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Abstract
Cancer is a major global health issue. Effective therapeutic strategies can prolong patients’ survival and reduce the costs of 
treatment. Drug repurposing, which identifies new therapeutic uses for approved drugs, is a promising approach with the 
advantages of reducing research costs, shortening development time, and increasing efficiency and safety. Disulfiram (DSF), a 
Food and Drug Administration (FDA)-approved drug used to treat chronic alcoholism, has a great potential as an anticancer 
drug by targeting diverse human malignancies. Several studies show the antitumor effects of DSF, particularly the combination 
of DSF and copper (DSF/Cu), on a wide range of cancers such as glioblastoma (GBM), breast cancer, liver cancer, pancreatic 
cancer, and melanoma. In this review, we summarize the antitumor mechanisms of DSF/Cu, including induction of intracellular 
reactive oxygen species (ROS) and various cell death signaling pathways, and inhibition of proteasome activity, as well as 
inhibition of nuclear factor-kappa B (NF-kB) signaling. Furthermore, we highlight the ability of DSF/Cu to target cancer stem 
cells (CSCs), which provides a new approach to prevent tumor recurrence and metastasis. Strikingly, DSF/Cu inhibits several 
molecular targets associated with drug resistance, and therefore it is becoming a novel option to increase the sensitivity of 
chemo-resistant and radio-resistant patients. Studies of DSF/Cu may shed light on its improved application to clinical tumor 
treatment.
Keywords: Disulfiram; Aldehyde dehydrogenase; Reactive oxygen species; Proteasome activity; Cancer stem cells; Drug resistance

Introduction

Cancer is becoming one of the most common causes of 
death, and its prevalence is expected to increase world-
wide.[1] Developing effective new pharmacotherapies 
improves survival and reduces mortality of patients with 
cancer. Currently, in addition to radical surgery, radio-
therapy, and immunotherapy, chemotherapy that employs 
broad-spectrum cytotoxic drugs remains one of the most 
effective cancer treatments, despite having significant 
side effects.[2] Thus, discovering new anticancer drugs is 
of great importance for fulfilling a highly unmet medical 
need. However, developing new anticancer drugs is chal-
lenging because of high cost and being time consuming. 
To overcome these challenges, drug repurposing is a 
practical alternative strategy for using approved drugs 
with known toxicological and pharmacokinetic charac-
teristics for new indications, which saves research costs 
and reduces the time to find new ways to treat various 
diseases.[3,4]

Disulfiram (DSF), the Food and Drug Administration 
(FDA) -approved drug to treat chronic alcoholism, has 
been used since 1951 and is well tolerated with minimal 
side effects.[5] DSF irreversibly inhibits the activity of 
aldehyde dehydrogenase (ALDH), leading to excessive 
accumulation of acetaldehyde in the body, thereby estab-
lishing the alcohol aversion reflex.[6] Recently, growing 
evidence shows the potential of repurposing DSF to 
treat various pathologies such as inflammation, Lyme 
disease, metabolic disorders, and cancer.[7–10] Numerous 
mechanistic studies reveal that DSF exhibits excellent 
anticancer effects such as triggering oxidative stress,[11] 
inhibiting proteasomes activity,[12] reducing angiogen-
esis,[13] arresting the cell cycle,[11,14] reducing the stem-
ness of cancer cells,[15] reversing drug resistance,[16,17] 
constraining tumor metastasis,[18,19] and regulating the 
immune microenvironment.[20,21]

Currently, the studies on effects of DSF are progressing 
through several clinical trials designed to treat malig-
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nant tumors, including glioblastoma (GBM), metastatic 
breast cancer, and recurrent pancreatic carcinoma. 
Furthermore, the trace metal copper (Cu) plays a key 
role in potentiating the antitumor effect of disulfiram.[22] 
In this review, we summarize the molecular mechanism 
of DSF and its metabolites in the treatment of cancers, 
and we evaluate the contribution of DSF/Cu to enhancing 
drug sensitivity or reversing drug resistance, which will 
contribute comprehensive data for repurposing DSF in 
the future.

Anticancer Mechanisms of DSF/Cu

Numerous studies reveal that DSF serves as an anti-
tumor drug. Although the anticancer mechanism of DSF 
is unclear, there is no doubt that the combination of 
DSF and Cu2+ achieves a better antitumor effect than 
DSF alone.[23–25] Strikingly, Cu2+ is essential for human 
cells as it participates in numerous processes such as 
mitochondrial respiration, reactive oxygen species (ROS) 
generation, and antioxidant/detoxification processes.[26,27] 
Furthermore, mounting evidence indicates that patients 
with malignancies have significantly higher levels of 
serum Cu and intracellular Cu compared with those of 
healthy controls.[28] Cu plays a prominent role in onco-
genesis, cancer progression and severity, because Cu 
accumulation promotes cell proliferation, angiogenesis, 
and metastasis.[27,29] Elevated Cu levels in tumor cells 
serve as a specific target for DSF, which binds tumor 
cellular copper and impairs the activities of Cu-dependent 
enzymes, leading to inhibition of cuproplasia (Cu-
dependent cellular proliferation).[30] On the other hand, a 
high concentration of Cu in cancer cells causes cytotox-
icity through oxidative stress or by inhibiting enzyme 
activity to induce specific copper-dependent cell death, 
called cuproptosis.[31] The Cu ionophore DSF facilitates 
increased Cu uptake into cancer cells, enabling DSF to 
specifically target cancer cells while sparing normal 
cells.[32] Numerous studies show that the administration 
of DSF with Cu significantly increases anticancer 
activity.[33,34] Recent mechanistic studies demonstrate 
that Cu(DDC)2 (bis-diethyldithiocarbamate-copper, also 
known as CuET), which is a major metabolite of DSF 
combined with Cu2+, is the active form responsible for its 
tumor suppressing effects [Figure 1].[35,36] Because Cu
(DDC)2 is a potent anticancer agent, we focused on 
several targets of Cu(DDC)2, including alteration of 
ROS levels, activation of the mitogen-activated protein 
kinase (MAPK) pathway, and inhibition of ubiquitin 
proteasome activity, as well as suppression of NF-kB 
signaling. Strikingly, apart from Cu(DDC)2, the Zn
(DDC)2 complex formed by DDC binding to Zn2+ also 
represents an important antitumor activity, confirming 
that DSF-based tumor therapy is metal ion-dependent.[37]

