.46.0 [59] algorithm. We chose to use DEXSeq 
for smaller sample sizes (n = 5) because of its increased 
detection ability. Still, we did not use it for larger sample 
groups because it has a higher false discovery rate [18] 
and is computationally inefficient [23]. Therefore, we 
used three models:

1.	 Region compared to another region (e.g., cerebellum 
compared to cortex) (satuRn).

2.	 Sex within a region (e.g., female compared to male in 
cerebellum) (DEXSeq).

3.	 Sex across all regions (e.g., female compared to male) 
(satuRn).

First, we created a switchAnalyzeRlist object with the 
importRdata function. We used the raw counts from 
Bambu [60] for the count matrix. For normalized iso-
form abundance values, we calculated CPM as described 
above. We used the IsoformSwitchAnalyzeR [24] package 
to remove genes that do not have more than one tran-
script and no gene expression minimum and proceeded 
with the satuRn [23] or DEXSeq [59] isoform switch 
tests. The satuRn isoform switch test uses a quasi-bino-
mial generalized linear model to model transcript usage 
and calculates the posterior variance using an empirical 
Bayes procedure [23]. Using this model, satuRn runs a 
t-test based on the model’s log-odds ratio estimates with 
the posterior variance and uses BH correction to reduce 
FDR [23]. The DEXSeq isoform switch test uses a bino-
mial generalized linear model and analyzes deviance for 
each “counting bin” based on a chi-squared likelihood 
ratio test (59). The IsoformSwitchAnalyzeR implemen-
tation of DEXSeq differs from other implementations of 
DEXSeq in that it uses full transcripts as the “counting 
bins” instead of exons so that it can detect DTU instead 
of only differential exon usage [24]. Our significance fil-
tering thresholds were an isoform switch q value < 0.05 
and a differential isoform fraction (dIF) with an abso-
lute value of at least 0.1, reflecting at least 10% change 

https://doi.org/10.5281/zenodo.1400710
https://www.gencodegenes.org/mouse/
https://www.gencodegenes.org/mouse/
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in isoform fraction across conditions. We calculated IF 
values as the isoform expression divided by total gene 
expression.

Functional enrichment analysis
To infer pathways and diseases associated with the iden-
tified lists of significant genes with DGE/DTE/DTU, we 
performed a statistical enrichment analysis using gpro-
filer2 version 0.2.1 [25] with a custom set of background 
genes that passed filtering criteria (genes must have more 
than one transcript and be present in both conditions). 
We used the g: GOSt function, which uses a one-tailed 
Fisher’s exact test to obtain statistical probabilities for 
each term, and the g: SCS method for multiple testing 
correction. The default data sources for the gprofiler2 
g: GOSt function include Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Reac-
tome, Transfac, mirTarBase, CORUM, Human Protein 
Atlas (HPA), and Human Phenotype Ontology (HPO). 
We then saved the results in Additional Files 3–5 and 
plotted these results, which passed our p-value threshold 
of < 0.05 for each comparison. When we compared the 
proportions of synaptic enrichment terms across analy-
ses, we returned the number of terms that included the 
character string “synap”. We divided it by the total terms 
overall for that analysis.

Comparison of DGE, DTE, and DTU
After determining which genes had DGE, DTE, and DTU 
for each condition tested, we created Euler diagrams and 
UpSet plots using eulerr version 7.0.0 and Complex-
Heatmap version 2.16.0 [61] packages, respectively, to 
visualize the overlap between these conditions. We iden-
tified genes with DTE by taking the unique list of gene 
IDs paired with transcripts identified as differentially 
expressed (adj p < 0.05) from DESeq2, where we only 
counted a gene with DTE in multiple transcripts once.

Neurological disease phenotype gene sets
We compared three main gene lists to our significant 
DTU gene lists to known neurological disease risk genes. 
First, we compared against a recent set of AD risk genes 
[62]. Next, we compared against multi-disorder psychi-
atric risk genes from the Cross-Disorder Group of the 
Psychiatric Genomics Consortium [44]. We listed psy-
chiatric disorders if they have a posterior probability of 
association of above 0.9. Finally, we also compared active 
cases in UAB’s Center for Precision Animal Modeling 
(C-PAM).

