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Abstract. Osteoporosis is a common bone metabolic disease 
that causes a heavy social burden and seriously threatens 
life. Improving osteogenic capacity is necessary to correct 
bone mass loss in the treatment of osteoporosis. Osteoblasts 
are derived from the differentiation of bone marrow 
mesenchymal stem cells, a process that opposes adipogenic 
differentiation. The peroxisome proliferator‑activated receptor 
γ and Wnt/β‑catenin signaling pathways mediate the mutual 
regulation of osteogenesis and adipogenesis. Lipid substances 
play an important role in the occurrence and development of 
osteoporosis. The content and proportion of lipids modulate 
the activity of immunocytes, mainly macrophages, and the 
secretion of inflammatory factors, such as IL‑1, IL‑6 and 
TNF‑α. These inflammatory effectors increase the activity 
and promote the differentiation of osteoclasts, which leads 
to bone imbalance and stronger bone resorption. Obesity 
also decreases the activity of antioxidases and leads to 
oxidative stress, thereby inhibiting osteogenesis. The present 
review starts by examining the bidirectional differentiation 
of BM‑MSCs, describes in detail the mechanism by which 
lipids affect bone metabolism, and discusses the regulatory 
role of inflammation and oxidative stress in this process. The 
review concludes that a reasonable adjustment of the content 
and proportion of lipids, and the alleviation of inflammatory 
storms and oxidative damage induced by lipid imbalances, 
will improve bone mass and treat osteoporosis.
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1. Introduction

Osteoporosis is a common systemic bone disease (1). Bone 
quality decreases and bone mass loss in patients with osteopo‑
rosis are important risk factors for fractures (2). Osteoporosis 
can be divided into primary and secondary types. Primary 
osteoporosis includes postmenopausal osteoporosis and 
senile osteoporosis  (3). Secondary osteoporosis is mainly 
represented by diabetic osteoporosis but includes a number of 
types, such as secondary kidney disease and gastrointestinal 
disease (4). Postmenopausal women, elderly men and diabetic 
patients are the main populations at high risk for osteoporosis. 
Due to the diversity of osteoporosis types, methods for directly 
promoting osteogenesis and inhibiting osteoclasts are used to 
treat osteoporosis in the clinic, but the effects are not satisfac‑
tory (5). Scientists have conducted sufficient research on the 
pathogenesis of various types of osteoporosis but have not 
reached a unified conclusion (6,7). Identifying common patho‑
genic factors of multiple osteoporosis types will be beneficial 
for clinical diagnosis and treatment.

Compared with the increase in osteoclast activity, decreased 
osteogenesis is the most important factor in the occurrence and 
development of osteoporosis. On the one hand, bone resorption 
by osteoclasts contributes to the metabolism of bone tissue (8), 
while on the other hand, inhibiting osteoclastogenesis relieves 
further loss of bone mass, but does not improve bone mass, 
and patients are still in an osteoporotic state (9). Therefore, 
the role of osteoblasts is key to exploring the regulation of 
multiple types of osteoporosis. Osteoblasts are differentiated 
from bone marrow mesenchymal stem cells (BM‑MSCs) (10). 
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BM‑MSCs are pluripotent stem cells with multidirectional 
differentiation ability  (11). Adipogenic differentiation is 
another main differentiation direction that is balanced with 
osteogenesis (12). Increasing the adipogenesis of BM‑MSCs 
is an important factor in the development of osteoporosis, as 
it decreases osteogenesis (13). Therefore, determining the role 
of fat formation will contribute to unifying the mechanisms of 
the pathogenesis of osteoporosis.

Postmenopausal women are at the highest risk of 
osteoporosis. A previous study indicated that more than 
one‑half of postmenopausal women suffer from metabolic 
syndrome, and nearly 60% of them have dyslipidemia (14). 
Furthermore, estrogen deficiency can induce hyperlipidemia 
in animals (15,16). With aging, the activity of lipid metabolic 
enzymes undergoes obvious changes (17). Lipid peroxida‑
tion also accelerates the aging process (18). Additionally, 
lipid metabolism dysfunction and type  2 diabetes are 
inextricably linked (19). Obesity is not only an important 
risk factor for type  2 diabetes, but hyperinsulinemia in 
diabetic patients also affects the synthesis and degradation 
of lipids (20‑22). Lipid metabolism disorders are common 
in patients with several typical types of osteoporosis. 
Therefore, the present review aims to systematically discuss 
the role of lipid metabolism in the occurrence and develop‑
ment of osteoporosis.

