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Abstract

Immunization through repeated direct venous inoculation of Plasmodium falciparum (Pf)

sporozoites (PfSPZ) under chloroquine chemoprophylaxis, using the PfSPZ Chemoprophy-

laxis Vaccine (PfSPZ-CVac), induces high-level protection against controlled human

malaria infection (CHMI). Humoral and cellular immunity contribute to vaccine efficacy but

only limited information about the implicated Pf-specific antigens is available. Here, we

examined Pf-specific antibody profiles, measured by protein arrays representing the full Pf

proteome, of 40 placebo- and PfSPZ-immunized malaria-naïve volunteers from an earlier

published PfSPZ-CVac dose-escalation trial. For this purpose, we both utilized and adapted

supervised machine learning methods to identify predictive antibody profiles at two different

time points: after immunization and before CHMI. We developed an adapted multitask sup-

port vector machine (SVM) approach and compared it to standard methods, i.e. single-task

SVM, regularized logistic regression and random forests. Our results show, that the multi-

task SVM approach improved the classification performance to discriminate the protection

status based on the underlying antibody-profiles while combining time- and dose-dependent

data in the prediction model. Additionally, we developed the new fEature diStance exPlain-

abilitY (ESPY) method to quantify the impact of single antigens on the non-linear multitask

SVM model and make it more interpretable. In conclusion, our multitask SVM model outper-

forms the studied standard approaches in regard of classification performance. Moreover,

with our new explanation method ESPY, we were able to interpret the impact of Pf-specific

antigen antibody responses that predict sterile protective immunity against CHMI after

immunization. The identified Pf-specific antigens may contribute to a better understanding

of immunity against human malaria and may foster vaccine development.
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Author summary

Developing an effective malaria vaccine is challenging. Malaria is a life-threatening disease

caused by the plasmodium parasite, which has a complex multi-stage life-cycle and

expresses several thousand proteins in a highly coordinated manner. To date, our under-

standing of the immune mechanisms mediating protection against Plasmodium falcipa-
rum (Pf) is incomplete. Proteome microarrays have been used earlier by our clinical

collaboration partners to identify Pf-specific antibody profiles of malaria-naïve volunteers

during immunization with attenuated Pf sporozoites (PfSPZ). We reused this data to com-

pare the ability of three supervised machine learning methods to identify predictive anti-

body profiles after immunization and before controlled human malaria infection

(CHMI). We adapted a multitask support vector machine (SVM) approach to analyze

time-dependent Pf-induced antibody profiles from several time points in a single predic-

tion model. Our multitask SVM approach outperforms the studied standard approaches

in classification performance. Additionally, we developed a new explanation method,

named fEature diStance exPlainabilitY (ESPY), to interpret the impact of Pf-specific anti-

gens. We applied ESPY on the multitask SVM model and identified diverse Pf-specific

antigen sets after immunization and before CHMI. Furthermore, we showed that the

identified Pf-induced antibody profiles vary among protected and non-protected individ-

uals who had been exposed to different doses of PfSPZ.

Introduction

Malaria is a major health problem: alone in 2022 it caused more than 249 million cases and

approximately 608,000 deaths [1]. Plasmodium falciparum (Pf) is the causal agent of almost all

malaria-related deaths. Children, pregnant women and malaria-naïve subjects are at high risk

of developing severe malaria, whereas adult residents of highly endemic areas develop immu-

nity that protects from severe disease [2–4]. In addition, proof-of-concept studies have shown

that experimental inoculation of high doses of attenuated Pf sporozoites (PfSPZ) (the mos-

quito-to-human transmission stage of the parasite) can lead to sterile protection [5]. Neverthe-

less, developing an effective vaccine for Pf remains a huge challenge. Pf is genetically highly

divers, employs several immune evasion strategies and has a complex, multi-stage life-cycle,

during which more than 5,300 genes are expressed [6]. As a result, our understanding of

immune responses to Pf-specific antigens that mediate naturally acquired or experimentally

induced protection is incomplete.

