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Abstract 

RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research 
circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, trans-
port, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. 
The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methy-
ladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores 
the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation 
and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation 
of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immu-
nity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, 
we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview 
of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. 
By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applica-
tions in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA 
methylation and advancing cancer immunotherapy efficacy.

Keywords RNA methylation, Tumor immunity, Immunotherapy, Tumor immune evasion, Tumor microenvironment 
(TME)

Introduction
RNA modification critically influences gene expression 
through chemical changes to RNA bases and ribose. 
To date, researchers have identified over 170 types of 

chemical modifications in various RNA classes across 
both prokaryotes and eukaryotes [1, 2]. Among these, 
RNA methylation, which accounts for more than 60% of 
all RNA modifications, plays a pivotal role in post-tran-
scriptional gene regulation [1, 3, 4]. The major forms of 
RNA methylation include N1-methyladenosine (m1A), 
N6-methyladenosine (m6A), 5-methylcytosine (m5C), 
N7-methylguanosine (m7G), and 3-methylcytidine 
(m3C), highlighting its extensive presence and signifi-
cance in shaping the complex landscape of gene regula-
tion [1, 2, 5, 6]. RNA methylation is mediated by three 
types of proteins: "writers," which catalyze the addition of 
methyl groups; "readers," which identify these modifica-
tions; and "erasers," which remove them, each function-
ing through unique mechanisms [2, 5, 7] (Fig. 1). These 
proteins regulate a wide array of RNA types and signal-
ing pathways, including mRNA, tRNA, IncRNA, sRNA, 
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siRNA, snRNA, snoRNA, etc. As a dynamic and revers-
ible process, RNA methylation regulates critical bio-
logical processes such as splicing, translation, transport, 
and RNA stability. Extensive studies have demonstrated 
that RNA methylation is crucial in the development and 
progression of various types of cancer, including breast 
cancer, lung cancer, colorectal cancer (CRC), hepatocel-
lular carcinoma (HCC), gastric cancer (GC), esophageal 
cancer (EC), prostate cancer (PCa), bladder cancer, ovar-
ian cancer, acute myeloid leukemia (AML), pancreatic 

cancer, etc. [1, 4, 8–16], underscoring its key role in 
malignant tumors.

In recent years, numerous studies have underscored 
the close association between RNA methylation and vari-
ous immune biological processes, particularly within the 
context of tumor immunity [17, 18]. Additionally, abnor-
mal expression of regulatory proteins has been linked to 
oncogenic activities and enhanced metastatic properties 
[19]. RNA methylation also plays a crucial role in main-
taining homeostasis and in the metabolic reprogram-
ming of the tumor microenvironment (TME), impacting 

Fig. 1 The machinery of RNA methylations and RNA fates regulated by RNA methylations. RNA methylations are modulated by their writers 
(such as METTL3/14 for m6A, NSUN2 for m5C, TRMT10A for m1A, METTL1 for m7G), and removed by their erasers (such as FTO and ALKBH5 
for m6A). RNA methylations can regulate the fates of mRNA and mediate their biological functions including splicing, exportation, stability, 
degradation, translation and so on, after being recognized by their respective readers, including IGF2BP1/2/3, YTHDF1/2/3, YTHDC1/2/3, YBX1, 
ALYREF, CBC, eIF4E). m6A N6-methyladenosine, m5C 5-methylcytosine, m1A N1-methyladenosine, m7G 7-methylguanosine, m3C 3-Methylcytidine, 
METTL3 methyltransferase-like 3, FTO obesity-associated protein, ALKBH5 AlkB homolog 5, TET1/2/3 ten-eleven translocation proteins1/2/3, 
ALKBH1 α-ketoglutarate-dependent dioxygenase ABH1. Figure created with figdraw.com
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the functionality of immune cells. The TME consists of 
a complex multicellular matrix that includes immune 
cells, stromal cells, the extracellular matrix, blood vessels, 
and other soluble factors [20]. RNA methylation contrib-
utes to tumor immune evasion by influencing oncogenic 
and metastatic capabilities, disrupting TME harmony, 
and impairing immune cell function. For instance, the 
m6A writer METTL3 is known to sustain high levels of 
glycolysis and to induce metabolic reprogramming in 
HCC [21]. This enzyme also affects macrophage polari-
zation, dendritic cell activation, effector T cell differen-
tiation and proliferation, and the expression of immune 
checkpoints [22–25]. These interactions highlight how 
RNA methylation connects the TME and immune cells 
with the mechanisms of tumor immune evasion. Cur-
rently, researchers are exploring potential inhibitors that 
target METTL3 and other RNA methylation regulators, 
with the hope that these compounds might be utilized in 
immunotherapy [26].

Components of the TME exhibit either anti-tumor or 
pro-tumor properties and play crucial roles in the ini-
tiation, progression, invasion, and metastasis of tumors. 
RNA methylation influences the biological processes 
of immune cells and other cellular components within 
the TME. Research has demonstrated that target-
ing these regulatory proteins can significantly advance 
cancer immunotherapy [11]. Immunotherapy seeks to 
boost anti-tumor immune responses by modulating the 
immune cells of the host’s immune system, thereby aid-
ing in the elimination of tumor cells. Focusing on the 
immune infiltrates within the TME has emerged as a 
promising approach that can decisively improve the clini-
cal outcomes for cancer patients [27].

RNA methylation significantly influences cellular 
metabolism and plays a regulatory role in TME and 
immune cells, crucially impacting tumor immunity. 
Importantly, it is involved in the development and pro-
gression of various human diseases, including AML, 
CRC, GC, glioblastoma (GBM), renal cell carcinoma 
(RCC), HCC, etc. [28–31]. This paper will comprehen-
sively explore the role of RNA methylation in tumor 
immunity and its potential applications in immunother-
apy. Our discussion aims to offer new insights and strate-
gies for the development of innovative targets for cancer 
diagnosis, treatment, and prognosis.

Classification of RNA methylation
N6‑methyladenosine
N6-Methyladenosine (m6A), the predominant form of 
methylation in human mRNA, modifies adenosine at the 
N6 position and constitutes about 60% of RNA methyla-
tion events [4, 8, 32]. This modification is not only preva-
lent in mammalian mRNA but also occurs across a wide 

range of non-coding RNAs, including ribosomal RNAs 
(rRNAs), microRNAs (miRNAs), small nuclear RNAs 
(snRNAs), small nucleolar RNAs (snoRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs) 
[7, 32–34]. m6A critically influences RNA stability, trans-
port, splicing, and translation, thereby affecting overall 
RNA expression [2, 8, 32]. The dynamic regulation of 
m6A involves various components such as methyltrans-
ferases (writers), demethylases (erasers), and methylation 
reading proteins (readers). The m6A methyltransferase 
complex (MTC), which includes METTL3, METTL14, 
WTAP, RBM15/15B, ZC3H13, VIRMA, and KIAA1429, 
plays a vital role in catalyzing m6A modification on dif-
ferent RNA types [25, 35, 36]. The demethylation process 
is controlled by demethylases like FTO and ALKHB5, 
although METTL5, responsible for 18S rRNA m6A mod-
ification, currently has no known erasers or readers [37]. 
m6A methylation reader proteins encompass a diverse 
array of molecules, including insulin-like growth factor 
2 mRNA-binding proteins 1/2/3 (IGF2BP1/2/3), YTH 
domain family proteins 1/2/3 (YTHDF1/2/3), embry-
onic Lethal Abnormal Vision Like 1 (ELAVL1), eukary-
otic translation initiation factors 3 (eIF3), 4E (eIF4E), and 
4G (eIF4G), poly(A) binding protein (PABP), etc. [38, 
39]. These reader proteins possess the ability to recog-
nize bases bearing m6A modifications, thereby initiating 
a cascade of downstream effects including translation, 
splicing, nuclear exportation, and degradation [38, 39] 
(Fig. 1). Moreover, they can specifically bind to m6A sites 
on RNA, thereby influencing disease onset and progres-
sion by modulating RNA stability and translation. For 
instance, IGF2BP3 has been implicated in promoting 
tumorigenesis and predicting poor prognosis in AML 
through its enhancement of regulator of chromosome 
condensation 2 (RCC2) stability [40]. Similarly, YTHDF1 
has been shown to drive ovarian cancer progression by 
facilitating EIF3C translation [41]. Numerous studies 
have highlighted the involvement of m6A regulators in a 
wide range of human diseases, spanning psychiatric dis-
orders, metabolic diseases, cardiovascular diseases, as 
well as specific cancers such as AML, brain tumors, blad-
der cancer, ovarian cancer, etc. [39–45] (Table 1).