To facilitate conversion between mouse and human 
genes, we converted the human neurological gene lists 
into mouse genes using the biomaRt Bioconductor 
package [63] in R. We then identified genes that were 

present in both DTU lists and neurological gene lists and 
reported them in Additional File 7.

Protein domain family analysis
Following the package framework from the Isoform-
SwitchAnalyzeR package version 1.99.17, we extracted 
nucleotide and amino acid sequences from each gene’s 
open reading frame (ORF). Using those amino acid 
sequences as input, we ran the pfamscan.pl perl script 
with Perl 5 version 34 obtained from ftp://ftp.ebi.ac.uk/
pub/databases/Pfam/ to identify known protein domains 
from the Protein family database (Pfam) [64]. We incor-
porated these outputs into our R objects, and users can 
visualize select genes using our Shiny app.
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Additional File 1: Novel transcripts information. This supplementary file is 
a CSV with general information about the novel transcripts. Columns as as 
follows: Location - which chromosome we found this gene on. Start - the 
genomic start position of the novel gene. Stop - the genomic end position 
of the novel gene. Strand - the direction of transcription for the novel 
gene. Gene_id - the gene identification number automatically assigned by 
Bambu. Transcript_id - the transcript identification number automatically 
assigned by Bambu.

Additional file 2. Transcripts per gene table. This supplementary file is a 
CSV with the number of all transcripts measured for each gene. Columns 
are as follows: GENEID - Either ENSEMBL gene identification number, if 
available, or Bambu assigned identification number. Transcript count - 
number of transcripts counted per gene with more than 0 counts.

Additional file 3. DGE Functional enrichment results. This supplementary 
file is a Microsoft Excel file with gprofiler results of DGE genes with a 
sheet for each comparison. Columns are as follows: Query - all results 
were processed as individual queries. Significant - all terms in this table 
were kept if they had a significance of below 0.05. P_value - p-value from 
Fisher’s one-tailed test. Term_size - number of genes in this term size. 
Query_size - number of genes for this specific query. Intersection_size - 
number of genes in the intersection between term and query. Precision 
- statistical precision for this term. Recall - statistical recall for this term. 
Term_id - Identification number for this term. Source - Data source for this 
term. Term_name - Name for this term. Effective_domain_size - Domain 
size for this term. Source_order - Order for this term. Parents - Any parent 
terms for this term.
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Additional file 4. DTE Functional enrichment results. This supplementary 
file is a Microsoft Excel file with gprofiler results of DTE genes with a sheet 
for each comparison. Columns are as follows: Query - all results were pro-
cessed as individual queries. Significant - all terms in this table were kept 
if they had a significance of below 0.05. P_value - p-value from Fisher’s 
one-tailed test. Term_size - number of genes in this term size. Query_size 
- number of genes for this specific query. Intersection_size - number of 
genes in the intersection between term and query. Precision - statisti-
cal precision for this term. Recall - statistical recall for this term. Term_id 
- Identification number for this term. Source - Data source for this term. 
Term_name - Name for this term. Effective_domain_size - Domain size for 
this term. Source_order - Order for this term. Parents - Any parent terms 
for this term.

Additional file 5. DTU Functional enrichment results. This supplementary 
file is a Microsoft Excel file with gprofiler results of all DTU genes with a 
sheet for each comparison. Columns are as follows: Query - all results 
were processed as individual queries. Significant - all terms in this table 
were kept if they had a significance of below 0.05. P_value - p-value from 
Fisher’s one-tailed test. Term_size - number of genes in this term size. 
Query_size - number of genes for this specific query. Intersection_size - 
number of genes in the intersection between term and query. Precision 
- statistical precision for this term. Recall - statistical recall for this term. 
Term_id - Identification number for this term. Source - Data source for this 
term. Term_name - Name for this term. Effective_domain_size - Domain 
size for this term. Source_order - Order for this term. Parents - Any parent 
terms for this term.