It has been shown that up to 100% protection against controlled human malaria infection

(CHMI) can be achieved by immunization of malaria-naïve adults by direct venous inocula-

tion (DVI) of radiation-attenuated Pf sporozoites (Sanaria PfSPZ Vaccine) [7] and by chemo-

attenuated PfSPZ (Sanaria PfSPZ-CVac) [8–10]. In those studies, protection is defined as an

immune state that prevents parasites from reaching the blood stage, whereas in non-protected

volunteers (either non-immunized or not successfully immunized participants) parasites will

invade red blood cells following an approximately 6-day-long liver stage [8]. Only the asexual

blood stage of the parasite is responsible for the symptoms and complications of malaria. Pf-

specific protein microarrays can be used to characterize the pattern of antibody reactivity to

Pf-specific epitopes. In [8] we used a Pf-specific protein microarray with 7,455 protein frag-

ments, representing about 91% of the Pf proteome, to determine the antibody reactivity profile

of 40 immunized and non-immunized malaria-naïve individuals after immunization and

before CHMI. In this previous study [8], we showed, that among the subjects who received the
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highest dose of attenuated PfSPZ, all of whom were protected, twenty-two proteins were recog-

nized on the Pf proteome microarray by more than half of the protected subjects [8]. A limita-

tion of protein microarrays is that antibody reactivity profiles are characterized by a huge

number of features in a comparatively small number of samples, a problem that is better

known as the curse of dimensionality. Since machine learning methods became a famous

choice for analyzing such high-dimensional data [11–13], we sought to complete our previous,

primarily descriptive analyses of the data [8] to better understand and even predict

PfSPZ-CVac-induced protective immunity.

Therefore, we adapted here a multitask support vector machine (multitask SVM) approach

to identify predictive Pf-specific antibody profiles of protected and non-protected vaccinees

and controls by integrating time- and dose-dependent data in a single prediction model. Com-

bining related tasks into a single prediction model is more promising than training indepen-

dent models with the data of each task, if the number of features is much greater than the

number of samples [14]. SVM kernels can be used to model relationships between single

related tasks and combine them into a sole prediction model—the multitask SVM.

Analysing such a large array of antibody profiles using a proteome microarray, strong cor-

relations can be assumed, e.g., between fragments representing one protein, similar epitopes,

and due to cross-reactivity [15]. In general, it is advised to remove strongly linearly correlated

features, to avoid biasing the variable importance measure of the features [13] and to improve

classification performance [16, 17]. Therefore, we assessed the classification performance of

our adapted multitask SVM approach under conditions in which highly linearly correlated fea-

tures were removed, and compared it to state-of-the-art methods, such as regularized logistic

regression (RLR) [11], a standard SVM model with radial basis function (RBF) kernel, and a

random forest (RF) approach. All these methods are known to be able to deal with high-

dimensional data for the classification of protected versus non-protected vaccinees and con-

trols [11, 13]. To enable an optimal comparison, we trained the three state-of-the-art methods,

RLR, RF and RBF-SVM, respectively, either time-point-wise (task-wise) or time-point-com-

bined (multi-time). In the former one, samples that belonged to different time points (that is,

before and after immunization) were separately used to train the models, whereas in the latter

one, the samples from both time points were combined to train the models (for more details

see the materials and methods section). Our results show that the adapted multitask SVM

approach improves the prediction performance when classifying protected PfSPZ-CVac vacci-

nees versus non-protected PfSPZ-CVac vaccinees and controls. Moreover, we can show that

highly correlated features degraded classification performance of the state-of-the-art methods

compared to our multitask SVM approach.