5‑methylcytosine
5-Methylcytosine (m5C) is a chemical modification 
found at the fifth carbon atom of cytosine in RNA mol-
ecules. This modification is extensively distributed across 
various RNA types, including transfer RNA (tRNA), 
ribosomal RNA (rRNA), messenger RNA (mRNA), 
non-coding RNA (ncRNA), enhancer RNA (eRNA), and 
microRNA (miRNA) [76, 77]. Despite its discovery over 
fifty years ago, the specific functions of m5C are still 
not fully elucidated [78]. RNA bisulfite sequencing, the 
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Table 1 The regulator proteins of RNA methylations

Methylations Regulator Molecular Cancer type Biological function References

m6A

Writers METTL3 CRC Promote oncogenesis via GLUT1 translation  [46]

AML Promote oncogenesis via ITGA4 stability  [44]

Endometrial cancer Inhibit oncogenesis via NLRC5 degradation  [47]

GC Promote oncogenesis via HDGF stability  [48]

METTL14 HCC Promote oncogenesis via SIRT6 stability  [49]

METTL16 CRC Promote oncogenesis via PD-L1 translation  [50]

WTAP HCC Promote oncogenesis via HuR translation  [51]

ZC3H13 CRC Inhibit oncogenesis via snail and cyclin D1 translation  [52]

HCC Inhibit oncogenesis via PKM2 stability  [53]

VIRMA NSCLC Promote oncogenesis via DAPK3 degradation  [54]

KIAA1429 DLBCL Promote oncogenesis via CHST11 translation  [55]

Erasers FTO CRC Inhibit oncogenesis via PD-L1 translation  [56]

Melanoma Promote oncogenesis via PDCD1 translation  [57]

ALKBH5 CRC Promote oncogenesis via AXIN2 stability  [58]

HCC Promote oncogenesis via MAP3K8 translation  [59]

Promote oncogenesis via GLUT4 mRNA stability  [60]

Readers IGF2BP3 AML Promote oncogenesis via RCC2 stability  [40]

HCC Promote oncogenesis via CCL5 translation  [61]

YTHDF1 NSCLC Promote oncogenesis via cyclin D1 translation  [62]

ELAVL1 MPNSTs Promote oncogenesis via HuR translation  [63]

m5C

Writers DNMT2 AML Promote oncogenesis via hnRNPK translation  [45]

NOP2 HCC Promote oncogenesis via c-Myc translation  [12]

NSUN2 EC Promote oncogenesis via GRB2 stability  [10]

GC Promote oncogenesis via PIK3R1 translation  [9]

NSUN6 Lung cancer Promote oncogenesis via NM23-H1 translation  [11]

NSUN7 HCC Promote oncogenesis via CCDC9B stability  [12]

Erasers ALKBH1 CRC Promote metastasis via SMAD7 translation  [64]

Readers ALYREF Bladder cancer Promote oncogenesis via PKM2 stability  [53]

YBX1 AML Promote oncogenesis via BCL2 stability  [65]

m1A

Writers TRMT61A HCC Promote oncogenesis via PPARδ translation  [13]

TRM6 GC Promote oncogenesis via ErbB translation  [14]

Erasers ALKBH1 Pancreatic cancer Promote oncogenesis via mTOR and ErbB translation  [15]

ALKBH3 Breast cancer Promote oncogenesis via CSF-1 mRNA stability  [66]

Ovarian cancer Promote oncogenesis via CSF-1 mRNA stability  [66]

Cervical cancer Promote oncogenesis via ATP5D mRNA translation  [67]

Readers YTHDF3 Cervical cancer Promote oncogenesis via ATP5D mRNA translation  [67]

YTHDC1 PDAC Inhibit oncogenesis via miR-30d mRNA stability  [68]

m7G

Writers METTL1 ACC Promote oncogenesis via HK1 translation  [69]

HCC Promote oncogenesis via Cyclin A2 and EGFR translation  [70]

HCC Promote oncogenesis via TGF‐β2 mRNA translation  [71]

Bladder cancer Promote oncogenesis via EGFR/EFEMP1 mRNA translation  [72]

WDR4 HCC Promote oncogenesis via Cyclin A2 and EGFR mRNA translation  [70]

RNMT Gliomas Promote oncogenesis via c-Myc mRNA translation  [73]

Breast cancer Promote oncogenesis via PIK3CA translation  [74]

WBSCR22 Pancreatic cancer Inhibit oncogenesis via ISG15 translation  [16]

TRMT112 Pancreatic cancer Inhibit oncogenesis via ISG15 translation  [16]

m3C

Writer METTL6 HCC Promote oncogenesis  [75]

Abbreviation: ACC  Adrenocortical carcinoma, AML Acute myeloid leukemia, CRC  Colorectal cancer, DLBCL Diffuse large B-cell lymphoma, EC Esophageal cancer, 
GC Gastric cancer, HCC Hepatocellular carcinoma, MPNSTs Malignant peripheral nerve sheath tumors, NSCLC Non-small cell lung cancer, PDAC Pancreatic ductal 
adenocarcinoma
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most commonly used method to map m5C locations, 
has shown that these sites are predominantly enriched in 
the 3′-untranslated regions (3′-UTR) of mRNAs or near 
the translation initiation codon [79]. m5C plays multiple 
crucial roles in RNA biology: it enhances mRNA stabil-
ity and structure, ensures translation accuracy, maintains 
integrity of tRNA fragments, influences the translation of 
stop codons in rRNA, and regulates the nuclear export of 
mature mRNAs [79–83] (Fig. 1).

m5C significantly impacts various biological processes 
including cell proliferation, differentiation, migration, 
and apoptosis [84, 85]. The enzymatic addition of m5C is 
facilitated by "writers" such as DNA methyltransferase 2 
(DNMT2) and members of the NOP2/SUN RNA meth-
yltransferase family, including NSUN1 through NSUN7 
[85–87]. NSUN2, 3, 6, and DNMT2 have all been demon-
strated to methylate tRNAs. Notably, NSUN2 is an essen-
tial RNA methyltransferase responsible for introducing 
m5C to RNA. It methylates most expressed tRNAs, along 
with other abundant non-coding RNAs and a few of 
mRNAs [82, 88, 89]. The cancer stem cell functions are 
controlled by global protein synthesis, but NSUN2 deple-
tion induces decreased m5C level of tRNA and inhibits 
this process [83]. In budding yeast, NOP2/NSUN1 is 
essential for ribosome biogenesis, as it deposits m5C on 
25S rRNA [90]. NSUN5 modulates protein synthesis by 
targeting m5C on 28S rRNA [91], while NSUN6 is cru-
cial in regulating cell proliferation in pancreatic cancer 
and may serve as a potential biomarker for this disease 
[92]. The removal of m5C is performed by "erasers" such 
as the Ten-eleven translocation (TET) proteins (TET1-
3) and α-ketoglutarate-dependent dioxygenase ABH1 
(ALKBH1), which can oxidize m5C to 5-hydroxymethyl-
cytidine (hm5C) [93–95]. Meanwhile, m5C is regulated 
by its reader proteins, specifically Aly/REF export fac-
tor (ALYREF) in mRNA and Y-box-binding protein 1 
(YBX1) in tRNA [96] (Fig.  1). Research has shown that 
ALYREF can directly recognize and bind to the m5C 
sites in mRNA to promote the export of mRNA from 
the nucleus to the cytoplasm [97]. YBX1 also binds m5C 
to regulate its presence in both coding and non-coding 
RNA and affects rRNA maturation [98, 99]. Addition-
ally, YBX1 interacts with hsa_circ_0062682 to modulate 
RNA metabolism and splicing, promoting proliferation 
and invasion in HCC cells, and contributing to sorafenib 
resistance [100]. Despite the significant roles of these 
proteins, research into m5C readers for tRNA and rRNA 
is still in its infancy. ALYREF and YBX1 are linked to the 
progression of HCC and AML through their influence on 
BCL2 mRNA stability, suggesting their potential as indi-
cators of poor prognosis and reduced survival [65, 101] 
(Table 1).

N1‑methyladenosine
First identified in the 1960s, N1-methyladenosine (m1A) 
results from the methylation of adenosine at position 1 
and has been detected in tRNAs, rRNAs, mRNAs, and 
lncRNAs [102–104]. This reversible modification is cata-
lyzed by several enzymes, including tRNA methyltrans-
ferase 10 homologue A (TRMT10A) at four specific 
positions and the TRM6–TRM61 complex, which tar-
gets mRNA and mitochondrial tRNA [105, 106]. Addi-
tional writers of m1A include nucleomethylin (NML, also 
known as RRP8) for rRNA, TRMT61A and TRMT61B 
for mitochondrial tRNA and rRNA, TRMT10B for tRNA, 
and TRMT10C for mitochondrial tRNA and mRNA [107, 
108]. As a post-transcriptional modification, m1A signifi-
cantly influences RNA stability by affecting base pairing 
[109]. The removal of m1A is facilitated by "erasers" such 
as FTO, ALKBH1, ALKBH3, ALKBH5, and ALKBH7, 
which demethylate various RNA types. Specifically, FTO, 
ALKBH1, and ALKBH7 target tRNA, whereas ALKBH3 
is active on both tRNA and mRNA [57, 64, 110–112]. 
Although these m1A erasers share some functions with 
m6A erasers, the specific proteins that recognize m1A in 
RNA remain unidentified. However, several m6A read-
ers, including YTHDF1/2/3 and YTHDC1, have been 
shown to detect m1A modifications and directly interact 
with them [113] (Fig. 1 and Table 1).