Effects of DSF on ROS

Oxidative stress occurs when the accumulation of ROS 
exceeds the body’s antioxidant capacity. Increased ROS 
levels are toxic by destroying cellular structures and 
damaging vital organs, leading to cell death.[38] DSF-
mediated cytotoxicity is partially caused by increased 

ROS production. Evidence indicates that excessive ROS 
exposure will exhaust cellular antioxidant capacity and 
selectively induce cancer cell apoptosis.[38] Accumulation 
of DSF, DDC, and its copper complex Cu(DDC)2 in 
cancer cells can promote ROS generation, which eventu-
ally triggers apoptosis of cancer cells.[39,40] DSF/Cu-
induced metallothionein expression results in oxidative 
stress and inhibits DNA replication in prostate cancer 
cells.[41,42] Furthermore, the reaction between DDC and 
Cu2+ reduces Cu2+ to Cu+ ,[43] a more toxic form of 
copper ion, which further reacts with O2 and Fe2+ to 
produce highly cytotoxic ·OH through a Fenton-like 
reaction.[43] Moreover, the DSF/Cu complex promotes 
the transport of copper into inflammatory breast cancer 
(IBC) cells.[32] Cu accumulation causes the intercellular 
generation of ROS, which alters membrane permeability 
and further promotes copper uptake, and therefore 
induces oxidative stress-mediated apoptosis in multiple 
IBC cellular models.[32] DSF specifically transports Cu 
ions into tumor tissues, thus preventing Cu from inter-
acting with non-specifically binding proteins.

Furthermore, DSF inhibits the scavenging of ROS. DSF 
was recently reported to downregulate glutathione 
peroxidase 4 (GPX4) expression to prevent ROS clear-
ance and induce ferroptosis in GBM, which is rescued 
by the ferroptosis inhibitor ferrostatin-1.[44] Moreover, 
DSF/Cu treatment also leads to hepatocellular carci-
noma (HCC) -cell death via induction of ferroptosis, 
associated with a compensatory activation of the tran-
scription factor nuclear factor erythroid 2-related factor 
2 (NRF2),[45] which plays a key role in counteracting 
oxidative stress via regulating the expression of antioxi-
dant genes.[46] In particular, DSF, as a specific inhibitor 
of ALDH, prevents ROS scavenging and detoxification 
mediated by ALDH isozymes.[6,15] ROS are an inevitable 
side-product of redox reactions. Increased ROS levels 
and inhibition of ROS scavenging subject cells to subse-
quent oxidative stress and this further causes damage to 
DNA, lipids, and proteins, which triggers cell death.[47]

Mounting studies confirm that DSF enhances oxidative 
stress and induces ROS production, which is necessary 
for DSF to exert cytotoxicity in various malignancies, 
including nasopharyngeal cancer (NPC),[48] gastric 
cancer,[49] prostate cancer,[50] acute myeloid leukemia 
(AML),[11] lymphoid malignancies,[51] osteosarcoma,[52] 
head and neck squamous cell carcinoma (HNSC),[53] 
lung cancer,[54] breast cancer,[55] thyroid cancer,[56] and 
HCC.[57] Among them, DSF/Cu is cytotoxic for NPC[48] 
and HCC[57] through ROS/MAPK promoted apoptosis. 
Moreover, DSF/Cu is highly toxic to AML cell lines 
because of the alteration of the ROS balance, cell cycle 