To identify and interpret informative features, i.e., single Pf-specific antigens, from the

non-linear multitask SVM model, explainability models for non-linear machine leaning mod-

els are needed, which motivated us to develop the fEature diStance exPlainabilitY (ESPY)

method. ESPY is inspired by a feature importance measure for sequence-based non-linear pre-

dictions [18]. The ESPY values are directly derived from a multitask SVM (or general SVM)

model. ESPY uses systematically and specifically triggered changes in the distance of a consen-

sus sample to the classification boundary (the boundary that separates the datapoints into two

sets, one of each class in a binary classification scenario) of the SVM to estimate the impor-

tance of features (for more details see the materials and methods section), but could be

extended to any machine learning model that provides classification scores indicating to how

certain a classification is. Consequently, we identified individual informative Pf-specific anti-

gens by their respective ESPY value for protected PfSPZ-CVac vaccinees and non-protected

PfSPZ-CVac vaccinees and controls. Additionally, we compared our ESPY method with the

SHapley Additive exPlanation (SHAP) framework from Lundberg et al. [19] on simulated
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data. The SHAP framework is an additive unified approach to derive feature importance val-

ues. The results of both explainability methods are similar on the simulated data, however

ESPY significantly outperformed SHAP in run time: ESPY needed only a few seconds to com-

pute feature importance values on the simulated data, while SHAP ran for more than 13 hours.

Using our newly developed ESPY method, we show how to address the problem of explaining

the predictions from a non-linear multitask SVM model based on single features. In summary,

our adapted multitask SVM approach represents a classification method to integrate time- and

dose-dependent data into a single prediction model, while ESPY provides explainability by

means of identifying and evaluating informative single features from a non-linear model.

Results

This section is structured into three main parts. In the first part, we show that our new multi-

task SVM approach can be used to classify with high accuracy protected PfSPZ-CVac vaccinees

versus non-protected PfSPZ-CVac vaccinees and controls based on a subset of antibody (ab)

intensity signals and excluding those that strongly linearly correlated above a Pearson correla-

tion coefficient of pcc = 0.8 for both time points (post-immunization and pre-CHMI). We

highlight the classification performance of our multitask SVM approach at each single time

point for both the whole Pf-specific proteome microarray and a selection of cell-surface Pf-

antigens compared to standard machine learning approaches. To enable this comparison, we

trained the standard machine learning models either on each single time point separately or

on a combined set of all ab signal intensities for both time points and PfSPZ doses together.

In the second part, we illustrate how the ESPY values are used to quantify which Pf-specific

antigens are informative in classifying protected PfSPZ-CVac vaccinees versus non-protected

PfSPZ-CVac vaccinees and controls.

The third and last part of this section shows ESPY values for simulated data and compares

those with the SHAP values from Lundberg et al. [19].

In the following lines, for a better understanding of our results, we briefly summarize which

data we used and how we applied our methods (for more details please refer to the materials

and methods section).

To compare our new multitask SVM approach with standard machine learning methods,

i.e., standard single-task SVM, RLR, and RF, we used the Pf-specific antibody reactivity profile

from the earlier published PfSPZ-CVac clinical trail by [8]. The Pf-specific ab reactivity profile

contains Pf-specific ab-mediated responses of 40 individuals at two different time points

(post-immunization and pre-CHMI). The 40 individuals were vaccinated with different doses

of PfSPZ-CVac: placebo (n = 13), 3.2 × 103 PfSPZ (n = 9), 1.28 × 104 PfSPZ (n = 9), 5.12 × 104

PfSPZ (n = 9). For each individual the protection status, i.e., protected or non-protected, was

assessed by CHMI. The comparison of the classification performance and the identification of

the informative Pf-specific antigens was done at each single time point (post-immunization

and pre-CHMI) through the overall study. Antibody responses after CHMI (post-CHMI) were

excluded from our malaria vaccine efficacy prediction analysis since controls underwent a

CHMI at this time point as well, making it unfeasible to apply binary classification, due to the

lack of non-protected controls.