N7‑methylguanosine
N7-methylguanosine (m7G) is an RNA methylation 
modification occurring at the N7 position of guanine, 
accounting for approximately 0.4% of all guanosine resi-
dues [114]. This modification is typically found at the 5’ 
caps and internal sites of mRNA, as well as within rRNA, 
tRNA, and miRNA [115–117]. The primary enzyme 
responsible for this modification is methyltransferase-
like 1 (METTL1), which partners with the WD repeat 
domain 4 (WDR4) complex to insert m7G modifica-
tions into tRNA, miRNA, and mRNA, thus influencing 
miRNA structure and biogenesis [118, 119]. Additionally, 
RNA guanine-7 methyltransferase (RNMT) and RNMT-
activating miniprotein (RAM) play critical roles in the 
efficient cap methylation of mRNA by applying the m7G 
modification [73, 120]. Furthermore, Williams–Beuren 
syndrome chromosome region 22 (WBSCR22) and tRNA 
methyltransferase activator subunit 112 (TRMT112) 
also contribute to m7G methylation in rRNA [119, 121]. 
eIF4E is known to recognize the m7G cap of mRNA 
and plays a crucial role in mediating mRNA translation. 
Together with the cap-binding complex (CBC), which 
includes CBP80 and CBP20, it significantly influences 
the nuclear export and translation of mRNA [122–124] 
(Fig. 1). Extensive research has linked m7G methylation 
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to various aspects of tumor biology such as stress 
responses, and the initiation, progression, and progno-
sis of cancer [125]. Notably, the m7G modification, cat-
alyzed by METTL1 and WDR4 on tRNA, is markedly 
increased in cancer patients, affecting a range of malig-
nancies including AML, HCC, prostate cancer (PCa), and 
bladder cancer [71, 72, 126–128]. Additionally, abnor-
mal expression patterns of RNMT have been observed 
in breast cancer and gliomas, highlighting its potential 
involvement in tumorigenesis and disease progression 
[74, 129] (Table 1).

3‑Methylcytidine
3-Methylcytidine (m3C) is a modification found specifi-
cally in eukaryotic tRNA [130]. This modification occurs 
at position 32 and plays a crucial role in determining 
the structure and function of tRNA. Current research 
suggests that m3C methylation might be catalyzed by 
specific methyltransferases, with studies pointing to 
METTL2A, METTL6, and METTL8 as key enzymes 
involved in this process [75, 130, 131]. However, the 
understanding of m3C methylation is still limited, and 
further studies are essential to elucidate the underly-
ing mechanisms and identify the associated regulatory 
proteins.

RNA Methylation Regulates Tumor Microenvironment 
(TME)
The tumor microenvironment (TME) comprises the 
surroundings of tumor cells, encompassing blood ves-
sels, immunocytes, fibroblasts, cytokines, the extracel-
lular matrix, and various stromal components [132, 133]. 
Immunological elements within the TME coordinate 
tumor immunity [134–136]. TME significantly influences 
tumor initiation, progression, metastasis, and response to 
treatment [134, 137].

RNA methylation plays a pivotal role in shaping the 
complexity and diversity of the TME, exerting regulatory 
control over the initiation, progression, and metastasis of 
various cancers, including HCC, PCa, GC, CRC, pancre-
atic ductal adenocarcinoma (PDAC), non-small cell lung 
cancer (NSCLC), small-cell lung cancer (SCLC), malig-
nant peripheral nerve sheath tumors (MPNSTs), etc. 
[33, 51–54, 63, 138] (Table 1). The m6A modification, a 
prominent form of RNA methylation, is implicated in a 
plethora of RNA biology processes, spanning RNA pro-
cessing, translation, stabilization, splicing, and degrada-
tion. Consequently, it exerts influence over the dynamic 
landscape of the TME, impacting the metabolic and bio-
logical functions of tumor cells [138, 139]. Interactions 
between tumor cells and the TME significantly contrib-
ute to processes such as proliferation, differentiation, 
invasion, metastasis, and development of drug resistance 

[138]. The TME is typified by three key features: hypoxia, 
metabolic reprogramming, and immune evasion, which 
collectively foster the establishment of an immunosup-
pressive microenvironment and regulate tumor immune 
evasion through various mechanisms [28, 133, 140] 
(Fig.  2). Substantial evidence suggests that m6A meth-
ylation actively participates in tumor immune evasion 
by modulating the immunosuppressive TME [132, 141, 
142]. Thus, we comprehensively explore the composition 
of the TME, elucidate the molecular mechanisms govern-
ing RNA methylation regulation, and delineate its role in 
mediating the biological effects of tumor immunosup-
pression (Fig. 2).

Hypoxic
Hypoxia stands out as a prominent feature within the 
tumor microenvironment, tightly interlinked with 
tumorigenesis, angiogenesis, metabolism, and immune 
response [143, 144]. Excessive hypoxia within tissues 
disrupts microenvironmental homeostasis, fostering the 
emergence of a hypoxic, hypoglycemic, and acidic TME 
conducive to tumor initiation and growth [145, 146]. 
The rapid proliferation of tumor cells exacerbates oxygen 
depletion within the tissue, exacerbating microenviron-
mental hypoxia. Hypoxia-inducible factors (HIF) play a 
pivotal role in activating genes associated with cellular 
oxygen homeostasis, including those involved in glucose 
and lactate metabolism. This activation favors glycolysis 
over oxidative metabolism, creating a conducive environ-
ment for tumor cell proliferation [142, 145–147]. HIF is 
intricately linked to tumor metabolism and plays a cru-
cial role in immune evasion.

m6A methylation plays a pivotal role in shaping the 
hypoxic, hypoglycemic, and acidic tumor microenvi-
ronment, with the levels of its regulators closely linked 
to tumor cell content [20, 124, 127]. For instance, 
YTHDF1, an m6A reader protein, collaborates with 
other m6A-specific mRNA binding and translation 
proteins to regulate the methylation and expression 
of HIF genes, thereby promoting hypoxia-associated 
tumor progression [62]. Additionally, under hypoxic 
conditions, HBx-interacting protein (HBXIP) enhances 
METTL3 expression, a component of the m6A meth-
yltransferase complex. This upregulation of METTL3 
results in increased expression of HIF-1α and main-
tenance of elevated glycolysis levels, thereby acceler-
ating the progression of HCC [21] (Fig.  2). METTL3 
and its downstream reader YTHDF1 have been shown 
to participate in the upregulation of HIF expression 
and the acceleration of glycolysis [146, 148]. Further-
more, studies indicate that hypoxia suppresses FTO 
protein expression, correlating with a high recurrence 
rate and poor prognosis in patients with CRC [56]. 
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Additionally, the overexpression of ALKBH5 promotes 
tumor progression by establishing a positive feedback 
loop with HBx protein. This loop leads to the upregula-
tion of ALKBH5 via H3K4me3 epigenetic modification 
of the ALKBH5 promoter, resulting in the removal of 
m6A [149]. However, some investigations propose that 
METTL3 and ALKBH5 contribute to the establish-
ment of opposing hypoxia and reoxygenation condi-
tions, thereby regulating m6A methylation in ischemic 
heart disease [150]. Therefore, a coordinated interplay 
between m6A methylation and hypoxia, forming a pos-
itive feedback loop, is essential to promote tumor pro-
liferation (Fig. 2).

In summary, m6A methylation promotes the formation 
of a hypoxic microenvironment, triggering a cascade of 
downstream biological reactions that influence immune 
cell functions and tumor biological behaviors. This intri-
cate interplay significantly impacts the onset and progres-
sion of malignancies [21, 56, 149, 150]. In bladder cancer, 
HIF-1α promotes the upregulation of m5C expression by 

activating ALYREF. This induction of glycolysis acceler-
ates tumor growth, contributing to the establishment of 
a hypoxic tumor immune microenvironment (TIME) 
that facilitates immune evasion [97]. Addressing hypoxia 
represents an effective strategy to enhance the antitumor 
immune response [151].

Metabolic reprogramming
Metabolic reprogramming stands out as a significant 
mechanism for tumor immune evasion [151]. The pro-
cess of RNA modification within metabolic reprogram-
ming encompasses three types of metabolites: glucose, 
lipid, and amino acids (Fig.  3). Extensive evidence has 
illustrated that RNA methylation regulates the homeo-
stasis of TME through these three substance metabo-
lisms, subsequently influencing tumor immune evasion 
[135] (Fig. 2).

Glucose metabolism Glucose metabolism serves as a 
pivotal pathway for tumor cells. A notable metabolic trait, 

Fig. 2 The compositions of tumor microenvironment (TME) and RNA methylations promote tumor immune evasion through hypoxia, metabolic 
reprogramming and acidic pH environment. Hypoxia-inducible factor (HIF) regulates the formation of immunosuppressive TME and promotes 
tumor immune escape by m6A, m5C, m1A, and m7G RNA methylations. RNA methylations regulate biological metabolism, including glucose 
metabolism, lipid metabolism and amino acid metabolism, leading to immune cell dysfunction and the formation of an acidic environment, which 
promotes tumorigenesis, angiogenesis, and tumor cell proliferation. This further aggravates tissue hypoxia and promotes tumor progression. 
Hypoxia, metabolic reprogramming, and acidic environment interact with each other and work together to contribute to tumor immune escape. 
TME, tumor microenvironment; HIF, hypoxia-inducible factors. NEAAs, non-essential amino acids; EAAs, essential amino acids. Figure created 
with figdraw.com
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termed the Warburg effect, describes the preference of 
tumor cells for glycolytic pathways over oxidative phos-
phorylation (OXPHOS), even in oxygen-rich environments 
[152]. This metabolic signature is closely intertwined with 
the immune functions of the TIME, impacting the biologi-
cal characteristics of various immune cells, including acti-
vated T cells, dendritic cells (DCs), natural killer (NK) cells, 
and M1 macrophages. Furthermore, cancer cells can out-
compete immune cells for nutrients, thereby suppressing 
the tumor immune response [153, 154].