2. Obesity‑induced osteoporosis

Obesity is a high risk factor for osteoporosis. The view that 
the accumulation of fat increases the protection of bones is 
doubted and challenged (23). Based on the balance of osteo‑
genesis and adipogenesis, the expansion of bone marrow 
adipose tissue is common in populations at a high risk for 
osteoporosis, leading to decreased bone formation (24). Bone 
mineral density decreases significantly with increasing fat 
levels in bone marrow and blood, and obesity increases the 
risk of fracture by approximately six‑fold (25,26). There is 
a significant negative correlation between visceral adipose 
tissue and bone mineral density (27). Additionally, a popu‑
lation‑based study indicated that the weight‑adjusted waist 
circumference index was positively correlated with hip and 
spine fractures (28). Redistribution of adipose tissue and the 
infiltration of muscle are important in the pathogenesis of 
fractures (29). The extra weight in obese individuals leads to 
the occurrence of osteoporosis due to the considerable load 
on the joints and bones. Calcium deficiency and poor calcium 
deposition are the main pathogeneses of obesity‑induced 
osteoporosis. Obese individuals have difficulty absorbing 
vitamin B12 and vitamin D, which is not conducive to bone 
tissue remodeling (30). In a previous study, 86.2% of obese 
women were reported to be deficient in vitamin D and had 
difficulty absorbing calcium (31). Vitamin D deficiency can 
alter adipogenesis, lipogenesis and lipolysis, and exacerbate 
obesity (32). The vicious cycle of obesity and vitamin D accel‑
erates bone loss. Hypovitaminosis D also occurs during the 
weight loss process (33). Aging also reduces the absorption 
of vitamin D, which increases the risk of bone loss and osteo‑
porosis (34). Therefore, an appropriate intake of vitamin D 
and calcium contributes to improving the adverse effects of 
obesity and weight loss on bone remodeling.

3. Balance of osteogenesis and adipogenesis

BM‑MSCs are pluripotent stem cells with self‑renewal 
and multidirectional differentiation abilities that are the 
precursor cells of osteoblasts and adipocytes  (35). There 
is a mutual balance and modulation between these two 
differentiation trends  (36). Scientists have discovered that 
peroxisome proliferator‑activated receptor γ (PPARγ) and Wnt 
signaling are factors that mediate the balance between osteo‑
genesis and adipogenesis (37). Activation of Wnt/β‑catenin 
signaling promotes the expression of bone morphogenetic 
proteins  (38,39). PPARγ inhibits the osteogenic effect of 
the Wnt/β‑catenin signaling pathway by activating the Wnt 
inhibitor Dickkopf and directly acting on the β‑catenin 
nuclear transcription factor complex  (40). DNA meth‑
ylation plays an important role in BM‑MSC differentiation. 
Methylation of histone H3 lysine 9 dimethylation (H3K9me2) 
at the runt‑related transcription factor 2 (Runx2) promoter 
modulates the osteogenic differentiation and mineralization 
of BM‑MSCs (41). In one study, a DNA methylation profile 
revealed that zinc‑finger E homeobox‑binding transcription 
factors participated in the osteogenic and adipogenic differ‑
entiation of BM‑MSCs, and were correlated with body mass 
index and PPARγ expression (42). The non‑canonical Wnt 
pathway participates in the inhibition of PPARγ by activating 
histone‑lysine N‑methyltransferase SETDB1 to induce histone 
H3K9 methylation of target genes (43,44) (Fig. 1).