Classification of protected PfSPZ-CVac vaccinees versus non-protected

PfSPZ-CVac vaccinees and controls from the PfSPZ-CVac mediated

antibody response

We used a multitask SVM approach to build our prediction model. The multitask SVM builds

upon a multitask kernel matrix that is constructed from the single-task kernels matrices via
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element-wise multiplication (see materials and methods section). A critical step in building a

multitask SVM model is to find the right combination of single-task kernels to encode the rela-

tionships found in the input data. We explored the following combinations of a time point ker-

nel, an antibody signal kernel, and a dose kernel: the time point kernel matrix was calculated

using a RBF kernel function, while the antibody signal and the dose kernels were either calcu-

lated using a polynomial or RBF kernel function. The prediction performance, the PR-AUC

score (Area Under the Precision Recall Curve) of each studied kernel combination at each single

time point was assessed via a 10-times repeated nested stratified 5-fold cross-validation over a

grid of kernel parameters Table A in S1 Appendix. Due to the fact, that in our datasets the

number of features outweighs the number of samples, we removed strongly linear correlated

features above a Pearson correlation coefficient of pcc = 0.8 for the whole and a selection of

cell-surface antibody reactivity profile, as earlier described by [13]. For details please refer to

the materials and methods section.

Based on prediction performance comparisons between the studied kernel combinations

(Table A in S1 Appendix), the combination of three RBF kernels (RRR) and the combination

of RBF and polynomial kernels (RPR) into a multitask kernel matrix resulted in the highest

nested cross-validation PR-AUC score compared to all other kernel combinations (Fig 1).

First of all, we compared our multitask SVM approach with three state-of-the-art approaches,

namely RLR (with elastic net regularization), RF and single-task RBF-SVM at each single time

point based on the complete antibody reactivity profile (Fig 1). Moreover, to illustrate the

Fig 1. Performance of multitask SVM models in predicting the protection status based on the antibody reactivity profile per

time point as compared to state-of-the-art approaches. The PR-AUC score of the RF, the RLR, the single-task SVM (trained

either on each single time point or on the combined time points), and the multitask SVM model (using different combinations of

kernel functions) for predicting the protection status based on the whole proteome antibody profile per time point was assessed

via 10-times repeated nested stratified 5-fold cross-validation. RF, RLR and single-task SVM models trained on each time point

separately are labeled by the extension ‘singleTime’. The mean PR-AUC score together with the standard deviation is displayed

above each boxplot, with PR-AUC = 1 equating to perfect prediction and PR-AUC = 0.5 equating to random guessing. The

PR-AUC performance of the different applied models is shown (A): at post-immunization and (B): at pre-CHMI.

https://doi.org/10.1371/journal.pcbi.1012131.g001

PLOS COMPUTATIONAL BIOLOGY Machine learning prediction of malaria vaccine efficacy based on antibody profiles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012131 June 7, 2024 5 / 23

https://doi.org/10.1371/journal.pcbi.1012131.g001
https://doi.org/10.1371/journal.pcbi.1012131


differences in classification performance between our multitask SVM approach and state-of-

the-art approaches we trained the state-of-the-art approaches either on each time point sepa-

rately (stated by the extension “singleTime” for simplicity) (n = 40) or on the combined time

points (n = 80). For details please refer to the materials and methods section. As shown in (Fig

1), the highest mean PR-AUC scores of the multitask SVM approaches were achieved by the

kernel combinations RRR and RPR after immunization (Fig 1A) and before CHMI (Fig 1B)

compared to the single-task RBF-SVM, the RLR and RF model trained on each time point sep-

arately or on the combined time points. Only before CHMI (Fig 1B) the RLR model trained on

both time points achieved a similar mean PR-AUC score as the multitask SVM model for the

RPR kernel combinations. The prediction performance of the state-of-the-art models, RF,

RLR and single-task RBF-SVM was also assessed via a 10-times repeated nested stratified

5-fold cross-validation per time point (as detailed in the materials and methods section).

Finally, for a comprehensive view we compared the classification performances of our mul-

titask SVM model and the state-of-the-art approaches for different Pearson correlation coeffi-

cients. As shown in Fig A in S1 Appendix, our multitask SVM model (for the kernel

combinations RPR and RRR) is robust in its PR-AUC scores with less variance over different

Pearson correlation coefficients in comparison to the state-of-the-art approaches after immu-

nization (Fig A A in S1 Appendix) and before CHMI (Fig A B in S1 Appendix).