Studies have demonstrated that m6A regulators pro-
mote glycolytic reprogramming through various glyco-
lytic-associated genes and signaling pathways in multiple 

cancers [142]. For instance, METTL3 can induce GLUT1 
mRNA translation and facilitate glucose uptake and lac-
tate generation, thus activating mTORC1 signaling in 
colorectal cancer [46] (Fig.  3). Furthermore, METTL3 
exerts a significant influence on the progression of colo-
rectal cancer through glycose metabolism via an m6A-
IGF2BP3-dependent mechanism [155]. Additionally, in 
gastric cancer, IGF2BP3 directly recognizes the m6A site 
on HDGF (Heparin Binding Growth Factor) mRNA, a 
process initiated by METTL3. This recognition promotes 
tumor angiogenesis and glycolysis [48] (Fig. 3). Addition-
ally, METTL3 can also activates others signal pathways, 
including the mitogen activated protein kinase (MAPK) 
signaling pathway, the Wnt-β catenin pathway, the 

Fig. 3 RNA methylations participate in metabolic reprogramming of the TME, including glucose metabolism, lipid metabolism and amino acid 
metabolism. RNA methylations regulate the expression of glycolysis-associated genes (GLUT1, Gys2, HDGF) and signal pathways (PI3K-AKT, mTORC1, 
MAPK, Wnt-β catenin, Hedgehog, NF-κB, IL-6/JAK2/STAT3, cGAS/STING) and enhance Warburg effect through their regulators, such as METTL1, 
METTL3, METTL14, NOP2, NSUN2, FTO, ALKBH3, IGF2BP3, YTHDC1 and. m6A and m5C accelerate lipid accumulation. m6A, m5C and m7G modulate 
the metabolisms of glutamine, arginine, methionine and lysine. These methylations impact tumor cell immunogenicity, proliferation, immune 
escape as well as tumor progression. ACLY, ATP citrate lyase; SCD1, stearoyl-CoA desaturase1; BCAT1, branched-chain amino acid transaminase 1; 
Met, methionine; Lys, lysine; PRMT1, protein arginine methyltransferase1. Figure created with figdraw.com
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Hedgehog signaling pathway, the NF-κB signaling path-
way, as well as METTL3-IGF2BP2-Gys2 (the liver-specific 
glycogen synthase) axis [156–161]. Consequently, glyco-
lysis process accelerates, and hepatic glycogenesis contin-
ues, providing essential conditions for tumor proliferation 
(Fig. 3). There is evidence indicating that METTL14 effi-
ciently utilizes glucose to induce glomerular endothelial 
cell injury by modifying m6A methylation, resulting in the 
downregulation of α-klotho expression [49, 162].

The demethylase FTO has been shown to be responsi-
ble for decreasing m6A methylation of Apolipoprotein E 
(APOE) mRNA and modulating the IL-6/JAK2/STAT3 
signaling pathway, thereby inhibiting tumor glycolysis 
and abrogating tumor growth [163] (Fig. 3). Furthermore, 
the m6A reader YTHDC1 contributes to suppressing 
glycolysis by attenuating the Warburg effect, ultimately 
impeding pancreatic tumorigenesis [68].

It has been reported that NSUN2, the methylase respon-
sible for m5C modification, can bind with glucose to sus-
tain the oncogenic activity of tumor cells. This process 
occurs through the promotion of three prime repair exonu-
clease 2 (TREX2) mRNA expression and activation of the 
cGAS/STING pathway, thereby mediating immunotherapy 
resistance [164]. Additionally, NOP2 can enhance glyco-
lysis by upregulating the expression of glycolytic genes and 
increasing the m5C content of c-Myc mRNA [165].

Additionally, studies have demonstrated that ALKBH3, 
an m1A demethylase, positively regulates the translation 
of ATP5D mRNA, thereby accelerating glycolysis [67]. 
METTL1 has also been found to upregulate the expression 
of the glycolysis rate-limiting enzyme HK1 [69]. Numer-
ous pieces of evidence highlight the critical role of RNA 
methylation regulators in cancer cell glycolysis (Fig. 3).

Lipid metabolism Fatty acids, as a significant metabolic 
pattern, play crucial roles in maintaining essential cellular 
physiological functions and participating in various cel-
lular activities. Aberrant lipid metabolism has emerged 
as a key factor in tumorigenesis [166]. Dysregulated lipid 
metabolism not only suppresses the anti-tumor capabili-
ties of immune cells but also facilitates immune evasion 
by cancer cells, thus impairing the immune response and 
reshaping the immunosuppressive TME. This alteration 
is characterized by both catabolic and anabolic processes 
closely associated with tumor immune evasion [167, 
168]. Lipid metabolism encompasses processes such as 
synthesis, degradation, and storage of lipids. Tumor cells 
utilize these metabolites for membrane assembly and 
energy generation, significantly contributing to tumor 
cell proliferation [168].

Several pieces of evidence suggest that RNA methyla-
tion plays a crucial role in lipid metabolism in various 
cancers. Specifically, research indicates that YTHDF1 
can bind to m6A-marked Rubicon mRNA, a process 
mediated by METTL3, ultimately impeding the fusion 
of autophagosomes with lysosomes and obstructing the 
clearance of lipid droplets (LDs) [169]. Additionally, over-
expression of METTL14 enhances the protein levels of 
ATP citrate lyase (ACLY) and stearoyl-CoA desaturase 1 
(SCD1), leading to increased production of triglycerides 
and cholesterol and accumulation of LDs [170] (Fig.  3). 
Moreover, the demethylase FTO promotes the formation 
of LDs in EC cells by facilitating the expression of the 
HSD17B11 gene via a YTHDF1-dependent mechanism 
[171]. Additionally, FTO enhances adipogenesis and fat 
deposition while inhibiting lipolysis by suppressing IRX3 
expression and the leptin pathway, thereby promoting 
the progression of lipid disorder diseases [172] (Fig.  3). 
However, the demethylase ALKBH1 reduces the uptake 
and synthesis of lipids, leading to a decrease in hepatic 
lipid accumulation, thereby alleviating hepatic steatosis 
and the progression of nonalcoholic fatty liver disease 
(NAFLD) [173]. In vitro and mouse models have shown 
that METTL5 knockdown significantly reduces the levels 
of triglycerides, cholesterol, and intracellular free fatty 
acids, effectively blocking the progression of HCC [174]. 
Knockdown of NSUN2 decreases the protein expression 
of cyclin-dependent kinase inhibitor 1A (CDKN1A) in 
a m5C-ALYREF-dependent manner, indicating that the 
NSUN2-m5C-ALYREF signaling pathway plays a sig-
nificant role in suppressing adipogenesis [81]. Similarly, 
m5C inhibits adipogenesis via the ALYREF-m5C-YBX2 
and ALYREF-m5C-SMO pathways [175]. These findings 
suggest that various RNA modification proteins regulate 
the lipid metabolism of cancer cells through multiple 
mechanisms and signaling pathways, potentially serving 
as promising therapeutic targets and providing a research 
direction for immunotherapy.

Amino acid metabolism Abnormal amino acid metab-
olism has been shown to suppress the anti-tumor 
immune capacity of immune cells and mediate tumor 
immune evasion [176]. Specifically, the reprogramming 
of glutamine metabolism plays a vital role in the anti-
tumor immune response within TME [177]. Glutamine 
synthesis, as a critical proliferative metabolite, is widely 
upregulated in cancer-associated fibroblasts (CAFs) 
and is essential for lymphocyte proliferation, protein 
synthesis, and antibody production. Studies have dem-
onstrated that blockade of glutamine metabolism alle-
viates the immunosuppressive TME and overcomes 
tumor immune evasion, ultimately inhibiting tumor 
growth [178, 179].
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In the context of AML, branched-chain amino acid 
(BCAA) transaminase 1 (BCAT1) and BCAT2 drive 
carcinogenesis by reprogramming BCAA metabolism. 
METTL16 promotes BCAT expression in an m6A-
dependent manner, thereby regulating metabolism to 
facilitate cancer progression [180]. Additionally, IGF2BP2 
recognizes m6A to regulate the expression of critical 
targets in glutamine metabolism, making it a potential 
therapeutic target in AML [181]. Moreover, IGF2BP3 
stabilizes PRMT6 (protein arginine methyltransferase 
6) mRNA, which in turn mediates histone H3R2me2a 
methylation and maintains the function of leukemia stem 
cells (LSCs) [182, 183]. Additionally, PRMT3 interacts 
with METTL14 and is involved in its arginine methyla-
tion, leading to the downregulation of METTL14 expres-
sion levels. Depletion of PRMT3 enhances sensitivity of 
EC cells to ferroptosis by increasing m6A levels of Glu-
tathione peroxidase 4 (GPX4) mRNA [184]. METTL14 
also recognizes histone H3 trimethylation at lysine-36 
(H3K36me3) to interact with the m6A methyltrans-
ferase complex (MTC) and affect m6A methylation [185]. 
Furthermore, Protein arginine N-methyltransferase 1 
(PRMT1) catalyzes the methylation of METTL14 at 
arginine 255 (R255), stabilizing the m6A methyltrans-
ferase complex METTL3/METTL14 and facilitating m6A 
methylation [186].

It has been shown that metabolites originating from 
methionine metabolism contribute to m6A methylation 
and the translation of immune checkpoints. Further-
more, restricting methionine in the diet inhibits tumor 
growth and improves the anti-tumor immune response 
by enhancing the abundance and cytotoxicity of  CD8+ T 
cells [187] (Fig. 3).