4. Hyperlipemia‑induced pathological changes and 
osteoporosis

Inflammation and oxidative stress are the main patho‑
logical changes in the development of osteoporosis (Fig. 2). 
Inflammatory status is a common element for pathological 
change in obese individuals. The accumulation of adipose tissue 
can induce chronic inflammation and lead to an imbalance in 
the release of hormones and adipokines (45). Adipocytes can 
directly release inflammatory factors, including TNF‑α, IL‑6, 
C‑reactive protein and adiponectin (46). The metabolic activity 
of adipocytes is increased in obese individuals, who require 
a large amount of protein synthesis. Endoplasmic reticulum 
stress occurs when the endoplasmic reticulum cannot meet 
protein synthesis needs, thus activating the inflammatory 
response (47). Macrophages and lymphocytes are also acti‑
vated to release inflammatory factors in adipose tissue (48). 
Additionally, the abundance of fatty acid‑producing bacteria 
increases in the intestines of obese individuals, leading to intes‑
tinal mucosa injury and an inflammatory response to promote 
systemic chronic inflammation (49). Inflammation is regarded 
as an important mediator of obesity‑induced osteoporosis. In 
mice fed a high‑fat diet (HFD), serum lipid levels increase, 
bone mineral density decreases, and serum inflammatory 
factors, including IL‑1 and TNF‑α, increase  (50,51). IL‑1 
activates the NF‑κB and MAPK pathways by stimulating TNF 
receptor‑associated factor 6 (TRAF6) to promote osteoclas‑
togenesis with the assistance of receptor activator of nuclear 
factor κΒ ligand (RANKL) (52). TNF‑α slows the differen‑
tiation of osteoblasts and enhances the activity of osteoclasts 
by recruiting TRAF and activating the NF‑κB/c‑Fos/nuclear 
factor of activated T‑cells cytoplasmic 1 (NFATc1) pathway, 
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which is independent of the RANKL/RANK system (53,54). 
Additionally, a HFD induces many CD11c+ macrophages to 

aggregate and express IL‑18 and IL‑1β (55). Macrophages 
participate in the pathogenesis of osteonecrosis, which is the 

Figure 1. Balance of osteogenesis and adipogenesis in BM‑MSCs. Wnt/β‑catenin signaling mediates the osteogenic differentiation of BM‑MSCs. Activation 
of PPARγ signaling promotes adipogenesis. There are mutual inhibitory effects between Wnt/β‑catenin and PPARγ signaling mediated by histone methyla‑
tion. BM‑MSCs, bone marrow‑mesenchymal stem cells; Runx2, runt‑related transcription factor 2; LRP, lipoprotein receptor related protein; TCF, T‑cell 
factor; LEF, lymphoid enhancing factor; SETDB1, histone‑lysine N‑methyltransferase SETDB1; Me2/3, demethylation/trimethylation; PRDM16, PR domain 
containing 16; C/EBPβ, CCAAT/enhancer‑binding protein β; PPARγ, peroxisome proliferator‑activated receptor γ; RXR, retinoid X receptor; PGC‑1α, peroxi‑
some proliferator‑activated receptor γ coactivator 1α; EBF2, early B‑cell factor 2.

Figure 2. Induced pathological changes and osteoporosis. Inflammation and oxidative stress are the main pathological changes in the development of osteo‑
porosis. Accumulation of adipose tissue induces the release of inflammatory factors to activate RANKL‑mediated osteoclast differentiation. A high‑fat state 
inhibits Nrf2/HO‑1 signaling and destroys mitochondrial function to induce intracellular oxidative stress. Excessive generation of ROS inhibits osteogenesis 
and promotes osteoblast differentiation. RANKL, receptor activator of nuclear factor κΒ ligand; TRAF, TNF receptor‑associated factor; NFATc1, nuclear 
factor of activated T‑cells cytoplasmic 1; Nrf2, nuclear factor erythroid 2‑related factor 2; HO‑1, heme oxygenase‑1; ROS, reactive oxygen species; Runx2, 
runt‑related transcription factor 2.
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main mechanism by which immune cells affect bone metabo‑
lism (56). Macrophages are also progenitors of osteoclasts 
that contribute to bone absorption (57). In conclusion, limiting 
the activity of macrophages and the release of inflammatory 
factors helps alleviate the damage to bone balance caused by 
hyperlipidemia.