In a second step, we used our multitask SVM approach to analyze the antibody profile

against pre-selected Pf-specific cell-surface antigens. Fig 2 illustrates the prediction perfor-

mance (PR-AUC) of the compared models based on the measured selective cell-surface anti-

body reactivity profile per time point. Again, the combination of three RBF kernels (RRR) and

the combination of RBF and polynomial kernels (RPR) into a multitask kernel matrix resulted

in the highest nested cross-validation PR-AUC score compared to all other kernel combina-

tions at post-immunization (Fig 2A) and pre-CHMI (Fig 2B). The single-task RBF-SVM,

trained either on each single time point separately or on the combined time points, performed

relatively poorly in comparison to the multitask SVM approach. The RLR model trained on

the combined time points achieved a higher mean PR-AUC score only at pre-CHMI (Fig 2B)

compared to the multitask SVM approach. However, at post-immunization (Fig 2A) the RLR

approach achieved lower mean PR-AUC values.

For the selective dataset, we could also show, that our multitask SVM approach (for the ker-

nel combinations RPR and RRR) is robust in its PR-AUC scores with less variance over differ-

ent Pearson correlation coefficients in comparison to the state-of-the-art approaches after

immunization (Fig B A in S1 Appendix) and before CHMI (Fig B B in S1 Appendix).

Overall these results demonstrate that our multitask SVM approach provides state-of-the-

art performance in classifying protected PfSPZ-CVac vaccinees versus non-protected

PfSPZ-CVac vaccinees and controls per time point by combining different tasks into a single

model. Also, strongly linear correlated features have only a small effect on the prediction per-

formance of our multitask SVM approach in comparison to the state-of-the-art approaches

(Figs A and B in S1 Appendix).

Informative Pf-specific antigens for successful classification of protected

PfSPZ-CVac vaccinees versus non-protected PfSPZ-CVac vaccinees and

controls

Evaluation of informative Pf-specific antigens to exhibit an antibody profile at post-immuniza-

tion and pre-CHMI is essential for predicting and improving vaccine-induced protective

immunity. To identify antibody profiles from the underlying PfSPZ-CVac dataset, where the

number of Pf-specific antigens (p = 7,455) is much higher than the number of individuals
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(n = 40), we combined data from several time points and tasks into a non-linear multitask

model and identified and evaluated informative Pf-specific antigens per time point from this

model (for details please refer to the materials and methods section). First, we evaluated the

best parameter setting for the kernel combinations in the multitask SVM models by a 10-times

repeated stratified 5-fold grid-search cross-validation for both the whole proteome microarray

and the pre-selected set of cell-surface antigens. The best kernel combinations and the associ-

ated parameters were selected based on the highest mean PR-AUC score per time point. Again

the kernel combinations of the “RPR” and “RRR” performed equally well (achieving the high-

est mean PR-AUC scores), whereas the kernel combination “RRR” resulted in a more stable

prediction performance with lower standard deviation than the kernel combination “RPR” for

the multitask SVM approach. Table B in S1 Appendix shows the combinations of kernels and

the associated parameters of the multitask SVM that achieved the highest mean AUC score,

both based on the whole Pf-specific proteome microarray and the pre-selected cell-surface

antigens. The kernel combinations of choice for both datasets were the RBF kernel for time

point similarity, the RBF kernel for the antibody signal intensity similarity, and the RBF kernel

for the PfSPZ-specific dose similarity at post-immunization and pre-CHMI.