Therapies utilizing glutamine blockade to inhibit 
tumor cell metabolism have been proposed; however, 
these approaches equally damage immune cell metabo-
lism, and as of yet, none have been approved for prac-
tical application [188]. Furthermore, depletion of the 
m6A-specific reader YTHDF1 in combination with PD-1 
blockade has shown enhanced efficacy in anti-tumor 
therapy. A low protein diet supplemented with methio-
nine and lysine has been found to enhance the expression 
of m6A and reduce the expression of FTO and ALKBH5, 
possibly through regulation by the transcription factor 
PPARγ [189]. Additionally, NSUN2-methylated lncRNA 
enhances the stability of glutaminase (GLS) mRNA by 
upregulating glutaminase expression through interaction 
with the IGF2BP3/HUR complex, thus facilitating repro-
gramming of glutamine metabolism and accelerating gas-
tric cancer progression [190] (Fig. 3). In m7G-associated 
molecular subtypes of sepsis, subtypes with higher amino 

acid metabolism activity are characterized by more 
abundant activated macrophages, M0 and NK cells, and 
higher expression of immune regulatory genes [191]. Not 
only is RNA methylation able to regulate multiple types 
of amino acid metabolism, but conversely, amino acid 
metabolism plays a critical role in RNA methylation [70].

Taken together, abnormal metabolism can result in 
immune system dysfunction, tumor oncogenesis, pro-
gression, invasion, and immune evasion. The hypoxic 
microenvironment promotes glycolysis, exacerbating tis-
sue hypoxia. Methylation, hypoxia, and glycolysis form a 
positive feedback loop that impacts various downstream 
responses (Fig.  2). These aberrant conditions suppress 
immune cell functions and promote tumor biological 
behavior.

RNA methylation regulates tumor innate immunity
The oncogenic process triggers the host innate immunity, 
which encompasses a variety of immune cells, including 
macrophages, monocytes, neutrophils, myeloid-derived 
suppressor cells (MDSCs), dendritic cells (DCs), and oth-
ers. The characteristics of these immune cells are also 
influenced by features of the TME, such as hypoxia and 
metabolic abnormalities [192, 193]. Therefore, we will 
explore several immune cells closely associated with 
RNA methylation and tumor innate immunity.

Tumor‑associated macrophages
Macrophages play a critical role in the immune response, 
encompassing both innate and adaptive immunity 
through activities such as phagocytosis of foreign mate-
rial, antigen presentation, and secretion of proteins and 
cytokines across various phenotypes [194]. Tumor-asso-
ciated macrophages (TAMs) represent a major infiltrat-
ing cell type within tumors and contribute significantly 
to the formation of the tumor microenvironment [195, 
196]. TAMs originate from bone marrow monocytes, 
including resident macrophages and circulating mono-
cytes recruited to the TME [197]. M-MDSCs (mono-
cyte-related myeloid-derived suppressor cells) serve 
as the primary circulating precursors of TAMs and can 
be induced into TAMs by chemokines, as well as by the 
immunosuppressive programming of MDSCs [198].

TAMs are typically categorized into two distinct func-
tional subtypes: classical activated M1 macrophages and 
alternatively activated M2 macrophages [199]. These 
infiltrating macrophages are widely considered to be 
involved in various aspects of tumorigenesis, includ-
ing progression, invasion, angiogenesis, metastasis, and 
drug resistance [199, 200]. High levels of infiltration are 
closely associated with poor prognosis and therapeu-
tic response, including targeted therapy, radiotherapy, 
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and chemotherapy [201]. Within the TME, elements 
such as fibrosis, hypoxia, metabolic reprogramming, 
and cytokines contribute to the phenotypic variation of 
TAMs, inducing polarization toward M1/M2 phenotypes 
[195]. Initially, macrophages exhibit a pro-inflammatory 
M1 secretion profile during the early healing stage, which 
transitions to an anti-inflammatory M2 secretory pro-
file in the later stage [195]. While M1 macrophages are 
generally considered anti-tumorigenic, and M2 mac-
rophages are considered pro-tumorigenic [195, 202]. 
It’s worth noting that M1 macrophages can also express 
M2 markers and vice versa [203]. TAMs demonstrate a 
high degree of plasticity, capable of polarizing pro-tumor 
M2-type macrophages into M1 TAMs and altering their 
functions, thereby exerting a role in suppressing tumor 
progression [204].

Research has demonstrated that RNA methylation 
regulates macrophage polarization through reprogram-
ming of the TME and various signaling pathways [204]. 
METTL3 plays a crucial role in macrophage polariza-
tion [22]. Yin et  al. showed that depletion of METTL3 
increased the expression of M1/M2-associated genes 
and promoted the polarization of bone marrow-derived 
macrophages (BMDMs) toward both M1 and M2 TAMs 
via NF-κB and STAT3 pathways, thereby enhancing the 
infiltration of TAMs into tumors [205, 206]. In mod-
els with METTL3 depletion, the therapeutic efficacy 
of PD-1 blockade was reduced, leading to accelerated 
tumor progression and distant metastasis [205]. Shu 
et al. demonstrated that METTL3 drove M1 polarization 
of macrophages and accelerated liver fibrosis through 
m6A methylation [207]. Similarly, Liu et  al. found that 
upregulation of METTL3 expression was accompanied 
by an increase in M1 macrophages and a decrease in 
M2 macrophages, a process mediated by STAT1 mRNA 
[208]. Furthermore, lactic acid facilitated M2 polariza-
tion by activating METTL3 via the Trib1/ERK/STAT3 
pathway [209]. Knockdown of METTL3/METTL14 sig-
nificantly inhibited macrophage activation and secre-
tion and slowed the progression of liver fibrosis [210, 
211]. Additionally, WTAP and RBM15 interact with M1 
macrophages and mediate downstream inflammatory 
responses [212] (Fig. 4).

Knockdown of the demethylase FTO inhibited the 
polarization of both M1 and M2 macrophages by dysreg-
ulating the expression of STAT1 in M1 macrophages and 
STAT6 in M2 macrophages. This dysregulation occurred 
via suppression of the NF-κB signaling pathway and 
silencing of YTHDF2 [212]. Additionally, knockdown of 
ALKBH5 resulted in decreased infiltration of M2 mac-
rophages [59, 213]. Studies have indicated that IGFBP2 
plays a crucial role in shifting M1 macrophages towards 
M2 polarization through the STAT3 or STAT6 pathways, 
thereby contributing to the formation of an immunosup-
pressive microenvironment [196, 214, 215] (Fig. 4).

The polarization of TAMs is also regulated by other 
RNA modifications. In a prognostic score model, NSUN3 
knockdown has been shown to decrease the infiltration 
of M2 macrophages while increasing the infiltration of 
M1 macrophages [216, 217]. Intriguingly, NSUN6 inhib-
its the expression of macrophage-associated chemokines 
by promoting HDAC10 expression, thereby suppress-
ing the recruitment of M2 macrophages and improving 
prognosis in bladder cancer patients [218]. High expres-
sion of YBX1 is associated with the infiltration of M2 
macrophages and T cell depletion, which could poten-
tially be targeted using M1 polarization agents in synergy 
with immunotherapy [219]. In Abdominal Aortic Aneu-
rysm (AAA), immune infiltration analysis has shown 
that YTHDF1/2/3, YTHDC1, RRP8, and TRMT61A are 
upregulated genes associated with the infiltration of M1 
macrophages, while FTO and ALKBH1 are downregu-
lated [220].

The m1A reader, YTHDF3, facilitates the polarization 
of M1 macrophages and exacerbates inflammation [220]. 
ALKBH3-mediated m1A demethylation stabilizes the 
cytokine macrophage colony-stimulating factor (CSF-1) 
mRNA, promoting the progression of breast and ovarian 
cancer [66].

Moreover, m7G methylation is positively correlated 
with the abundance of M2 macrophages [69]. METTL1 
also plays a role in the polarization of TAMs. Elevated 
METTL1 expression correlates with increased infiltration 
of M2-like macrophages, while inhibition of METTL1 
and decreased m7G methylation of tRNAs induce TAMs 
towards an M1-like endotype in preclinical models of 

(See figure on next page.)
Fig. 4 Mechanisms of RNA methylations regulate of the biological functions of immune cells in the TME, including immune cell differentiation, 
development, infiltration, activation, proliferation and apoptosis. RNA methylations promote tumor-associated macrophages (TAMs) polarization 
towards M1 macrophage or M2 macrophage and regulate the proliferation and infiltration of dendritic cells (DCs), Myeloid-derived suppressor 
cells (MDSCs) and regulatory T (Treg) cells. Furthermore, RNA methylations play a significant role in the differentiation and development of T 
cells. m6A and m5C suppress the infiltration and activation of  CD8+ T cells as well as mediating their dysfunction. m1A and m7G also participate 
in the activation, infiltration and proliferation of  CD4+T cells and  CD8+T cells, however, the regulators of m1A and m7G in these processes remain 
further investigation. RNA methylations regulate tumor immune response and evasion through impacting various biological functions of immune 
cells, such as the differentiation, development, infiltration, activation, proliferation and apoptosis of immune cells. Figure created with figdraw.com
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Fig. 4 (See legend on previous page.)
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PCa [128]. Data from The Cancer Genome Atlas (TCGA) 
database indicates that ALYREF, ZC3H13, WTAP, and 
METTL1 are negatively associated with M1 macrophages 
[221] (Fig. 4).