Oxidative stress is another important pathological state 
induced by obesity that accelerates bone metabolism disor‑
ders (58). In one study, the levels of serum markers of oxidative 
stress, including hydrogen peroxide and malondialdehyde, in 
obese individuals almost doubled compared with those in indi‑
viduals of normal weight (mean age, 71.0±5.7) (59). Oxidized 
low‑density lipoprotein is an oxidative stress biomarker that is 
involved in the negative effects of obesity (60). Mitochondrial 
dysfunction is the main cause of obesity‑induced oxidative 
stress (61). Hyperlipidemia destroys the structure of the mito‑
chondria, changes the membrane potential and affects ATP 
synthesis (62). Obese individuals have difficulties clearing 
reactive oxygen species (ROS) based on decreased antioxi‑
dant enzyme activity, leading to ROS accumulation and the 
aggravation of oxidative stress (63). In HFD‑fed mice, serum 
total antioxidant capacity and levels of superoxide dismutase, 
which is associated with bone biomechanical strength and 
microarchitecture, are decreased (64). Hyperlipidemia also 
decreases the expression of nuclear factor erythroid 2‑related 
factor 2 (Nrf2) and antioxidant enzymes in bone tissue (50). 
HFD consumption induces the overexpression of ROS to 
inhibit the Wnt/β‑catenin pathway  (65). Oxidative injury 
decreases the expression of BMP2 and Runx2 in osteo‑
blasts  (66). Oxidized lipids contribute to PPARγ‑induced 
adipogenesis and inhibit β‑catenin‑induced osteogenesis in 
osteoporosis (67,68). HFD consumption reduces the gluta‑
thione/oxidized glutathione ratio to not only inhibit bone 
formation, but also to increase the expression of bone resorp‑
tion markers such as cross‑linked N‑telopeptides of bone type 
І collagen (69). HFD intake promotes osteoclast activity and 
differentiation by inhibiting the Nrf2/heme oxygenase‑1/cata‑
lase signaling pathway (70).

5. Lipids and osteoporosis

Triglycerides are an important form of fat; they are the main 
energy source in the body, and have the greatest storage and 
production capacity. Triglyceride levels were positively associ‑
ated with an increased risk of osteoporosis in a study of serum 
fat markers in 481 individuals (71). The levels of triglycerides 
were obviously different among the normal, osteopenia and 
osteoporosis groups  (71), which indicated that variations 
in triglycerides were strongly related to the occurrence and 
development of osteoporosis (72). Some drugs for the treat‑
ment of osteoporosis, such as bisphosphonates and calcium, 
have also been found to cause abnormal triglyceride metabo‑
lism in adipose tissue while promoting bone growth, showing 
that interfering with fat metabolism is beneficial for improving 
bone mass (73,74). At the cellular level, the adipogenic differen‑
tiation of BM‑MSCs leads to the accumulation of triglycerides, 
which are a risk factor for osteogenesis (75). Triglycerides 
decrease the expression of the bone growth factor FGF2 and 
increase the expression of the inflammatory mediator TNF‑α, 
which inhibits the proliferation of osteoblasts (76). Notably, 

appropriate modification of triglycerides and adjustment 
of their concentration can improve bone mineral density by 
promoting the transdifferentiation of chondrocytes to osteo‑
blasts in postmenopausal mice (77).