Additional file 6. DTU-specific Functional enrichment results. This supple-
mentary file is a Microsoft Excel file with gprofiler results of DTU-specifc 
genes with a sheet for each comparison. Columns are as follows: Query 
- all results were processed as individual queries. Significant - all terms 
in this table were kept if they had a significance of below 0.05. P_value - 
p-value from Fisher’s one-tailed test. Term_size - number of genes in this 
term size. Query_size - number of genes for this specific query. Intersec-
tion_size - number of genes in the intersection between term and query. 
Precision - statistical precision for this term. Recall - statistical recall for this 
term. Term_id - Identification number for this term. Source - Data source 
for this term. Term_name - Name for this term. Effective_domain_size - 
Domain size for this term. Source_order - Order for this term. Parents - Any 
parent terms for this term.

Additional file 7. DTU genes that are known neurological disease risk 
genes. This supplementary file is an Excel file of neurological disease risk 
genes and which DTU design we used to identify them. We compared 
significant DTU genes to lists of AD, cross-psychiatric disorder, and UAB’s 
Center for Precision Animal Modeling case genes (C-PAM) to identify 
disease genes.

Additional file 8. Supplementary Figures. This PDF contains supplementary 
figures and their figure legends.

Acknowledgements
We acknowledge all current and past members of the Lasseigne Lab for their 
thoughtful feedback, especially Tabea M. Soelter, Jordan H. Whitlock, Vishal 
H. Oza, and Elizabeth J. Wilk. We would like to thank the UAB Biological Data 
Sciences (UAB-BDS) core for discussions during office hours and institutional 
support of the Cheaha configuration for nf-core pipelines and docker/
singularity container documentation. All figures and cartoons were assembled 
with BioRender.

Authors’ contributions
EFJ and BNL conceptualized the project. EFJ, TCH, and VLF collected and 
generated the sequencing data set. All analyses were coded and performed 
by EFJ. EFJ developed and deployed the web application. TCH, VLF, and ADC 
reviewed and validated the code. BNL and TCH provided supervision and 
project administration. BNL acquired funding. EFJ wrote the first draft. EFJ, TCH, 
VLF, ADC, and BNL reviewed and edited the manuscript. All authors read and 
approved the final manuscript.

Funding
This work was supported in part by the UAB Lasseigne Lab funds (to BNL; 
supported EFJ, TCH, VLF, ADC), R00HG009678 (to BNL; also supported EFJ), and 
the UAB Pittman Scholar Award (to BNL; supported EFJ).

Data availability
The raw dataset supporting the conclusions of this article is available 
in the Gene Expression Omnibus (GEO) repository, with accession 
number GSE246705, https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?&acc=GSE246705. The data is also fully available on Sequence Read 
Archive (SRA) with accession number SRP469534 and BioProject with 
accession number PRJNA1034151.
The docker images, intermediate datasets, and code to reproduce all analyses 
and results in this article are available in the following Zenodo repositories: 
Docker images - https://zenodo.org/records/10480924, intermediate data 
-https://zenodo.org/records/10381745, GitHub code - https://zenodo.org/
records/10481313.
The code supporting the conclusions and for reproducing analyses of 
this article is available in the GitHub repository, https://github.com/
lasseignelab/230227_EJ_MouseBrainIsoDiv.
The interactive web browser application associated with this manuscript is 
available at https://lasseignelab.shinyapps.io/mouse_brain_iso_div/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 January 2024 / Accepted: 8 June 2024

References
1.	 Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The 

evolutionary landscape of alternative splicing in vertebrate species. Science. 
2012;338(6114):1587–93.

2.	 Trabzuni D, Ramasamy A, Imran S, Walker R, Smith C, Weale ME, et al. Wide-
spread sex differences in gene expression and splicing in the adult human 
brain. Nat Commun. 2013;4:2771.

3.	 Xu Q, Modrek B, Lee C. Genome-wide detection of tissue-specific alternative 
splicing in the human transcriptome. Nucleic Acids Res. 2002;30(17):3754–66.

4.	 Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. 
Alternative isoform regulation in human tissue transcriptomes. Nature. 
2008;456(7221):470–6.

5.	 Zhang X, Chen MH, Wu X, Kodani A, Fan J, Doan R, et al. Cell-type-specific 
alternative splicing governs cell fate in the developing cerebral cortex. Cell. 
2016;166(5):1147–e6215.