Figure 1: Chemical structure of DSF, DDC, and Cu(DDC)2. Cu(DDC)2: Bis-diethyldithiocarbamate-
copper; DDC: Diethyldithiocarbamate; DSF: Disulfiram.
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arrest, and apoptosis, as manifested by an increased rate 
of apoptosis of approximately 70%.[11] The c-Jun N-
terminal kinase (JNK), a critical member of the MAPK 
family, plays a key role in apoptosis. DSF/Cu activates 
the ROS-JNK proapoptotic pathway in osteosarcoma 
cells[52] and HNSC[53] and simultaneously inhibits anti-
apoptotic pathways such as those mediated by NF-kB 
and NRF2 signaling in malignant lymphoid cell lines 
and AML stem cells.[40,51] Furthermore, Xie et al[56] 
demonstrated that DSF/Cu kills thyroid cancer cells with 
a lower IC50 (half-maximal inhibitory concentration, 
62.88 ± 0.01 nmol/L) in IHH4 cell line via inhibiting 
the activities of the MAPK/extracellular signal-regulated 
kinase (ERK) and phosphoinositide 3-kinase (PI3K)/
serine/threonine kinase 1 (AKT) pathways in a ROS-
dependent manner. Notably, Lu et al[39] compared the 
anticancer effects of DSF and DSF/Cu, and they found 
that DSF/Cu exhibits a significantly greater effect than 
DSF alone in A549 cells. They further revealed that DSF 
is metabolized to form Cu(DDC)2, which accumulates in 
cancer cell and initiates apoptosis with overproduction 
of ROS and induces cell cycle arrest. To confirm the 
effect of ROS, several studies attempted to reverse the 
cytotoxicity of DSF using the ROS scavenger N-
acetylcysteine (NAC).[51,58,59] These studies show a 
significant reversing effect of NAC on ROS induction, 
and the toxic effects of DSF are obviously blocked with 
NAC treatment. It is noteworthy that NAC contains the 
reactive cysteine structure, which inactivates DSF. Thus, 
alternatives to ROS inhibitors such as cynarin should be 
used to confirm ROS levels in the future. Together, the 
evidence shows that the anticancer effect of DSF is related 
to its induction of ROS and subsequent cell death 

[Figure 2], although further in-depth mechanistic research 
on the cytotoxicity of DSF should be performed.

Effects of DSF on proteasome inhibition

The proteasome complex, which comprises a catalytic 
20S core and a 19S regulator, selectively regulates and 
degrades ubiquitinated proteins.[60] The ubiquitin protea-
some system (UPS) is critical for maintaining the balance 
of protein degradation as well as the physiological func-
tions of cells. Cancer cells depend on UPS more than 
normal cells, indicating that UPS may serve as an attrac-
tive pharmacological target for cancer therapy.[61] DSF/
Cu or Cu(DDC)2 blocks the upstream p97 pathway of 
the proteasome, which induces the accumulation of 
polyubiquitinated proteins, ultimately leading to cell 
death, and Cu(DDC)2 induces higher cytotoxicity for 
diverse types of cancer cells compared with DSF or 
DDC.[33] Mechanistically, Skrott et al[33] demonstrated 
that Cu(DDC)2, with high affinity for thiol-containing 
proteins, induces aggregation and dysfunction of the 
nuclear protein localization protein 4 (NPL4), an adaptor 
of the p97 segregase essential for proteasome activity, 
which consequently blocks p97-NPL4-dependent processes, 
leading to accumulation of misfolded or even toxic 
proteins. Furthermore, inactivated p97 segregase induces 
endoplasmic reticulum (ER) stress and the heat-shock 
response (HSR), as indicated by detected biomarkers of 
ER stress and HSP70 after Cu(DDC)2 treatment of 
U-2OS cells.[33,62] In a follow-up study, Majera et al[63] 
further demonstrated that disabling the vital NPL4-p97 
pathway by DSF/Cu(DDC)2 interferes DNA replication 
and causes DNA damage, enhancing replication stress. 

Figure 2: Anticancer mechanisms of DSF. DSF combined with Cu or Cu(DDC)2 inhibits proteasome activity via NPL4 aggregation, leading to reduced NF-kB and NRF2 activity and 
consequently apoptosis. Furthermore, DSF, DSF/Cu, and Cu(DDC)2 induce ROS production and inhibit ALDH activity to inhibit ROS scavenging, then initiating DNA damage, cell cycle 
arrest, and caspase pathway-mediated apoptosis. ALDH: Aldehyde dehydrogenase; Cu(DDC)2: Bis-diethyldithiocarbamate-copper; CTR1: Copper-transport-related protein; DDC: 
Diethyldithiocarbamate; DSF: Disulfiram; ER: Edoplasmic reticulum; JNK: c-Jun N-terminal kinase; MAPK: Mitogen-activated protein kinase; NF-kB: Nuclear factor-kappa B; NPL4: 
Nuclear protein localization protein 4; NRF2: Nuclear factor erythroid 2-related factor 2; P-gp: P-glycoprotein; ROS: Reactive oxygen species; Ub: Ubiquitination.
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Strikingly, Cu(DDC)2 treatment also impairs the replica-
tion protein A (RPA)–ataxia telangiectasia and Rad3 
related-interacting protein (ATRIP)–ATR–checkpoint 
kinase (CHK1) signaling cascade that is critical for 
prosurvival responses to replication stress, thus collec-
tively provoking a toxic scenario in cancer cells.[63] NF-kB 
is well known for its antiapoptotic role, and aberrant 
NF-kB activation is involved in the pathogenesis of 
many malignant tumors.[64] The activity of proteasomes 
is critical for activating the NF-kB pathway, because 
proteasomes cleave the inhibitor-kB molecule (IkB), 
thereby releasing the NF-kB p50/p65 heterodimer from 
the inhibitory complex to translocate into the nucleus, 
leading to gene transcription.[64] Thus, proteasome inhi-
bition leads to the inhibition of NF-kB signaling and 
cancer cell death. Recently, growing evidence shows that 
DSF inhibits cancer cell proliferation and promotes 
apoptosis in vitro and in vivo by increasing NPL4 aggre-
gation, confirming that the p97/NPL4 pathway is a 
promising therapeutic target of DSF in oncology.[65–69] 
Notably, the DSF/Cu complex potently inhibits the 
proteasomal activity of cancer cells, but not that of 
normal or immortalized cells in in vitro and in vivo 
experiments.[68] As mentioned above, selective induction 
of apoptosis of tumor cells is associated with elevated 
copper levels and these are more dependent on protea-
some activity for their survival [Figure 2], further suggesting 
DSF as an ideal antitumor drug.