Cholesterol is a substance involved in the structural 
arrangement of the body and the regulation of cell function. 
As an important synthetic substance consisting of estrogen 
and vitamin D, cholesterol is involved in the regulation of 
bone metabolism (78). Previous studies have indicated that 
serum total cholesterol (TC) levels are negatively correlated 
with bone mineral density  (71,79). A high‑cholesterol diet 
inhibits the differentiation and proliferation of osteoblasts, 
and reduces bone formation (66,80). Osteoclast synthesis also 
requires exogenous cholesterol (81). Cholesterol is classified as 
high‑density lipoprotein cholesterol (HDL‑C) and low‑density 
lipoprotein cholesterol (LDL‑C). A number of studies have 
demonstrated the fact that HDL‑C is positively associated with 
bone mineral density (82‑84). Dysfunctional HDL‑C increases 
the expression of PPARγ and decreases the expression of 
osteogenic markers (85). When HDL‑C inhibits the activity of 
inflammatory factors, these factors suppress osteogenic forma‑
tion via the Wnt/β‑catenin axis (86). In contrast to HDL‑C, 
LDL‑C is a negative regulator of bone homeostasis. On the 
one hand, LDL‑C inhibits alkaline phosphatase activity and 
cell mineralization to interfere with osteogenesis (87), while 
on the other hand, LDL‑C activates RANKL and promotes 
cell fusion during osteoclastogenesis (88,89). Based on this 
evidence, decreasing TC levels and increasing the proportion 
of HDL‑C are beneficial for attenuating the development of 
osteoporosis.

Phospholipids are the main components of biological 
membrane structures. Phospholipids interfere with bone 
homeostasis mainly in their oxidized form (90). The accu‑
mulation of oxidized phospholipids leads to a systemic 
inflammatory state by influencing immunocytes, which 
causes inflammatory bone loss (91). Various phospholipids 
exhibit toxicity to osteoblasts after oxidation (92). Oxidized 
phospholipids reduce the expression of osteogenic markers 
and attenuate parathyroid hormone signaling (93). Bioactive 
oxidized phospholipids also decrease the response of 
BM‑MSCs to osteogenic factors to inhibit osteogenesis by 
binding to receptors on the cell surface (94). Additionally, a 
previous study indicated that oxidized phospholipids could 
enhance the production of RANKL by T lymphocytes to 
promote osteoclastogenesis (95). These phospholipids also 
induce osteoblasts to secrete cell cytokines such as IL‑6 
and TNF‑α, both of which contribute to osteoclast differ‑
entiation  (96). Neutralization of oxidized phospholipids 
is beneficial for improving bone mass (97,98). The oxida‑
tion‑specific epitopes of oxidized phospholipids are potential 
targets for osteoporosis treatment (99).

Glycolipids are a class of lipid compounds involved in the 
biological structure of cell membranes and are closely related 
to the development of osteoporosis (100). Glycolipid‑induced 
toxicity is an important factor in diabetic patients with 
osteoporosis (101). Menopause‑related hormone therapy for 
osteoporosis is also relevant to glycolipid metabolism (102). 
Leucine‑rich repeat‑containing G‑protein coupled receptor 
4, which is related to glycolipids, has been shown to have an 
osteogenic effect by upregulating the expression of components 
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of the Wnt/β‑catenin signaling pathway (103). Some studies 
have indicated that glycolipids conjugated to receptors on 
natural killer (NK) T cells protect against osteolytic patho‑
genesis (104,105). However, invariant NK T cells increase the 
expression of RANKL to promote osteoclastogenesis (106). 
The effect of glycolipids on NK cells might be a key factor in 
osteoimmunology.

Bile acid is the main route of cholesterol conversion, and 
it is also the main component of bile and is involved in fat 
metabolism. Serum metabolomic analysis of ovariectomized 
mice revealed that serum bile acid levels were closely related 
to the development of postmenopausal osteoporosis (107). 
Serum bile acid level is positively correlated with bone 
mineral density (108). However, different types of bile acids 
have different effects on bone metabolism. Osteoporosis 
is a common complication of biliary cholangitis (109). The 
use of ursodeoxycholic acid to treat cholestatic liver disease 
plays a positive role in the treatment of osteoporosis (110). 
Ursodeoxycholic acid also promotes the differentiation 
of osteoblasts by increasing the expression of Runx2 and 
inhibiting osteoblast apoptosis induced by bilirubin (109,111). 
Targeted stimulation of bile acid receptors contributes to 
preventing osteoporosis in postmenopausal mice (112,113). 
In contrast to ursodeoxycholic acid, lithocholic acid plays 
a negative role in bone balance. In human osteoblasts, 
lithocholic acid decreased the expression of osteogenic 
proteins, dampened the effect of vitamin D and increased 
the expression of apoptosis markers in osteoblasts (114,115). 
Additionally, lithocholic acid enhances osteoclast activity by 
upregulating RANKL expression (109). Overall, increasing 
the level of deoxycholic acid might prevent the occurrence of 
osteoporosis.