6.	 Licatalosi DD, Darnell RB. Splicing regulation in neurologic disease. Neuron. 
2006;52(1):93–101.

7.	 Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S et al. Transcrip-
tome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar 
disorder. Science [Internet]. 2018;362(6420). https://doi.org/10.1126/science.
aat8127.

8.	 Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. 
Curr Opin Neurol. 2013;26(2):146–53.

9.	 Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J. Gender differences in schizo-
phrenia and first-episode psychosis: a comprehensive literature review. 
Schizophr Res Treat. 2012;2012:916198.

10.	 Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis 
T, Babor M, et al. A highly conserved program of neuronal microexons is 
misregulated in autistic brains. Cell. 2014;159(7):1511–23.

11.	 Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et 
al. Genome-wide changes in lncRNA, splicing, and regional gene expression 
patterns in autism. Nature. 2016;540(7633):423–7.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE246705
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE246705
https://zenodo.org/records/10480924
https://zenodo.org/records/10381745
https://zenodo.org/records/10481313
https://zenodo.org/records/10481313
https://github.com/lasseignelab/230227_EJ_MouseBrainIsoDiv
https://github.com/lasseignelab/230227_EJ_MouseBrainIsoDiv
https://lasseignelab.shinyapps.io/mouse_brain_iso_div/
https://doi.org/10.1126/science.aat8127
https://doi.org/10.1126/science.aat8127


Page 15 of 16Jones et al. Molecular Brain           (2024) 17:40 

12.	 Arnegard ME, Whitten LA, Hunter C, Clayton JA. Sex as a Biological 
Variable: a 5-Year Progress Report and call to action. J Womens Health. 
2020;29(6):858–64.

13.	 Clark MB, Wrzesinski T, Garcia AB, Hall NAL, Kleinman JE, Hyde T, et al. Long-
read sequencing reveals the complex splicing profile of the psychiatric risk 
gene CACNA1C in human brain. Mol Psychiatry. 2020;25(1):37–47.

14.	 Jones EF, Haldar A, Oza VH, Lasseigne BN. Quantifying transcriptome diversity: 
a review. Brief Funct Genomics [Internet]. 2023; https://doi.org/10.1093/bfgp/
elad019.

15.	 Erdogdu B, Varabyou A, Hicks SC, Salzberg SL, Pertea M. Detecting differential 
transcript usage in complex diseases with SPIT [Internet]. bioRxiv. 2023 [cited 
2023 Nov 9]. p. 2023.07.10.548289. https://www.biorxiv.org/content/https://
doi.org/10.1101/2023.07.10.548289v1.full.

16.	 Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core 
framework for community-curated bioinformatics pipelines. Nat Biotechnol. 
2020;38(3):276–8.

17.	 Chen Y, Sim A, Wan YK, Yeo K, Lee JJX, Ling MH et al. Context-aware transcript 
quantification from long-read RNA-seq data with Bambu. Nat Methods 
[Internet]. 2023; https://doi.org/10.1038/s41592-023-01908-w.

18.	 Dong X, Du MRM, Gouil Q, Tian L, Jabbari JS, Bowden R et al. Benchmarking 
long-read RNA-sequencing analysis tools using in silico mixtures. Nat Meth-
ods [Internet]. 2023; https://doi.org/10.1038/s41592-023-02026-3.

19.	 Tardaguila M, de la Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, Del Risco H, 
et al. SQANTI: extensive characterization of long-read transcript sequences for 
quality control in full-length transcriptome identification and quantification. 
Genome Res. 2018;28(3):396–411.

20.	 Sun Q, Han Y, He J, Wang J, Ma X, Ning Q, et al. Long-read sequencing reveals 
the landscape of aberrant alternative splicing and novel therapeutic target in 
colorectal cancer. Genome Med. 2023;15(1):76.

21.	 Kiyose H, Nakagawa H, Ono A, Aikata H, Ueno M, Hayami S, et al. Comprehen-
sive analysis of full-length transcripts reveals novel splicing abnormalities and 
oncogenic transcripts in liver cancer. PLoS Genet. 2022;18(8):e1010342.