DSF targets cancer stem cells (CSCs)

CSCs, which comprise a small population of quiescent 
cancer cells capable of self-renewal and differentiation, 
play a critical role in tumor initiation, progression, 
relapse, metastasis, and resistance to therapy.[70] As a 
result, targeting CSCs may serve as a promising strategy 
to improve cancer therapeutics in the future.[70,71] 
ALDH, as a typical marker of CSC as well as an enzyme 
required for the stemness of CSCs during oncogenesis, is 
irreversibly inhibited by DSF.[71] Data from recent 
studies show that DSF potently inhibits CSCs in various 
cancers, including AML, breast cancer, and ovarian 
cancer (OC) owing to the inhibitory effect of DSF on 
ALDH through diverse mechanisms.[15,40,55,72] For example, 
DSF/Cu targets aldehyde dehydrogenase isoform-1A1 
(ALDH1A1) to inhibit non-small cell lung cancer (NSCLC) 
growth and recurrence[34] and to overcome cisplatin 
resistance in breast cancer[72] via inhibition of stemness-
related transcription factor expression in ALDH-positive 
CSCs. Notably, a high-throughput drug screen (HTS) 
identified DSF as one of the most potent anti-OC 
compounds. Under CSC-enriching conditions, DSF treat-
ment efficiently inhibits ALDH activity and represses 
sphere formation, suggesting DSF is able to inhibit CSCs 
formation in OC cells. Moreover, DSF decreases CSCs 
populations and reduces relapse in an in vitro model, 
and DSF also shows efficacy in an in vivo model of post-
surgery, postchemotherapy OC relapse, demonstrating 
that targeting CSCs prevents OC recurrence.[73] Like-
wise, using HTS, researchers tested the sensitivity of 
glioma stem cells (GSCs) to 2000 compounds, among 
which DSF significantly inhibits the proliferation of 

GSCs. Notably, DSF toxicity for cancers is enhanced by 
Cu, which significantly increases CSC death via inactiva-
tion of the ubiquitin-proteasome pathway.[74]

However, recent evidence seems to challenge the notion 
that DSF-induced CSC toxicity is attributed to ALDH 
inhibition. A recent study demonstrates that repurposing 
DSF modulates the cell cycle distribution and significantly 
decreases clonogenic survival of GBM stem cells inde-
pendent of ALDH3 expression.[75] Skrott et al[66] found 
that inhibition of ALDH is only secondary to membrane 
damage and cell death, rather than the preferential cyto-
toxicity of DSF/Cu. Wang et al[76] revealed that DSF/Cu 
complexes block the formation of breast cancer CSCs by 
downregulating the NF-kB-stemness gene pathway. 
Correspondingly, in vivo, combined treatment of radio-
therapy and DSF significantly inhibited mammary primary 
tumor growth and spontaneous lung metastasis compared 
with olive oil-treated mice (vehicle control).[76] As expected, 
DSF increased DNA damage, and induced apoptosis and 
autophagy as well as cell cycle arrest in irradiated CSCs 
of an atypical teratoid /rhabdoid tumor.[77] Concur-
rently, DSF combined with radiotherapy significantly 
potentiates the anticancer effects of radiotherapy mani-
fested by inhibited tumor growth and prolonged 
survival in atypical teratoid /rhabdoid tumor mouse 
models.[77] More recently, Sun et al[59] revealed that DSF/
Cu induces robust antitumor immune responses, trig-
gering a higher level of immunogenic cell death (ICD) of 
breast cancer CSCs, partly caused by ROS generation and 
ER stress. Notably, DDC binding to Zn2+ also suppresses 
the stem cell properties of lung cancer cells.[78] Cui et al[79] 
found that DSF/Zn nanoparticles significantly inhibit 
the growth of CSCs and tumors without damaging non-
involved organs during oral cancer therapy. Collectively, 
studies in the past five years demonstrate that DSF exerts 
strong cytotoxicity upon various CSCs through diverse 
mechanisms. The research on DSF targeting CSCs is 
listed in Table 1.[40,54,59,69,72,73,75,79–87]

DSF Reverses Drug Resistance

Drug resistance, either intrinsic or acquired, is a serious 
problem associated with the treatment of malignant 
tumors, which is mainly caused by factors such as hypoxia, 
preexisting CSC populations, enhanced drug efflux 
pumps, and activation of NF-kB.[16,54,88,89] Hypoxic cells 
and CSCs represent two key factors contributing to 
failure of treatment for NSCLC. DSF/Cu lengthens survival 
and decreases the progression of NSCLC.[54] Mechanisti-
cally, DSF induces superoxide production and mitochon-
drial stress, which significantly decrease the viability of 
hypoxic cells, mitigating resistance to radiation and 
chemotherapy in vitro and in vivo.[54] As mentioned 
above, the presence of CSCs has profound implications 
for drug resistance. DSF-Cu complex reverses the Taxol-
resistant (A549/Taxol) cells and vincristine-resistant 
cells (KB/VCR cells) via decreasing the expression of 
ALDH2 and stem cell transcription factors.[88] On the 
other hand, cancer cells exert multidrug resistance 
(MDR) by accelerating efflux or blocking the influx of 
drugs through various membrane transporters such as P-
glycoprotein (P-gp), multidrug resistance-associated 
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Table 1: Disulfiram plays a critical role in inhibiting various CSCs in vitro and in vivo.