Triglyceride metabolism results in the production of 
glycerol and large amounts of fatty acids, both of which 
affect bone homeostasis. Glycerol is widely used in drug 
modification and the design of bone scaffolds via tissue engi‑
neering technology due to its satisfactory permeability and 
membrane fusion properties (116‑118). Fatty acids are clas‑
sified as saturated and unsaturated fatty acids. Unsaturated 
fatty acids are generally considered beneficial to the human 
body  (119). However, the positive effect depends on the 
ratio of n‑3 fatty acids to n‑6 fatty acids. With an increase 
in the ratio of n‑3/n‑6 fatty acids, the bone mineral density 
increases and the fracture ratio decreases (120). n‑3 fatty 
acids can reverse the effects of aging and promote the prolif‑
eration and differentiation of osteoblasts (121). Fatty acids 
are catabolized in the liver to produce ketone bodies, which 
are involved in bone metabolism. Acetoacetate can promote 
osteoblast differentiation and generate far fewer free radi‑
cals than the equivalent amount of glucose under the same 
conditions, thereby reducing oxidative damage to osteoblast 
precursor cells  (122,123). However, β‑hydroxybutyrate 
plays a negative role in osteogenic differentiation (122). As 
aforementioned, high triglyceride levels are detrimental to 
bones, and the effects of their ketogenic metabolites are 
multifaceted. Decreasing triglyceride levels and adjusting 
the ratio of their ketogenic metabolites will increase bone 
mass in patients with osteoporosis. Genes associated with 
fatty acid biosynthesis and degradation participate in the 
regulation of bone metabolism. Acyl‑CoA synthetase 

long‑chain family members (ACSLs) play a key role in fatty 
acid metabolism by converting free long‑chain fatty acids 
into fatty acyl‑CoA esters. ACSL1 is a potential biomarker 
of osteoporosis, as it modulates the activity of microRNAs 
during adipogenesis  (124). ACSL1 is also involved in the 
inflammatory response in osteoporosis  (125). Previous 
studies found that ACSL3 is significantly correlated with 
total hip bone mineral density (126), while ACSL5 is associ‑
ated with sarcopenia during hip fractures (127). Differential 
gene analysis via the Gene Expression Omnibus database 
revealed that ACSL5 is a potential target for osteoporosis 
treatment  (128). Malonyl‑CoA‑acyl carrier protein trans‑
acylase (MCAT) is a component of the fatty acid synthase 
complex in mitochondria and is the specific substrate of the 
zinc finger DHHC‑type palmitoyltransferase 13 (ZDHHC13) 
enzyme. ZDHHC13 deficiency leads to the accumulation of 
MCAT proteins and induces mitochondrial damage, causing 
osteoporosis (129) (Table I).