Second, we evaluated the Pf-induced antibody profiles of all individuals based on immuno-

reactivity to 574 Pf-specific antigens after removing strongly linearly correlated features above

a Pearson correlation coefficient of pcc = 0.8. Fig 3 shows the antibody profile (at post-

Fig 2. Performance of multitask SVM models in predicting the protection status based on cell-surface antibody reactivity

profile per time point as compared to to state-of-the-art approaches. The PR-AUC score of the RF, the RLR, the single-task

SVM (trained either on each single time point or on the combined time points), and the multitask SVM model (using different

combinations of kernel functions) for predicting the protection status based on the selective cell-surface proteome antibody

profile per time point was assessed via 10-times repeated nested stratified 5-fold cross-validation. RF, RLR and single-task SVM

models trained on each time point separately are labeled by the extension ‘singleTime’. The mean PR-AUC score together with

the standard deviation is displayed above each boxplot, with PR-AUC = 1 equating to perfect prediction and PR-AUC = 0.5

equating to random guessing. The PR-AUC performance of the different applied models is shown (A): at post-immunization, (B):

at pre-CHMI.

https://doi.org/10.1371/journal.pcbi.1012131.g002
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immunization and pre-CHMI) for the top 50 informative Pf-specific antigens selected using

the ESPY values from the multitask SVM model. To better understand the informativeness of

evaluated Pf-specific antigens in the classification of protected versus non-protected vaccinees

and controls, the ESPY value has two properties: the absolute ESPY value of a Pf-specific anti-

gens reflects how much a single Pf-specific antigen affected the prediction. Whereas, the effect
label reflects the direction on the classification. A positive effect “ + ” denotes that the evaluated

informative feature is more similar to the positive sample, and vice versa for a negative effect “

− ”.

Immunized protected individuals, who received the highest dose of PfSPZ-CVac, showed a

higher antibody reactivity against CSP, PfEMP1, MSP2, MSP4, LSA1, conserved (membrane)

proteins with unknown function, and intra-cellular/trans-membrane proteins, at post-immu-

nization. The identified Pf-specific antigens were assessed to have a positive effect (red bars)

on the classification of protected versus non-protected individuals (Fig 3A) by ESPY evalua-

tion and are therefore more similar to protected vaccinees. The informative Pf-specific

Fig 3. Antibody profile of protected and non-protected vaccinees and the placebo group against informative Pf-

specific antigens. Informative Pf-specific antigens of the complete proteome microarray were evaluated at post-

immunization and pre-CHMI. Pf-specific antigens identified to be important by ESPY evaluation showed either a high

antibody signal intensity in protected vaccinees or unprotected vaccinees and controls. The top 50 Pf-specific antigens

with the highest ESPY values are shown (A) at post-immunization and (B) at pre-CHMI. The heatmap plot shows the

antibody signal intensity, while the bars on the right side of each figure show the importance and effect of each feature

based on the ESPY value. ESPY values of Pf-specific antigens, that were evaluated to have a positive effect on the

protection status classification are colored in red, while blue-colored bars represents antigens, that have a negative

effect.

https://doi.org/10.1371/journal.pcbi.1012131.g003
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antigens with the highest ESPY value were membrane proteins, conserved proteins of

unknown function and intracellular proteins. This evaluation was done considering, the

PfSPZ-dose as an informative feature with the highest ESPY value and a positive effect on the

classification of protected vaccinees versus non-protected vaccinees and controls at both time

points and datasets.

Zinc finger protein, PHISTb, PfEMP1, intracellular proteins, and proteins of unknown

function were evaluated (by ESPY) to have a negative effect (blue bars) in the protection status

classification after immunization (Fig 3A) in immunized individuals who received a lower

dose or were located in the placebo group.

At pre-CHMI (Fig 3B), a smaller set of twelve Pf-specific antigens, namely CSP, LSA1,

GLURP and proteins of unknown function were evaluated to have a positive effect on the clas-

sification of protected vaccinees versus non-protected vaccinees and controls, and showed a

higher antibody signal intensity in immunized protected individuals. By contrast, all other

informative Pf-specific antigens, like zinc finger protein, ETRAMP5, PfEMP1, and mostly con-

served proteins of unknown function and intracellular proteins were evaluated to have a nega-

tive effect on the protection status classification, and showed a higher antibody signal intensity

in non-protected vaccinees and controls. The top 50 informative Pf-specific antigens for the

whole proteome microarray at post-immunization and pre-CHMI based on ESPY evaluation,

are listed in Tables C and D in S1 Appendix.