Taken together, these findings underscore the sig-
nificant role of RNA methylation in the polarization of 
TAMs. These RNA methylation regulators have the abil-
ity to catalyze and modulate the phenotypes of TAM 
polarization, thereby influencing the infiltration of TAMs 
within tumors and ultimately shaping the immunosup-
pressive microenvironment. Moreover, these insights 
provide novel targets and strategies for immunotherapy.

Dendritic cells
Dendritic cells (DCs) are pivotal antigen-presenting cells 
that play a crucial role in both innate and adaptive immune 
responses [222]. As part of the antigen-presenting cell 
(APC) population, which also includes macrophages and 
B lymphocytes, DCs are capable of uptaking, processing, 
and presenting antigens to T cells [223]. However, within 
the TME, the function and activity of DCs are regulated 
by immunosuppressive factors and interactions with other 
immune cells, potentially leading to immune evasion and 
exacerbating oncogenesis [223, 224].

Recent studies have shed light on the involvement of 
m6A methylation in DC-mediated anti-tumor responses. 
Knockdown of YTHDF1 has been shown to enhance the 
expression of MHC-II on DCs and increase the secre-
tion of interleukin-12 (IL-12), thereby bolstering adaptive 
immune responses [225]. METTL3 has been implicated 
in the regulation of DC activation and the mediation of 
immune dysfunction through m6A methylation [23, 
226] (Fig.  4). Additionally, the tumor suppressor gene 
METTL14 is positively correlated with DCs, and its 
knockdown has been found to promote immunosup-
pression in breast cancer [227, 228]. Researchers have 
also demonstrated that the m6A-YTHDF1 axis restricts 
the cross-priming capacity of DCs, and loss of YTHDF1 
enhances antigen presentation capacity [229]. The infil-
tration of DCs has been correlated with the ALKB fam-
ily; however, further exploration is warranted to elucidate 
the interaction between them [230].

Myeloid‑derived suppressor cells
As a significant component of TME, myeloid-derived 
suppressor cells (MDSCs) originate from the bone mar-
row and serve as precursors to dendritic cells, mac-
rophages, and granulocytes. These cells possess the 
ability to inhibit T cell-mediated immune responses, 
thereby impacting cancer outcomes [231, 232]. Stud-
ies have revealed that expression levels of METTL3 
are closely associated with the expansion of MDSCs, 
and loss of METTL3 inhibits the accumulation and 

immunosuppressive capacity of MDSCs, resulting in 
increased infiltration of  CD4+ and  CD8+ T cells [233, 
234]. Furthermore, the expansion and suppressive 
function of MDSCs are enhanced in YTHDF2-knock-
out mice [235, 236]. Additionally, ALKBH5 facilitates 
MDSCs accumulation by inducing the expression of 
Dickkopf-related protein 1 (DKK1) [58, 237] (Fig.  4). 
Moreover, METTL1 upregulates the expression of 
chemokines CXCL5 and CXCL8 in an m7A-dependent 
manner, leading to MDSCs accumulation and immuno-
suppression in HCC and intrahepatic cholangiocarci-
noma (ICC) [238, 239] (Fig. 4).

RNA methylation regulates tumor adaptive immunity
RNA methylation has emerged as a critical regulator of 
adaptive immunity, shaping the outcome of the host 
immune response [240, 241]. Adaptive immunity in 
tumor immune responses primarily involves T lympho-
cytes and B lymphocytes. Research indicates that RNA 
methylation plays a pivotal role in the development, dif-
ferentiation, activation, exhaustion processes, and thera-
peutic responses of these immune cells by modulating 
the translation and expression of RNA and proteins [242]. 
Below, we delve into the specific regulatory mechanisms 
of RNA methylation in adaptive immunity and immune 
cells.

T lymphocytes
T lymphocytes, critical components of adaptive immu-
nity, originate from bone marrow progenitors and 
undergo maturation in the thymus, where they play piv-
otal roles. Naïve T cells possess the ability to differentiate 
into various subsets, such as T helper (Th) cells, depend-
ing on their stem cell features [243]. During thymic devel-
opment, T cell precursors undergo positive or negative 
selection, leading to differentiation into  CD4+ or  CD8+ T 
cells in the thymic cortex and regulatory T (Treg) cells in 
the thymic medulla [244]. Numerous studies have high-
lighted the role of RNA methylation in mediating various 
functions of T cells, including proliferation, activation, 
and apoptosis, through the involvement of multiple RNA 
methylation regulators [245, 246] (Fig. 4).

CD4+T cells

Researchers have demonstrated that inhibiting METTL3 
facilitates the activation of  CD4+ T cells while sup-
pressing the differentiation of effector T cells, particu-
larly Treg cells, by reducing the expression of Foxp3 in 
a m6A-dependent manner [247]. Inhibition of METTL3 
reduces m6A methylation levels, promotes cell apopto-
sis, hinders effector T cell differentiation, and inhibits 
allogeneic  CD4+ T cell responses [24]. In naïve T cells 
deficient in METTL3, the activity of the SOCs family is 
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enhanced, which encodes STAT inhibitory proteins, thus 
suppressing STAT activation and impeding the prolifera-
tion and differentiation of T cells [248]. Similarly, WTAP 
and METTL3 exhibit similar characteristics in regulating 
mRNA stability.  CD4+ T cells deficient in WTAP undergo 
apoptosis and exhibit reduced proliferation upon TCR 
signal activation [249]. The presence of m6A methylase is 
essential for T cells to exert immune functions. Addition-
ally, the m6A demethylase ALKBH5 enhances the stabil-
ity of CXCL2 and IFN-γ mRNA and proteins by reducing 
m6A modification expression, thereby preserving  CD4+ 
T cell immune function [250] (Fig. 4).

During HIV-1 infection of  CD4+ T cells, m6A levels 
are upregulated, potentially mediated by variations in the 
activity of m6A writers or erasers in T-cells [251, 252]. 
Overexpression of YTHDF3 has been shown to decrease 
the production and infection of HIV-1 by incorporat-
ing into viral particles [253, 254]. Evidence suggests that 
NOP2 promotes m5C methylation in HIV-1 and inter-
acts with TAR by competing with Tat protein, thereby 
inhibiting HIV-1 replication and transcription, prolong-
ing the incubation period [255]. Additionally, IL-17 treat-
ment reduces the posttranslational modification of YBX1 
in  CD4+ T cells, inhibiting HIV infection by suppressing 
HIV reverse transcription [256].

In patients with Systemic lupus erythematosus (SLE), 
the levels of m5C and NSUN2 expression are decreased 
in  CD4+ T cells, and hypermethylated m5C is involved in 
immune-related and inflammatory pathways, including 
the immune system, cytokine signaling, and interferon 
(IFN) signaling [257]. m7G methylation is essential for T 
cell activation. RNMT, a key regulator of T cell activation, 
controls ribosome generation, enhances mRNA transla-
tion efficiency, and promotes proliferation and differen-
tiation [258]. Although tRNA modification is a dynamic 
process during T cell activation, the m1A methylation 
at position 58 of tRNA remains constant, suggesting its 
involvement in the translation of T cell activation [259] 
(Fig. 4).

CD8+T cells

Numerous studies have highlighted a close association 
between RNA methylation and the infiltration of  CD8+ T 
cells in cancers [260–262] (Fig. 4). Tumors exhibiting high 
m6A expression demonstrate stronger immunogenicity 
by increasing HLA-A content, which enhances immuno-
surveillance and activates immune cell infiltration [263]. 
For instance, YTHDF2 depletion enhances the activa-
tion and antitumor response of  CD8+ T cells by aug-
menting their antigen cross-presentation ability and the 
abundance of infiltrating immune cells [229, 264, 265]. 
Moreover, METTL3 knockdown inhibits the generation 
of MDSCs, leading to the activation and proliferation of 

 CD4+ and  CD8+ T cells [234]. Conversely, a study has 
shown that METTL3 overexpression increases  CD8+ T 
cell proportions, attenuates immune evasion, and inhibits 
the progression of EC by promoting m6A modifications 
of NLRC5 via a YTHDF2-dependent mechanism [47]. 
Evidence has shown that IGF2BP3 inhibits the activa-
tion of  CD8+ T cells and facilitates tumor immune eva-
sion [61, 266]. A recent study has demonstrated that 
exosome-derived circCCAR1 upregulates WTAP expres-
sion by binding with IGF2BP3, thereby enhancing its sta-
bility through increased m6A expression. CircCCAR1 
can be ingested by  CD8+ T cells, causing them to mal-
function by stabilizing the PD-1 protein [267]. Further-
more, tumor cells utilize glycolysis promoted by FTO to 
inhibit the activation and effector states of  CD8+ T cells, 
which can be reversed by combining an FTO inhibitor 
with anti-PD-L1 blockade [268]. These findings suggest a 
promising therapeutic strategy for multiple types of can-
cers. However, as an m6A demethylase, elevated levels 
of ALKBH5 have been shown to enhance the infiltration 
of  CD8+ T cells [269]. The mechanisms underlying the 
relationship between demethylases and the activation of 
 CD8+ T cells require further exploration.