6. Obesity in postmenopausal osteoporosis

The incidence of obesity in postmenopausal women is 
increasing. With increasing age, the metabolism of body fat 
slows. According to past dietary habits, obesity will inevi‑
tably occur. Estrogen is an important endogenous hormone 
that regulates lipid metabolism. On the one hand, estrogen 
affects the distribution of fat in the body. As estrogen levels 
decrease, fat is redistributed and accumulates from the limbs 
and trunk to the abdomen and viscera (130). The levels of fatty 
acid metabolites are increased in visceral adipose tissue (131). 
On the other hand, estrogen regulates lipid synthesis and 
decomposition. Estrogen regulates hypothalamic neurons 
and transmits signals to control adipose tissue catabolism 
and thermogenesis (132). Estrogen receptor α mediates the 
activation of thermogenic uncoupling protein‑1 to promote fat 
consumption (133). Estrogen receptor α also promotes histone 
modification and regulates the DNA methylation of genes 
associated with lipid metabolism to inhibit adipogenesis (134). 
In an estrogen‑deficient state, β‑oxidation of free fatty acids 
to provide energy does not occur, leading to fat accumula‑
tion (135). Postmenopausal obesity is a high risk factor for the 
development of osteoporosis. Obesity accelerates bone loss 
and increases bone fragility in postmenopausal women (136). 
Obesity is positively correlated with the occurrence of 
all‑cause fractures but protects against pelvic fractures in 
postmenopausal women (137). A meta‑analysis indicated that 
serum adipokines were potential predictors of bone mineral 
density and fracture risk in postmenopausal women (138). 
Selective inhibition of adipogenesis could prevent the devel‑
opment of osteoporosis in ovariectomized (OVX) mice (139). 
High levels of β‑crosslap and low levels of procollagen type 1 
N‑terminal propeptide indicate an imbalance in bone forma‑
tion and resorption in postmenopausal obese women (140). 
The decrease in plasma calcium and phosphorus levels 
also indicated weak osteogenesis in obese OVX mice. The 
levels of obesity‑associated proteins, which colocalize with 
tartrate‑resistant acid phosphatase (TRAP) and upregulate 
NFATc1 and c‑FOS expression to promote RANKL‑mediated 
osteoclast differentiation, are increased in postmenopausal 
obese mice (141). Increasing calcium intake could help reduce 
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postmenopausal weight and increase serum leptin levels, 
which helps alleviate bone loss (142).

7. Lipid metabolism disorders in osteoporotic patients with 
diabetes

Obesity is related to and impacts diabetes. Patients with 
diabetes are prone to abnormal blood lipid levels, as fat 
synthesis is reduced, degradation is accelerated and disorders 
of lipid metabolism cause an increase in blood lipids (143). In 
diabetes, large amounts of fatty acids and glycerol enter the 
liver due to accelerated fat degradation with a decrease in the 
insulin/glucagon ratio. Excessive fatty acids are re‑esterified 
into triglycerides and released into the bloodstream in the form 
of very‑low‑density lipoproteins (VLDLs) (144). Additionally, 
the activity of lipoprotein lipase decreases, making it diffi‑
cult for VLDLs and chylomicrons to be cleared from the 
plasma  (145). Abnormal hormone secretion in diabetes 
promotes the activity of β‑hydroxy β‑methylglutaryl‑CoA 
reductase to increase cholesterol synthesis (146). The synthesis 
of triglycerides also increases in diabetic patients (147). In 
addition, adipose tissue secretes a variety of inflamma‑
tory factors, such as leptin and adiponectin, which reduce 
insulin sensitivity and aggravate diabetes (148). Abnormal 
lipid metabolism is a driving factor of the development of 
osteoporosis in diabetic patients (149). TC, triglyceride and 
LDL‑C levels are negatively correlated with bone mineral 
density in diabetic patients. Hyperglycemia inhibits osteo‑
genesis and promotes adipogenic differentiation (150). High 
glucose‑induced lipid peroxidation leads to ferroptosis in 

osteoblasts (151,152). In a previous study, diabetic mice with 
excess fat showed obviously elevated TRAP levels, which 
indicated enhanced bone resorption (153).

8. Discussion

The incidence of osteoporosis, a latent disease, has increased 
in recent years (154). According to statistics, the prevalence of 
osteoporosis in women aged ≥50 years can reach 33%, while 
the prevalence in men can reach 20%. Since the onset of osteo‑
porosis has no obvious symptoms, it is generally diagnosed 
after a fracture or spinal deformity (155). However, once these 
symptoms appear, the patient has already lost considerable 
bone mass and the osteoporosis is difficult to cure. Therefore, 
routine physical examination and medication intervention in 
high‑risk groups are key to preventing osteoporosis complica‑
tions. Due to the diversity of osteoporosis types and unclear 
pathogenesis, the effects of current drugs are not satisfactory. 
Osteoporosis occurs mainly secondary to different endocrine 
diseases or physiological state changes, and understanding the 
direct effects on bones is beneficial for unifying the theories 
of the pathogenesis of osteoporosis (156,157). Designing drugs 
based on common pathogenesis will contribute to improving 
the effectiveness and universality of osteoporosis drug 
treatments.