22.	 Love MI, Huber W, Anders S. Moderated estimation of Fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

23.	 Gilis J, Vitting-Seerup K, Van den Berge K, Clement L, satuRn. Scalable analysis 
of differential transcript usage for bulk and single-cell RNA-sequencing 
applications. F1000Res. 2021;10(374):374.

24.	 Vitting-Seerup K, Sandelin A. IsoformSwitchAnalyzeR: analysis of changes in 
genome-wide patterns of alternative splicing and its functional conse-
quences. Bioinformatics. 2019;35(21):4469–71.

25.	 Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 -- an R package 
for gene list functional enrichment analysis and namespace conversion 
toolset g:Profiler. F1000Res [Internet]. 2020;9. https://doi.org/10.12688/
f1000research.24956.2.

26.	 St-Germain J, Khan MR, Bavykina V, Desmarais R, Scott M, Boissonneault G 
et al. Functional Characterization of a Phf8 Processed Pseudogene in the 
Mouse Genome. Genes [Internet]. 2023;14(1). https://doi.org/10.3390/
genes14010172.

27.	 Li W, Yang W, Wang XJ. Pseudogenes: pseudo or real functional elements? J 
Genet Genomics. 2013;40(4):171–7.

28.	 Yagi S, Galea LAM. Sex differences in hippocampal cognition and neurogen-
esis. Neuropsychopharmacology. 2019;44(1):200–13.

29.	 Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al. 
Human genomics. The human transcriptome across tissues and individuals. 
Science. 2015;348(6235):660–5.

30.	 Torosyan Y, Dobi A, Naga S, Mezhevaya K, Glasman M, Norris C, et al. 
Distinct effects of annexin A7 and p53 on arachidonate lipoxygenation 
in prostate cancer cells involve 5-lipoxygenase transcription. Cancer Res. 
2006;66(19):9609–16.

31.	 Liu CM, Fann CSJ, Chen CY, Liu YL, Oyang YJ, Yang WC, et al. ANXA7, PPP3CB, 
DNAJC9, and ZMYND17 genes at chromosome 10q22 associated with the 
subgroup of schizophrenia with deficits in attention and executive function. 
Biol Psychiatry. 2011;70(1):51–8.

32.	 Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q et al. A 
genome-wide mutational constraint map quantified from variation in 
76,156 human genomes [Internet]. bioRxiv. 2022 [cited 2023 Nov 8]. p. 
2022.03.20.485034. https://www.biorxiv.org/content/https://doi.org/10.1101/
2022.03.20.485034v2.

33.	 Adiguzel D, Celik-Ozenci C. FoxO1 is a cell-specific core transcription factor 
for endometrial remodeling and homeostasis during menstrual cycle and 
early pregnancy. Hum Reprod Update. 2021;27(3):570–83.

34.	 Satake T, Yamashita K, Hayashi K, Miyatake S, Tamura-Nakano M, Doi H, et 
al. MTCL1 plays an essential role in maintaining Purkinje neuron axon initial 
segment. EMBO J. 2017;36(9):1227–42.

35.	 Roosing S, Rohrschneider K, Beryozkin A, Sharon D, Weisschuh N, Staller 
J, et al. Mutations in RAB28, encoding a farnesylated small GTPase, are 
associated with autosomal-recessive cone-rod dystrophy. Am J Hum Genet. 
2013;93(1):110–7.

36.	 Riveiro-Álvarez R, Xie YA, López-Martínez MÁ, Gambin T, Pérez-Carro R, Ávila-
Fernández A, et al. New mutations in the RAB28 gene in 2 Spanish families 
with cone-rod dystrophy. JAMA Ophthalmol. 2015;133(2):133–9.

37.	 Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Balacco J et al. Single-cell 
long-read mRNA isoform regulation is pervasive across mammalian brain 
regions, cell types, and development [Internet]. bioRxiv. 2023 [cited 2023 
Apr 18]. p. 2023.04.02.535281. https://www.biorxiv.org/content/https://doi.
org/10.1101/2023.04.02.535281v1.full.

38.	 Vaquero-Garcia J, Barrera A, Gazzara MR, González-Vallinas J, Lahens NF, 
Hogenesch JB, et al. A new view of transcriptome complexity and regulation 
through the lens of local splicing variations. Elife. 2016;5:e11752.