Type of cancer

Glioblastoma

Glioblastoma

Breast cancer

Breast cancer

Breast cancer

NSCLC

AML

AML

DTCs

Cervical cancer

Medulloblastoma

Ovarian cancer

Ovarian cancer

Chondrosarcoma

Multiple myeloma

Oral carcinoma

Cell line

LK17

U87MG, U25
1MG, U373
MG

MCF-7, SKB-
R3, MDA-
MB-435S

MDA-MB-
231, 
UACC-812

MCF-7, 
BT549, 
MDA-MB-
231

H292

KG1a, 
Kasumi-1

THP1, UT7

K1, WRO

SiHa, HeLa

D425med, 
D341

IGROV1, 
SKOV3 
SKOV3IP1

OV90, 
OVCAR8

SW1353, CS-1

NCI-H929

Cal27

In vitro
DSF/Cu 

(0.1/0.1 mmol/L)

DSF/Cu 
(1/10 mmol/L)

DSF 
(1 mmol/L)

DSF/Cu 
(0.15/1 mmol/L)

DSF 
(0.5–15 mmol/L)

DSF/Cu (0.05–0.15/
15 mmol/L)

DSF/Cu 
(0.5/1 mmol/L)

DSF 
(0.9 mmol/L)

DSF/Cu 
(0.1/1 mmol/L)

DSF/Cu 
(0.1/0.01 mmol/L)

DSF/Cu 
(0.1/0.01 mmol/L)

DSF/Cu 
(1/1 mmol/L)

DSF 
(0.25 mmol/L, 
OV90), DSF 
(0.5 mmol/L, 

OVCAR8)
DSF/Cu 

(0.05/1 mmol/L)

DSF/Cu 
(0.1/1 mmol/L)

DSF (25 mg/g 
IRMOF3), 
IRMOF3 

(100 mg/mL), 
Zn (100 μmol/L)

Mechanisms

DSF/Cu inhibits clonogenic survival of 
glioblastoma CSCs, independent of 
ALDH1A3 expression.

DSF inhibits hypoxia-induced GSC 
and EMT phenotypes by inhibiting 
NF-kB-p65 protein expression.

DSF inhibits ALDH activity and 
inhibits Sox, Nanog, and Oct 
expression in CSCs, and modulates 
ROS generation.

DSF/Cu induces ICD in breast CSCs 
partially by ROS generation and 
IRE1a/XBP1 pathway activation.

DSF suppresses EMT and CSC by 
inhibiting SOX4, which is induced 
by upregulating miR-30a 
expression.

DSF/Cu complex induces oxidative 
stress, including superoxide, 
peroxide, lipid peroxidation, and 
mitochondrial damage.

DSF/Cu induces ROS-JNK pathway 
and inhibites pro-survival NRF2 
and NF-kB pathways to kill CSCs.

DSF in combination with Ara-c 
suppresses P65 expression and 
increases intracellular g-H2AX 
formation in CSCs.

DSF/Cu targets CSCs in DTCs by 
inhibiting c-Myc- or E2F1-mediated 
BMI1 expression.

DSF/Cu inhibites the expression of 
stemness markers (ALDH, CD49f) 
and reduces the LGR5+CSCs.

DSF/Cu reduces ALDH activity and 
CD133 expression.

DSF/Cu increases intracellular ROS 
levels triggering apoptosis of 
ovarian CSC.

DSF promotes ROS generation and 
enhances oxidative stress in CSCs, 
thus increasing cell death.

DSF/Cu decreases NF-kB-stemness 
pathway in CSCs.

DSF/Cu can inhibit the ALDH+ stem 
cells through suppressing ALDH1A1 
and Hedgehog pathway.

Folic acid-modified DSF/Zn-IRMOF3 
nanoparticles could inhibit ALDH1+ 
CSCs by downregulating the 
expressions of ALDH1A1, Nanog, 
OCT4, and SOX2.

In vivo
NA

BALB/c Nu/
Nu mice 

xenografts

NA

NA

NA

Athymic 
nude mice 
xenografts

NOD/SCID 
xenograft 

models

NOD/SCID 
mice 

xenograft 
model

NA

BALB/c-nude 
mice 

xenograft 
models

Athymic Nu/
Nu mice 

xenografts

NA

Athymic Nu/
Nu mice 

xenografts 
mice

Xenograft 
nude or NSG 

mouse

NOD/SCID 
xenograft 

mouse model

BALB/c 
mouse 

xenograft 
model

Administration/dose

NA

DSF-PLGA 
(10 mg/kg) CuGlu 
(6 mg/kg), 3 days/
week for 4 weeks

NA

NA

NA

DSF 
100 mg·kg–1·day–1 
by oral gavage for 

25 days.