Third, we evaluated Pf-induced antibody profiles of all individuals using immunoreactivity

to the pre-selected 188 Pf-specific cell surface antigens after removing strongly linearly corre-

lated features above a Pearson correlation coefficient of pcc = 0.8. Fig 4 shows the antibody

profiles (at post-immunization and pre-CHMI) for the top 50 informative Pf-specific cell-sur-

face antigens based on ESPY evaluation of the multitask SVM model. At post-immunization

(Fig 4A) MSP2, PfEMP1, rifin and membrane proteins of unknown function were evaluated to

have a positive effect on the classification of protected vaccinees versus non-protected vacci-

nees and controls. By contrast, mainly zinc finger protein, PHISTb, PHISTc, PfEMP1 and con-

served proteins of unknown function were evaluated to have a negative effect on the

protection status classification.

At pre-CHMI, again a small set of seven informative Pf-specific antigens, namely CSP,

MSP2, PfEMP1, LSA1 and (membrane) proteins of unknown function were evaluated to have

a positive effect on the classification of protected vaccinees versus non-protected vaccinees

and controls. All other Pf-specific antigens were evaluated to have a negative effect on the pro-

tection status classification. Those were mainly rifin, ETRAMP5, PHISTb, PHISTc, zinc finger

proteins, (membrane) proteins of unknown function, PfEMP1 and MSP7, and showed a

higher antibody signal intensity in unprotected vaccinees and the control group (Fig 4B).

Overall, the identified informative Pf-specific cell-surface antigens are well-known pre-eryth-

rocytic and erythrocytic Pf-specific antigens, like CSP, ETRAMP, MSP, LSA, PfEMP1, PHISTb/

c, rifin, zinc finger protein, and other Pf-specific antigens of unknown function. The top 50 infor-

mative Pf-specific antigens for the pre-selected cell-surface proteome microarray at post-immu-

nization and pre-CHMI based on the ESPY value are listed in Tables E and F in S1 Appendix.

ESPY versus SHAP: Evaluation of informative features on simulated data

Fig 5A shows the informative features as identified by ESPY evaluation of a RBF-SVM trained

on simulated data. As described in detail in the materials and methods section (Simulated

data), the simulated data set consists of 500 samples and 1000 features, where 15 features are

defined as informative features and the remaining ones as uninformative features. We used a

SVM model with a RBF kernel to evaluate the ESPY values on simulated data. The RBF-SVM
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model achieved the highest AUC score for values of the regularization parameter C = 10 and

the RBF kernel parameter γ = 0.001 (AUC of 0.92 during a stratified 5-fold grid-search cross-

validation on the training dataset, and an AUC of 0.81 on the hold-out test dataset). The afore-

mentioned parameter combination was then used to train a RBF-SVM model on the training

dataset, which was used for ESPY evaluation afterwards. Since the ESPY evaluation is based on

the computation of the distances from the classification boundary (refer to the materials and

methods section), the procedure for the evaluation of informative features is the same for a sin-

gle-task or a multitask SVM.

Fig 5A shows the top 25 informative features and their respective ESPY values. The first 14

features have higher ESPY values and are thus sorted from the left to the right of the shown

bar plot. They are by definition the informative features in the simulated data. Only the fif-

teenth feature (of the top 15 informative features in the simulated data), labeled by feature10,

had lower ESPY values and thus were shifted to the end of the list of the top 25 informative

Fig 4. Antibody profile of protected and non-protected vaccinees and the control group against informative cell-

surface Pf-specific antigens. Informative Pf-specific antigens against pre-selected Pf-specific cell-surface antigens

were evaluated at post-immunisation and pre-CHMI. Pf-specific antigens identified to be important by ESPY

evaluation showed either a high antibody signal intensity in protected vaccinees or unprotected vaccinees and controls.