39.	 McMillan P, Korvatska E, Poorkaj P, Evstafjeva Z, Robinson L, Greenup L, et al. 
Tau isoform regulation is region- and cell-specific in mouse brain. J Comp 
Neurol. 2008;511(6):788–803.

40.	 Twine NA, Janitz K, Wilkins MR, Janitz M. Whole transcriptome sequencing 
reveals gene expression and splicing differences in brain regions affected by 
Alzheimer’s disease. PLoS ONE. 2011;6(1):e16266.

41.	 Mazin P, Xiong J, Liu X, Yan Z, Zhang X, Li M, et al. Widespread splicing 
changes in human brain development and aging. Mol Syst Biol. 2013;9:633.

42.	 Zhang Y, Yang HT, Kadash-Edmondson K, Pan Y, Pan Z, Davidson BL, et 
al. Regional Variation of Splicing QTLs in human brain. Am J Hum Genet. 
2020;107(2):196–210.

43.	 Chappell S, Patel T, Guetta-Baranes T, Sang F, Francis PT, Morgan K, et al. 
Observations of extensive gene expression differences in the cerebellum and 
potential relevance to Alzheimer’s disease. BMC Res Notes. 2018;11(1):646.

44.	 Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic 
address: plee0@mgh.harvard.edu, Cross-disorder Group of the Psychiatric 
Genomics Consortium. Genomic relationships, novel loci, and pleiotropic 
mechanisms across eight Psychiatric disorders. Cell. 2019;179(7):1469–e8211.

45.	 Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, et al. 
Global Epidemiology and burden of Schizophrenia: findings from the global 
burden of Disease Study 2016. Schizophr Bull. 2018;44(6):1195–203.

46.	 Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC. Erice Imprinting Group. 
Genomic imprinting and physiological processes in mammals. Cell. 
2019;176(5):952–65.

47.	 Gupta I, Collier PG, Haase B, Mahfouz A, Joglekar A, Floyd T et al. Single-cell 
isoform RNA sequencing characterizes isoforms in thousands of cerebellar 
cells. Nat Biotechnol [Internet]. 2018; https://doi.org/10.1038/nbt.4259.

48.	 Yang Y, Yang R, Kang B, Qian S, He X, Zhang X. Single-cell long-read sequenc-
ing in human cerebral organoids uncovers cell-type-specific and autism-
associated exons. Cell Rep. 2023;42(11):113335.

49.	 Aguzzoli Heberle B, Brandon JA, Page ML, Nations KA, Dikobe KI, White BJ et 
al. Using deep long-read RNAseq in Alzheimer’s disease brain to assess clini-
cal relevance of RNA isoform diversity. bioRxiv [Internet]. 2023; https://doi.
org/10.1101/2023.08.06.552162.

50.	 Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex dif-
ferences in the clinical manifestations of Alzheimer disease pathology. Arch 
Gen Psychiatry. 2005;62(6):685–91.

51.	 Boileau E, Li X, Naarmann-de Vries IS, Becker C, Casper R, Altmüller J, et al. Full-
length spatial transcriptomics reveals the unexplored isoform diversity of the 
myocardium Post-MI. Front Genet. 2022;13:912572.

52.	 Hu Y, Jiang Z, Chen K, Zhou Z, Zhou X, Wang Y, et al. scNanoATAC-seq: a 
long-read single-cell ATAC sequencing method to detect chromatin acces-
sibility and genetic variants simultaneously within an individual cell. Cell Res. 
2023;33(1):83–6.

53.	 Reese F, Williams B, Balderrama-Gutierrez G, Wyman D, Çelik MH, Rebboah E 
et al. The ENCODE4 long-read RNA-seq collection reveals distinct classes of 
transcript structure diversity [Internet]. bioRxiv. 2023 [cited 2023 May 24]. p. 
2023.05.15.540865. https://www.biorxiv.org/content/https://doi.org/10.1101/
2023.05.15.540865v1.