DSF 
(3 mg·20 g–1·day–1) 
Cu (0.03 mg·20g–1 ·
day–1) for 2 weeks
3 mg·20g–1·day–1

DSF for 
4 consecutive days

NA

DSF (30 mg/kg), 
CuCl2 (1.5 mg/kg) 
twice per week for 

the experiment

DSF 
(150 mg·kg–1·day–1), 
Cu2+ (2 mg·kg–1·day–1) 

of 5 days/week for 
3 weeks

NA

DSF (10 mg/kg) three 
times per week for 

3 weeks

DSF 
(50 mg·kg–1·day–1), 
Cu (0.03 mg·kg–1 ·
day–1) for 7 days

DSF 
(150 mg·kg–1·day–1),

 Cu (2 mg·kg–1·day–1) 
for 3 weeks

IRMOF3-DSF-FA
every 3 days for 30 

days

Efficacy

NA

DSF-PLGA/Cu significantly 
reduced the intracranial 
and subcutaneous tumor 
size and tumor weight in 
mice.

NA

NA

NA

DSF decreased xenograft 
tumor growth and 
exerted chemo- and 
radio-therapy-
sensitizing effects.

DSF/Cu also significantly 
inhibited tumor growth 
and reduced tumor 
burden.

DSF eliminated the 
ALDH high leukemia 
cells and enhanced 
sensitivity to Ara-c in 
transplanted mice.

NA

DSF/Cu complex inhibited 
tumor growth and had 
the greater antitumor 
efficacy on cervical cancer 
than cisplatin in vivo.

DSF/Cu inhibited tumor 
growth and prolonged 
survival in vivo.

NA

DSF was effective in a 
post-surgery, post-
chemotherapy ovarian 
cancer relapse model in 
vivo.

DSF/Cu inhibited tumor 
growth and prolonged 
survival in vivo.

DSF/Cu reduced the 
tumor growth and 
inhibited stemness of 
multiple myeloma in 
xenograft model.

IRMOF3-DSF-FA could 
inhibit tumor growth 
and had a good tumor-
targeting ability in vivo.
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RNA; NA: Not available; NF-kB: Nuclear factor-kappa B; NOD: Non obese diabetes; NRF2: Nuclear factor erythroid 2-related factor 2; NSCLC: 
Non-small cell lung cancer; PLGA: Poly lactic-co-glycolic acid; ROS: Reactive oxygen species; SCID: Severe combined immune deficiency; XBP1: X-
box binding protein 1; gH2AX: g-H2A histone family member X.
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Table 2: DSF/Cu-enhanced drug sensitivity by targeting specific molecules.

Type of 
cancer

NPC

TGCTs

ESCC

Breast 
cancer

Breast 
cancer

Breast 
cancer

Breast 
cancer

NSCLC

HNSCC

NSCLC

GBM

GBM

PDAC

Compound (dose)

DSF/Cu + cisplatin

DSF + cisplatin

DSF/Cu + cisplatin + 
radiation

DSF/Cu + cisplatin

DSF + DOX

DSF/Cu + radiation

DSF + DTX

DSF/Cu + Taxol/VCR

DSF/Cu + cisplatin + 
irradiation

DSF/Cu + cisplatin + 
irradiation

DSF/Cu + 
temozolomide

DSF + galunisertib

DSF/Cu + IR + 5-FU/
FOLFIRINOX

Mechanisms

DSF/Cu induced NPC apoptosis 
by ROS/MAPK and inactive 
CAFs by inhibiting a-SMA.

DSF sensitized resistant NTERA-2 
CisR cells by decreasing ALDH 
activity and alteration of 
stemness-associated genes 
expression.

DSF/Cu sensitized chemo/radio-
resistant ALDH1-positive ESCC 
cells by inhibiting ALDH1 and 
downregulating the PI3K/Akt 
pathway.

DSF overcame cisplatin resistance 
by targeting ALDH, inhibiting 
the expression of Sox, Nanog, 
and Oct, and modulating ROS 
generation.

Lipo-DSF-DOX effectively 
overcame DOX resistance by 
inhibiting P-gp activity and its 
ubiquitination.

DSF/Cu induced ICD and 
improved the sensitivity in IR-
resistant CSCs partially by ROS 
generation and IRE1a/XBP1 
pathway.

DSF inhibited P-gp expression and 
increased ROS production and 
apoptosis.

DSF/Cu downregulated the 
expression of ALDH2 and 
reduced the levels of P-gp and 
stem cell transcription factors in 
vitro

DSF/Cu inhibited cisplatin-/IR-
induced G2/M phase arrest. Triple 
treatment of DSF/Cu + cisplatin + 
IR significantly increased the 
cytotoxicity by enhancing the 
ROS accumulation.

DSF/Cu enhanced radiation and 
chemotherapy toxicity in tumor 
cells dependent on ROS 
overproduction and Cu retention.

DSF/Cu impaird DNA repair and 
enhanced the effects of DNA 
alkylating agents to augment 
temozolomide activity.

DSF inhibited ALDH activity and 
decreased TGF-b signaling.

DSF/Cu targeted PCSCs and 
inhibited the NF-kB-stemness 
gene pathway.