NSUN2 boosts m5C methylation to stabilize TREX2 
mRNA, reducing the infiltration of  CD8+ T cells and 
fostering resistance to anti-PD-L1 immunotherapy 
through activation of the cGAS/STING pathway [164]. 
Additionally, NSUN3 expression inversely correlates 
with the infiltration of  CD8+ T cells [217, 270]. Knock-
down of the m5C reader YBX1 decreases the infiltration 
of MDSCs and Tregs while increasing the infiltration of 
 CD8+ T cells, thereby enhancing the anti-tumor immune 
response [271]. m1A negatively regulates the prolifera-
tion of  CD8+ T effector cells in colon cancer [272]. Simi-
larly, high expression of m7G is associated with decreased 
cytotoxic  CD8+ T cell infiltration and increased M2 mac-
rophage infiltration [69, 128, 273] (Fig. 4). Together, these 
findings suggest that RNA methylation could be a prom-
ising therapeutic target for enhancing the tumor immune 
response.

Treg cells
m6A methylation has been demonstrated to regulate 
the proliferation of immunosuppressive Treg cells [43]. 
METTL14 deficiency inhibits the differentiation of naïve 
T cells into Treg cells, and METTL14-deficient Treg cells 
exhibit impaired function in suppressing inflammation 
induced by naïve T cells. However, adoptive transfer of 
Treg cells can alleviate this impaired function [274, 275]. 
Additionally, there is a negative correlation between 
METTL3 expression levels and Treg infiltration [276]. 
Insulin-like growth factor binding protein 2 (IGFBP2) 
contributes to the activation of the STAT3 signaling 
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pathway, leading to Treg differentiation and the crea-
tion of a suppressive tumor environment [277]. Studies 
have shown that the loss of YTHDF2 in Tregs promotes 
Treg apoptosis and suppresses their function in the 
TME, thereby inhibiting tumor progression through the 
YTHDF2-m6A-NF-κB pathway [278, 279] (Fig. 4).

B lymphocytes
B lymphocytes are integral to the adaptive immune 
response, functioning by producing antibodies, which 
include memory B cells and plasma cells [280]. Evidence 
has verified that RNA methylation and its regulatory fac-
tors are involved in various B cell-associated diseases 
[281, 282]. RNA m6A methylation plays a critical role 
in the development, maturation, and antibody secre-
tion of B cells [281, 283–285] (Fig.  4). The deletion of 
METTL14 constrains the development from large pre-B 
cells to small pre-B cells by reducing m6A methylation 
levels, and the deletion of YTHDF2 results in a signifi-
cant block of pro-B cell proliferation [283]. Studies have 
shown that METTL3 inhibits the complement pathway 
by mediating C1qA methylation and enhances resist-
ance to Rituximab, thereby facilitating the progression of 
diffuse large B-cell lymphoma (DLBCL) [286]. In AML, 
METTL3 also plays a role in pre-B cell to macrophage 
trans-differentiation, and this effect can be inhibited 
by the METTL3 inhibitor [287]. The writer KIAA1429 
also plays a role in DLBCL progression [55]. Addition-
ally, YTHDF2 can identify m6A sites on alkaline cerami-
dase 2 (ACER2) mRNA, promoting the proliferation of 
DLBCL cells and contributing to disease progression 
[282]. METTL14-mediated YTHDF2 activity facili-
tates the formation of germinal centers and regulates 
positive selection and cell cycle regulation of germinal 
center B cells in an m6A-dependent manner [288, 289]. 
Furthermore, the m6A reader YTHDF1 recognizes and 
destabilizes Epstein–Barr virus (EBV) mRNA, thereby 
suppressing EBV infection and replication, which is sig-
nificant in B-cell malignancies [290]. Expression levels 
of m6A are decreased in plasma cells of patients with 
multiple myeloma (MM) due to FTO-mediated demeth-
ylation, and inhibiting FTO suppresses MM cell prolif-
eration, migration, and invasion [291].

Accordingly, RNA methylation serves a crucial role in 
both innate and adaptive immune responses, influencing 
various biological processes within immune cells. These 
include guiding macrophage polarization towards the 
M2 phenotype, promoting the accumulation of MDSCs, 
affecting the function of DCs in antigen presentation, 
reducing the infiltration and activation of effector T cells, 
influencing the differentiation of Tregs, and contributing 
to abnormal proliferation of B cells.

RNA Methylation Mediates Tumor Immune Evasion
The tumor microenvironment is distinguished by an 
immunosuppressive state that is instrumental in both the 
downregulation of immune cell functions and the facili-
tation of tumor immune evasion [135, 292]. This evasion 
significantly contributes to the creation of an immuno-
suppressive environment that not only promotes onco-
genesis but also allows for its uncontrolled proliferation 
[293]. Antitumor responses primarily involve activated 
 CD8+ T cells, which specifically recognize and target 
tumor antigens presented by APCs. These cells then exert 
cytotoxic effects to destroy tumor cells [294]. However, 
tumor cells have the ability to emit suppressive signals 
that impair the immune functions of T cells, thus hinder-
ing effective immune responses [293].

The immune system is critical in mounting anti-tumor 
responses. Yet, tumor cells often evade immune surveil-
lance and elimination via various mechanisms, such as 
creating an immunosuppressive TME, downregulating 
HLA-1, and upregulating immune checkpoint proteins 
[295, 296]. Tumor immune evasion is characterized by 
the continuous and uncontrolled expansion of the tumor 
immune microenvironment [293]. Tumor cells manipu-
late intrinsic regulators to forge an immunosuppressive 
microenvironment and alter tumor metabolism, thereby 
impairing immune cell functions and promoting immune 
evasion [297, 298]. Furthermore, the interaction between 
PD-1 and PD-L1 facilitates tumor evasion of immuno-
surveillance by fostering immune tolerance and curtail-
ing the proliferation, survival, and effector functions of 
 CD8+ cytotoxic T lymphocytes (CTLs), as well as trig-
gering apoptosis in tumor-infiltrating T cells [299]. The 
aforementioned details highlight the role of RNA meth-
ylation in enhancing hypoxic and metabolic reprogram-
ming within tumors.

RNA methylation plays a pivotal role in regulating 
tumor immunosuppressive factors, thereby modulat-
ing tumor immune evasion mechanisms. For instance, 
m6A methylation significantly influences the regu-
lation of PD-1/PD-L1 through mechanisms such as 
splicing, stability, and translation, ultimately facili-
tating immune evasion [300, 301]. Specifically, m6A 
methylation enhances PD-1/PD-L1 expression via the 
METTL3-JNK signaling pathway [302]. In this path-
way, JNK interacts with and binds to METTL3, which 
increases the m6A modification of mRNA, thereby 
elevating PD-1 levels and reducing the cytotoxic effec-
tiveness of  CD8+ T cells, leading to tumor immune eva-
sion [302]. Moreover, the expression of PD-L1 is linked 
to both METTL3 and IGF2BP3; the latter recognizes 
m6A sites and blocks PD-1 degradation to promote 
immune evasion [25, 303]. Additionally, METTL3 is 
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known to augment the immunosuppressive abilities of 
tumor-infiltrating myeloid cells [304]. In the context 
of EC, Serine hydroxymethyltransferase 2 (SHMT2) 
utilizes the METTL3/FTO/ALKBH5/IGF2BP2 path-
way to mediate immune evasion by modifying c-myc 
through m6A [305]. These findings further indicate 
that IGF2BP3 plays a crucial role in the regulation of 
PD-1/PD-L1 degradation and impacts tumor immune 
responses. Moreover, overexpression of METTL16, 
by decreasing mRNA stability via m6A modification, 
cooperatively inhibits tumor immune evasion along 
with PD-1 suppression [50]. Deficiencies in ALKBH5 
or FTO can also suppress PD-L1 expression by hin-
dering YTHDF2-mediated mRNA stability [306, 307]. 
Additionally, YTHDF1 promotes tumor immune eva-
sion by enhancing PD-L1 expression [308] (Fig. 5). The 
expression of PD-L1 is upregulated by the m5C reader 

protein YBX1, which when interacting with PD-1, can 
significantly inhibit the proliferation and function of 
cytotoxic  CD8+ T cells. This interaction thereby sup-
presses the immune response in patients [309]. These 
findings underscore the critical role of RNA methyla-
tion in facilitating tumor immune evasion, highlighting 
the potential of targeting this biochemical process as a 
promising therapeutic strategy.

Targeting RNA Methylation Enhances the Therapeutic 
Effects of Immune Checkpoint Blockade
Immune checkpoint blockade (ICB) has shown signifi-
cant success in clinical trials and has been approved for 
the treatment of various cancers. These include GC, 
HCC, CRC, NSCLC, SCLC, triple-negative breast can-
cer, urothelial carcinoma, melanoma, etc. [310–322]. 
Immune checkpoint inhibitors (ICIs) are designed to 

Fig. 5 RNA methylations regulate expression of immune checkpoints through their regulators, and several small-molecule inhibitors combined 
with immune checkpoint blockade are applied in acute myeloid leukemia (AML). Co-inhibitory receptor-ligand complexes includes PD-1/PD-L1, 
CTLA-4/CD80, VISTA and so on. Co-stimulatory receptor-ligand complexes includes CD40/CD40L, ICOS/ICOSL and so on. m6A and m5C regulate 
the expression, translation, and stability of immune checkpoints as well as their sensibilities to immunotherapy. Immune checkpoints such as PD-1, 
CTLA-4, ICOS, VISTA, CD40L bind with their respective ligands on tumor cells, triggering a negative or positive signal to T cells response. This process 
can be impacted by several regulator proteins of RNA methylations, such as METTL3, ALKBH5, FTO and METTL16. Several small-molecular inhibitions 
targeting METTL3 and FTO, including STM2457, Alk-04, FB23-2, Dac51 and so on, can inhibit m6A methylation process and can be applied in AML. 
Figure created with figdraw.com
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block the function of immune checkpoints, effectively 
alleviating the immunosuppressive state of T cells, 
reversing T cell exhaustion, and reactivating effector T 
cells within the TME. This action significantly boosts 
anti-tumor immune responses [323, 324]. Specifically, 
targeting PD-1 and its ligands, along with CTLA-4 the 
two principal immune checkpoints—has substantially 
improved outcomes in cancer treatment [323, 325–327]. 
Additionally, there is a growing body of evidence sup-
porting the use of PD-L1 small-molecule inhibitors in 
combination with RNA modification modulators to 
enhance the effectiveness of ICB in clinical treatments 
[328, 329] (Table 2). Furthermore, the inhibition of meth-
ylases has been shown to significantly enhance the effec-
tiveness of ICB therapy. For instance, inhibiting METTL1 
has been demonstrated to improve responses to ICB 
therapy in preclinical models of PCa, and low expression 
of METTL1 is associated with favorable outcomes from 
ICB therapy [128].