54.	 Patowary A, Zhang P, Jops C, Vuong CK, Ge X, Hou K et al. Cell-type-specificity 
of isoform diversity in the developing human neocortex informs mechanisms 
of neurodevelopmental disorders [Internet]. bioRxiv. 2023 [cited 2023 Apr 
18]. p. 2023.03.25.534016. https://www.biorxiv.org/content/https://doi.org/1
0.1101/2023.03.25.534016v2.

https://doi.org/10.1093/bfgp/elad019
https://doi.org/10.1093/bfgp/elad019
https://www.biorxiv.org/content/
https://doi.org/10.1101/2023.07.10.548289v1.full
https://doi.org/10.1101/2023.07.10.548289v1.full
https://doi.org/10.1038/s41592-023-01908-w
https://doi.org/10.1038/s41592-023-02026-3
https://doi.org/10.12688/f1000research.24956.2
https://doi.org/10.12688/f1000research.24956.2
https://doi.org/10.3390/genes14010172
https://doi.org/10.3390/genes14010172
https://www.biorxiv.org/content/
https://doi.org/10.1101/2022.03.20.485034v2
https://doi.org/10.1101/2022.03.20.485034v2
https://www.biorxiv.org/content/
https://doi.org/10.1101/2023.04.02.535281v1.full
https://doi.org/10.1101/2023.04.02.535281v1.full
https://doi.org/10.1038/nbt.4259
https://doi.org/10.1101/2023.08.06.552162
https://doi.org/10.1101/2023.08.06.552162
https://www.biorxiv.org/content/
https://doi.org/10.1101/2023.05.15.540865v1
https://doi.org/10.1101/2023.05.15.540865v1
https://www.biorxiv.org/content/
https://doi.org/10.1101/2023.03.25.534016v2
https://doi.org/10.1101/2023.03.25.534016v2


Page 16 of 16Jones et al. Molecular Brain           (2024) 17:40 

55.	 Torre D, Francoeur NJ, Kalma Y, Gross Carmel I, Melo BS, Deikus G, et al. 
Isoform-resolved transcriptome of the human preimplantation embryo. Nat 
Commun. 2023;14(1):6902.

56.	 Denkena J, Zaisser A, Merz B, Klinger B, Kuhl D, Blüthgen N, et al. Neuronal 
activity regulates alternative exon usage. Mol Brain. 2020;13(1):148.

57.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 
2018;34(18):3094–100.

58.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence 
Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

59.	 Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-
seq data. Genome Res. 2012;22(10):2008–17.

60.	 Chen Y, Sim A, Wan Y, Goeke J, bambu. Reference-guided isoform reconstruc-
tion and quantification for long read RNA-Seq data [Internet]. 2022. https://
github.com/GoekeLab/bambu.

61.	 Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations 
in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.

62.	 Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et 
al. New insights into the genetic etiology of Alzheimer’s disease and related 
dementias. Nat Genet. 2022;54(4):412–36.

63.	 Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the inte-
gration of genomic datasets with the R/Bioconductor package biomaRt. Nat 
Protoc. 2009;4(8):1184–91.

64.	 Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The 
pfam protein families database. Nucleic Acids Res. 2012;40(Database 
issue):D290–301.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://github.com/GoekeLab/bambu
https://github.com/GoekeLab/bambu

	﻿Long-read RNA sequencing identifies region- and sex-specific C57BL/6J mouse brain mRNA isoform expression and usage
	﻿Abstract
	﻿Introduction
	﻿Results
	﻿Long-read RNA-Seq profiles across four mouse brain regions identified potentially novel genes and transcripts
	﻿Differential gene expression and differential transcript expression and usage identified across brain regions
	﻿DTU sex differences are brain region-specific
	﻿There are two main patterns of sexually dimorphic transcript usage: sex-divergent and sex-specific
	﻿A web application for visualizing DGE, DTE, and DTU in mouse brain lrRNA-seq data

	﻿Discussion
	﻿Materials and methods
	﻿Mouse sample collection and RNA isolation
	﻿Oxford Nanopore Technologies lrRNA-Seq library preparation
	﻿Nanopore settings and software versions
	﻿Raw sequencing data processing
	﻿Data normalization
	﻿Differential gene and transcript expression analysis
	﻿Differential transcript usage analysis
	﻿Functional enrichment analysis
	﻿Comparison of DGE, DTE, and DTU
	﻿Neurological disease phenotype gene sets
	﻿Protein domain family analysis

	﻿References