In vivo

BALB/c nude 
mouse 5-8F 
xenograft model

Balb/c-nu/nu 
xenograft model

BALB/c nude mice

NA

NA

NA

Balb/c mice 
orthotopic 
breast cancer

Balb/c nude mice 
xenograft model

NMRI nu/nu mice 
PDX model

Athymic nude 
mice xenograft 
model

SCID mice 
orthotopic 
transplantation

SCID mice 
orthotopic 
xenograft model

C57BL/6 
xenograft model

Administration/dose

150 mg·kg–1·day–1 
DSF, 2 mg·kg–1·day–1 

Cu, 5 mg/kg CDDP per 
3 days for 15 days.

50 mg·kg–1·day–1 
DSF i.p., 3 mg·kg–1·day–1 
cisplatin i.p. for 28 days.

50 mg/kg DSF (i.p.), 
0.15 mg/kg Cu (orally), 

radiotherapy (4 Gy)

NA

NA

NA

73 mg/kg DSF (i.p.), 20 mg/kg 
DTX (i.v.), 0.085 ppm Cu in 

drinking water

60 mg/kg DSF, 1.92 mg/kg Cu, 
10 mg/kg Taxol; 30 mg/kg or 

60 mg/kg DSF, 9.6 mg/kg Cu, 
1 mg/kg VCR

Disulfiram (60 mg/kg, s.c.) 
three times a week, cisplatin 
(8 mg/kg, i.v.) once a week 

and irradiation (10 Gy)

Radiation (3 × 6 Gy)+
carboplatin (2 × 15 mg/kg)+

DSF(100 mg/kg)

100 mg·kg–1·day–1 
DSF, 2 mg·kg–1·day–1 

Cu, 50 mg·kg–1·mouse–1·day–1 
temozolomide

50 mg/kg DSF, 
75 mg/kg galunisertib

50 mg/kg DSF, 8 
Gy IR,10 mg/kg 5-FU, 

FOLFIRINOX (mixture: 
4.75 mg/kg irinotecan, 
10.5 mg/kg leucovorin, 
2.25 mg/kg oxaliplatin, 

20 mg/kg 5-FU)

Efficacy

Combined with CDDP, DSF/Cu 
significantly inhibited tumor 
growth of NPC tissues in vivo.

DSF in combination with cisplatin 
inhibited tumor growth of 
NTERA-2 CisR xenografts.

DSF/Cu complex enhances the 
radiosensitivity in ESCC via 
inhibition of ALDH1 in tumor-
initiating cells.

NA

NA

NA

DSF/Cu enhanced anti-tumor 
efficacy and prevented lung 
metastasis in vivo.

DSF/Cu significantly inhibited 
tumor growth and reversed 
microtubule inhibitor resistance 
in vivo.

DSF inhibited tumor growth in 
three different HNSCC-derived 
PDX models, supporting DSF as 
a strong radio-chemosensitizer.

DSF decreased xenograft tumor 
growth when combined with 
radiation and carboplatin in 
vivo.

DSF/Cu prolonged in vivo survival 
in patient-derived BTIC models 
established from both newly 
diagnosed and recurrent tumors.

DSF and galunisertib suppressed 
therapeutic-resistant GBM 
growth in vivo.

DSF/Cu combined with IR and 5-
FU was more effective than 
either IR + 5-FU or IR + 
FOLFIRINOX therapy in 
inhibiting tumor growth of the 
mouse.

References
[48]

[92]

[93]

[72]

[94]

[59]

[95]

[88]

[96]

[54]

[97]

[98]

[99]

a-SMA: a-Smooth muscle actin; A549/Taxol cells: Taxol-resistant A549 cells; ALDH: Aldehyde dehydrogenase; BTIC: Brain tumor-initiating cells; 
CAFs: Cancer-associated fibroblasts; CDDP: Cisplatin; CisR: Chemoresistant; CSCs: Cancer stem cells; DOX: Doxorubicin; DSF: Disulfiram; 
DSF/Cu: Combination of DSF and copper; DTX: Docetaxel; ESCC: Esophageal squamous cell carcinoma; 5-FU: 5-Fluorouracil; FOLFIRINOX: 
Mix of 4 drugs: Irinotecan, Leucovorin, Oxaliplatin, and 5-Fluorouracil; GBM: Glioblastoma; HNSCC: Head and neck squamous cell carcinoma; 
ICD: Immunogenic cell death; i. p.: Intraperitoneal injection; IR: Ionizing radiation; IRE1a: Inositol-requiring enzyme 1a; i. v.: Intravenous 
injection; KB/VCR cells: Vincristine-resistant KB cells; MAPK: Mitogen-activated protein kinase; NA: Not applicable; NF-kB: Nuclear factor-
kappa B; NPC: Nasopharyngeal cancer;  NSCLC: Non-small cell lung cancer; PCSCs: Pancreatic cancer stem cells; PDAC: Pancreatic ductal 
adenocarcinoma; PDX: Patient-derived tumor xenograft; P-gp: P-glycoprotein; PI3K: Phosphoinositide 3-kinase; ROS: Reactive oxygen species; s.c.: 
Subcutaneous injection; SCID: Server combined immune-deficiency; TGCTs: Testicular germ cell tumors; TGF-β: Transforming growth factor β; 
VCR: Vincristine; XBP1: X-box binding protein 1.
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protein 1 (MRP1), and ATPase copper transporting 
proteins alpha and beta (ATP7A and ATP7B). DSF 
inhibits ATP7A expression, which increases the levels of 
platinum–DNA adducts as well as apoptosis of human 
urothelial carcinoma (UC) cells, indicating that DSF 
confers UC cells higher sensitivity to chemotherapy.[16] 
Furthermore, chemoresistance is closely related to the 
activation of NF-kB in cancer cells.[89] Liu et al[90] found 
that administration of liposome-encapsulated DSF reverses 
the chemoresistance of breast cancer cells by targeting the 
NF-kB pathway in vitro and in vivo. Collectively, these 
data support the conclusion that DSF serves as an adjuvant 
strategy for overcoming drug resistance. Moreover, DSF 
significantly increases the sensitivity to ionizing radia-
tion of pancreatic cancer cells and xenografted nude mice 
by aggravating DNA damage as well as inducing cell 
cycle arrest and apoptosis.[14] Similarly, DSF improves T-
cell-mediated antitumor immunity via directly activating 
T-cell antigen receptor (TCR) signaling. Furthermore, 
DSF-induced antitumor immunity against colon cancer 
and melanoma in mouse models is further enhanced when 
combined with anti-programed cell death-1 (PD-1).[91] 
However, Zirjacks et al[75] demonstrated that DSF/Cu 
does not improve the treatment response to radiotherapy 
and temozolomide in mesenchymal GBM cells. And the 
further mechanism research found that temozolomide 
can reduce the effect of DSF on clonogenic survival, 
likely caused by pharmacological interactions between 
DSF and temozolomide. Here, the effects of DSF/Cu-
based therapy on improving radio/chemo-sensitivity are 
summarized in Table 2,[48,54,59,69,72,88,92–99] which will 
hopefully provide insights and inspirations for researchers 
in this field.