The use of m6A regulator inhibitors in enhanc-
ing ICB therapies has been extensively explored in 
recent studies [335, 336]. m6A methylases play a cru-
cial role in modulating the expression levels of PD-L1 
and enhancing tumor sensitivity to anti-PD-1 and 
anti-CTLA-4 therapies, thereby improving the out-
comes of ICB treatments [50, 234, 337]. Additionally, 
YTHDF1 is implicated in inducing resistance to ICIs 
by promoting the degradation of MHC-I molecules; 
inhibiting YTHDF1 can transform immunologically 
"cold" tumors into "hot" ones, making them more ame-
nable to therapy [60]. YTHDF1 also contributes to the 
dysfunction of cytotoxic  CD8+ T cells by encourag-
ing the accumulation of MDSCs through IL-6 secre-
tion, presenting a novel target for ICB immunotherapy 

[338]. Furthermore, both methionine metabolites and 
YTHDF1 are known to enhance the translation of 
immune checkpoints such as PD-L1 and VISTA, sug-
gesting that targeting these processes could be an 
innovative strategy for ICB [187]. Depleting METTL3 
in myeloid cells has been shown to reduce the efficacy 
of PD-1 blockade therapies by decreasing the transla-
tion efficiency of YTHDF1 [205]. Moreover, IGF2BP1 
enhances PD-L1 mRNA stability and promotes tumor 
immune evasion by reducing  CD8+ T cell-mediated 
cytotoxicity. This mechanism is potentiated by fibro-
blast growth factor receptor 4 (FGFR4), and targeting 
IGF2BP1 in conjunction with anti-PD-L1 therapy can 
inhibit the proliferation and invasion of HCC cells [339, 
340].

Moreover, upregulation of m6A regulators has been 
observed in patients exhibiting resistance to immuno-
therapy. Notable among these regulators are METTL3, 
METTL16, ALKBH5, etc., suggesting their poten-
tial roles in the development of resistance mecha-
nisms [341–343]. Overall, to enhance the efficacy of 
ICB in cancer immunotherapy, it is crucial to explore 
small-molecule inhibitors targeting RNA methyla-
tion regulators. This approach necessitates a thor-
ough understanding of the complex interactions 
between immune checkpoints and RNA methylation 
mechanisms.

Several small-molecule inhibitors have been developed 
and are being used in conjunction with ICB (Fig. 5 and 
Table  2). Notably, STM2457, an inhibitor of METTL3, 
has been demonstrated to reduce m6A levels and inhibit 
the progression of AML [287, 330]. STM2457, when 
used in conjunction with anti-PD-1 antibodies, has been 
shown to significantly improve treatment outcomes in 

Table 2 Small-molecule inhibitors targeting N6-Methyladenosine regulators and immune checkpoints

Abbreviation: AML acute myeloid leukemia, CESC cervical squamous cell carcinoma, CRC  colorectal cancer, SCLC small-cell lung cancer

Small‑molecule inhibitors Target Cancer type References

STM2457 METTL3 CESC; AML  [330, 331]

FB23-2 FTO AML  [332]

Dac51 FTO AML  [332]

CS1 FTO AML  [333]

CS2 FTO AML  [333]

18097 FTO Breast cancer  [334]

Alk-04 ALKBH5 CRC; Melanoma  [237]

Atezolizumab PD-L1 SCLC; Triple-negative breast cancer  [311, 316]

Avelumab PD-L1 Urothelial carcinoma  [320]

Durvalumab PD-L1 SCLC  [321]

Nivolumab PD-1 Advanced HCC  [310]

Ipilimumab CTLA-4 Advanced Melanoma  [319]

Pembrolizumab PD-1 Metastatic squamous cell carcinoma  [322]
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cervical squamous cell carcinoma (CESC) [331]. This 
METTL3 inhibitor is particularly noteworthy because 
it can eliminate AML cells without significantly harm-
ing normal hematopoiesis [330]. Additionally, substrate-
competitive FTO inhibitors such as FB23-2 and Dac51 
have been effective in promoting apoptosis in AML cells 
and reactivating  CD8+T cells by inhibiting tumor glu-
cose metabolism, respectively [332, 333]. Moreover, two 
other inhibitors, CS1 and CS2, have been documented to 
drastically reduce the proliferation of human AML cells 
by suppressing PD-L1 expression through the MYC path-
way. Their therapeutic efficacy is reported to be over ten 
times greater than that of FB23-2 [334]. Another FTO 
inhibitor, named 18,097, has been successful in inhibit-
ing the proliferation and migration of breast cancer cells 
and enhancing their chemosensitivity [344]. Further-
more, Alk-04, a specific inhibitor of ALKBH5, boosts 
the effectiveness of anti-PD-1 therapy and reduces the 
infiltration of Tregs and MDSCs in TME [237]. Beyond 
PD-1 and PD-L1, methylation regulators also affect other 
immune checkpoints such as CD80, ICOS, and VISTA. 
For instance, METTL3-mediated YTHDF1 recognition 
of m6A in CD80 transcripts enhances CD80 translation 
[23], and METTL3 deficiency correlates with reduced 
expression of the inducible co-stimulatory molecule 
(ICOS) [148]. YTHDF1 also increases the expression lev-
els of PD-L1 and the PD-1 homolog VISTA [187]. Addi-
tionally, it has been reported that targeting modifications 
like m5C and m1A methylation can further enhance the 
effectiveness of ICB immunotherapy [345, 346]. These 
findings illustrate a broad and potent application of 
small-molecule inhibitors in cancer treatment, particu-
larly when combined with established ICB strategies.

In conclusion, the inhibition of RNA methylation reg-
ulators is currently under investigation for its potential 
to curb tumor progression. Experimental evidence from 
animal studies has confirmed that combining immune 
checkpoint blockade with small-molecule inhibitors can 
effectively suppress tumor growth. The ongoing devel-
opment and refinement of RNA methylation regula-
tor inhibitors and ICIs are poised to yield significant 
advancements and offer promising new treatments for 
cancer patients in the foreseeable future.

Conclusions and perspectives
In this review, we explored four types of RNA meth-
ylation and their regulatory roles: writers, erasers, and 
readers, within the TME. These regulators are involved 
in crucial biological processes including hypoxia and 
metabolic reprogramming, and they influence the devel-
opment, differentiation, proliferation, infiltration, activa-
tion, and apoptosis of immune cells in tumor immunity. 
Furthermore, they mediate the expression of immune 

checkpoints, thereby facilitating tumor immune evasion. 
These modifications influence RNA fate through mecha-
nisms such as splicing, transport, translation, stability, 
and degradation. Given these roles, RNA methylation sig-
nificantly impacts the initiation, proliferation, invasion, 
and metastasis of cancer. By regulating the translation of 
immune checkpoints and mediating tumor immune eva-
sion, these modifications highlight a promising area for 
targeting the interactions between RNA modification 
and immune checkpoints in cancer immunotherapy.

RNA methylation has been extensively studied for its 
varied biological functions, and its regulators have been 
widely examined in the context of cancer research. Inter-
estingly, some regulators, such as METTL3, have been 
found to perform opposing functions depending on the 
disease type or even within different aspects of the same 
disease. For example, low expression of METTL3 is asso-
ciated with resistance to anti-PD-1 antibodies in thyroid 
cancer [266], whereas inhibitors of METTL3 can improve 
treatment outcomes in AML [330]. These findings under-
score the importance of thoroughly understanding the 
complex biological effects of methylation regulators in 
different cancers.

Overall, the prospects of RNA methylation in the 
field of cancer immunotherapy are promising. These 
regulators can be utilized to estimate the diagnosis and 
prognosis of cancer by assessing the upregulation or 
downregulation of expression levels. Furthermore, there 
is potential to exploit cancer vaccines targeting the regu-
lators’ functions in tumor immunity, as RNA methylation 
plays a crucial role in regulating RNA fate. These regu-
lators also modulate the function of immune cells, the 
invasion capacity of tumor cells, and the expression of 
immune checkpoints, thereby influencing tumor pro-
gression, resistance, and recurrence. In conclusion, tar-
geting these biological functions and developing more 
small-molecule inhibitors, especially in combination with 
ICB immunotherapy, holds great promise for clinical 
treatment and offers encouraging prospects in the field of 
cancer immunotherapy.
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