Osteoblasts are differentiated from mesenchymal stem 
cells in the bone marrow. BM‑MSCs have multiple differentia‑
tion abilities, and an improvement in one differentiation ability 
will affect the abilities other types of differentiation. Among 
these differentiation trends, osteogenesis and adipogenesis 

Table I. Effect of lipids in bone metabolism.

Lipids and metabolites	 Mechanism	 Effect in bone metabolism	 (Refs.)

Triglyceride	D ecreasing FGF2 expression and	D ecreased osteoblasts and 	 (75)
	 promoting TNF‑α secretion	 increased osteoclasts
HDL‑C	 Activating Wnt/β‑catenin	 Increased osteoblasts	 (85)
	 Inhibiting PPARγ	D ecreased adipocytes	 (84)
LDL‑C	 Inhibiting ALP activity and bone	D ecreased osteoblasts	 (86)
	 mineralization
	 Activating RANKL	 Increased osteoclasts	 (87,88)
Phospholipid	 Inhibiting osteogenic differentiation	D ecreased osteoblasts	 (92)
	 and PTH signaling
	 Promoting IL‑6 and TNF‑α secretion; 	 Increased osteoclasts	 (94,95)
	 activating RANKL
Ursodeoxycholic acid	 Increasing Runx2 expression	 Increased osteoblasts	 (108,110)
Lithocholic acid	 Reducing vitamin D	D ecreased osteoblasts	 (113,114)
	 Upregulating RANKL	 Increased osteoclasts	 (108)
n‑3 fatty acid	 Reversing aging, promoting proliferation 	 Increased osteoblasts	 (120)
and differentiation
Acetoacetate	 Promoting differentiation	 Increased osteoblasts	 (121,122)
β‑hydroxybutyrate	 Inhibiting differentiation	D ecreased osteoblasts	 (121)

HDL‑C, high‑density lipoprotein cholesterol; LDL‑C, low‑density lipoprotein cholesterol; PPARγ, peroxisome proliferator‑activated receptor γ; 
ALP, alkaline phosphatase; RANKL, receptor activator of nuclear factor κΒ ligand; PTH, parathyroid hormone; Runx2, runt‑related transcrip‑
tion factor 2.
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are considered relevant groups with a clear negative correla‑
tion (158). The present review discusses the osteogenic and 
adipogenic differentiation of BM‑MSCs and the mutual 
regulatory effects mediated by the PPARγ and Wnt/β‑catenin 
signaling pathways. The review also examines the role of other 
lipid substances in the occurrence and development of osteo‑
porosis. The results indicate that most of these substances play 
a dual role in bone metabolism. Excessive accumulation of 
lipids inhibits osteogenesis, while proper stimulation increases 
bone mass. The total body fat content is clearly negatively 
correlated with bone mineral density (159). Moreover, lipid 
metabolism disorders induce specific pathologies, including 
inflammation and oxidative stress, to alter the bone microenvi‑
ronment. Numerous secreted inflammatory factors, but mainly 
IL‑1 and TNF‑α, promote the differentiation of osteoclasts. 
Oxidative damage also inhibits osteogenesis and reduces 
bone strength. Additionally, lipid metabolism disorders are 
common in populations that are at high risk for osteoporosis, 
including postmenopausal women, diabetic patients and obese 
individuals. Lipidomic profiling contributes to the diagnosis, 
prevention and treatment of osteoporosis (160).

The present review highlights the mutual regulation of the 
osteogenic and adipogenic differentiation of BM‑MSCs, and 
the role of various lipids in the development of osteoporosis, 
and discusses the mechanism by which lipids affect the skeletal 
system. The bidirectional effect of lipids on bone metabolism 
suggests that a reasonable adjustment of the content and 
proportion of lipids will increase bone mass. In addition, 
relieving inflammatory storms and oxidative damage induced 
by lipid imbalances is key to preventing bone loss. This review 
contributes to unifying theories on the pathogenesis of osteo‑
porosis and optimizing treatments for osteoporosis.
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