Improved Drug Delivery System for DSF

Although DSF/Cu exhibits high toxicity in various 
cancer cells, clinical studies of DSF/Cu in cancer patients 
are not satisfactory. These inconsistent outcomes may be 
attributed to the rapid degradation of DSF or the 
unwanted modification of its metabolite DDC in the 
liver. Consequently, DDC loses its functional sulfhydryl 
groups, resulting in reduced chelation between DDC and 
Cu, which deceases the levels of the active Cu(DDC)2 
complex.[58] To overcome its instability and to realize 
the maximal therapeutic efficacy of DSF, various combi-
nation therapies and drug delivery systems (DDSs) have 
been extensively explored. For example, the use of nano-
encapsulation technologies such as liposomes, polymers, 
polymeric micelles, or protein (albumin) particles encap-
sulating the DSF/DDC to protect the functional thiol 
groups of DDC has been widely applied to the treat-
ment of various cancers.[90,94,100–103] Furthermore, 
nanoparticles are easily captured by tumor cells, 
increasing drug concentrations at the lesion site, which 
alleviates cytotoxicity.[104] In contrast, the codelivery 
systems for DSF and other chemotherapeutics may effi-
ciently overcome drug resistance, promoting a syner-
gistic effect.[105–107] Collectively, recent DSF-based treat-
ment strategies have undergone dramatic development 
with huge potential for the treatment of cancer, which 
are well summarized in a recent review by Lu et al.[108]

Challenges and Perspectives

DSF is a first-line anti-alcoholism drug with good safety 
profiles that has been used in clinics for over 70 years. 
Recently, drug repurposing research has shown its great 
potential for developing an antitumor agent. However, 
the clinical trials of DSF encountered some challenges-
that must be addressed. First, given that DSF-induced 
cytotoxicity depends on Cu, supplementation with copper 
should be applied to patients with Cu deficiency. 
Notably, DSF/Cu manifested more serious and uncon-
trollable toxicity against cancer cells than DSF alone. 
Thus, considering its safety profile, balancing between 
DSF with slight efficacy and DSF/Cu with strong cyto-
toxicity should be fully explored to allow the clinical 
application of DSF for comprehensive cancer treatment. 
Second, DSF/Cu regulates the immune microenviron-
ment and induces the death of immunogenic cells that 
attack cancer cells. However, further research is needed 
to explore how to prevent excessive cytokine release and 
inflammatory response during antitumor treatment. 
Furthermore, when DSF is used as an adjuvant therapy 
for cancers, the pharmacological interactions with come-
dications should be carefully investigated in advanced 
for the success of future clinical trials. Finally, DSF can 
also be combined with another metal, such as Zn ion 
which also shows anticancer activities, hence the applica-
tion of DSF in vivo in complicated and should be 
further investigated in the future. Despited these chal-
lenges, we firmly believe that the prospect of DSF in 
serving as a treatment for cancer is promising. Further 
studies should focus on the in-depth mechanism of DSF 
as an anticancer reagent, and trials designed to bridge 
the gap between the laboratory and the clinic are 
required.

Conclusions

DSF, especially DSF/Cu, shows high anti-tumor effects 
on diverse cancers, which is associated with induction of 
the intracellular ROS, inhibition of proteasome activity, 
as well as inhibition of nuclear factor-kappa B (NF-kB) 
signaling. In addition, DSF or DSF/Cu targets CSCs and 
improves radio/chemo-sensitivity, which will provide a 
novel avenue for cancer treatment in the future.
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