The top 50 Pf-specific antigens with the highest ESPY values are shown (A) at post-immunization and (B) at pre-

CHMI. The heatmap plot shows the antibody signal intensity, while the bars on the right side of each figure show the

importance and effect of each feature based on the ESPY value. ESPY values of Pf-specific antigens that were evaluated

to have a positive effect on the protection status classification are colored in red, while blue-colored bars represent

antigens that have a negative effect.

https://doi.org/10.1371/journal.pcbi.1012131.g004
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features. The remaining ten of 25 features had lower ESPY values and are by definition unin-

formative features of the simulated data.

We compared our ESPY method with the SHAP (SHapley Additive exPlanations) frame-

work from Lundberg et al. [19]. Fig 5B shows the evaluated SHAP values. Again, the first 14

features have a higher mean SHAP value and are thus sorted to the top of the shown violin

summary plot. Once again, the fifteenth feature (feature10) shows a lower mean SHAP value

in comparison to the top 14 informative features. Comparing the class association (whether a

feature is more similar to the positive class or vice versa), it can be seen in Fig 5 that, while the

ranking by the absolute ESPY and SHAP values of several of the top 15 features is permuted,

the evaluated associations of the individual top 15 features are similar. SHAP took more than

13 hours to evaluate the features on a Dell XPS 13 with Intel i7–10510U CPU, 4 Cores and

16GB of memory.

In comparison, ESPY evaluated the features in only 2.08 seconds on the same laptop. As

mentioned by [20], a faster run-time of the SHAP framework could be achieved by clustering

the background dataset (i.e., the training dataset) used to evaluate SHAP using k-means clus-

tering with not too many cluster centers (e.g., k = 50). However, in scenarios as studied here,

where the data has many more dimensions than samples (curse of dimensionality) (n>>m),

k-means is unlikely to find a good clustering of the data. In summary, we could show that our

ESPY method and the SHAP framework perform similarly on the task of informative feature,

which refelcts a real world dataset. However, the SHAP framework needed much more com-

putation time compared to our approach.

Discussion

In this study, we used a Pf-specific proteome microarray covering about 91% of the entire Pf

proteome to identify PfSPZ-CVac-induced antibody profiles. As earlier suggested by Felgner

Fig 5. Informative features selected using ESPY and SHAP values on the simulated data. We show the top 25

features of the simulated data that were evaluated to be informative by ESPY and SHAP. A) The first 14 out of 15

informative features have higher ESPY values in comparison to rest of the features. For each feature the effect with the

positive class is indicated by the color of the bars: a negative effect with the positive class (negative ESPY effect) is

indicated by blue color and positive effect with the positive class (positive ESPY effect) is indicated by red color. B)

Also for the SHAP evaluation, the first 14 out of 15 informative features have the highest mean SHAP values and are

thus sorted to the top of the shown violin summary plot. The SHAP value and the color coded original feature value

are used to indicate the change of each feature in the model prediction towards the positive or negative class. A high

SHAP value indicates a change towards the positive class and vice versa for a low SHAP value.

https://doi.org/10.1371/journal.pcbi.1012131.g005
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et al. and Trieu et al. [21, 22] and later shown by Obiero et al. and Wichers et al. [6, 23, 24], the

immune response against human malaria is induced by a wide range of Pf-specific antigens.

Here, we adapted supervised machine learning methods to identify predictive antibody pro-

files from immunized and non-immunized PfSPZ-CVac individuals.

Due to the large number of antibody signal intensities in comparison to the small number

of individuals per time point, we set up a customized multitask SVM approach. Multitask

SVM models are known to perform very well on prediction problems that profit from combin-

ing related data into a single model to increase the number of samples for the prediction task

[14]. We compared our final multitask SVM approach with state-of-the-art machine learning

approaches, namely regularized logistic regression (RLR), random forest (RF), and a single-

task SVM model with a RBF kernel, after immunization and before CHMI. Overall, the RLR

model, the single-task SVM model, and the RF approach, which were either trained on each

single time point separately or on samples from both time points, showed a lower performance

in comparison to our multitask SVM approach, where both time points were combined into a

single prediction model.

Using our multitask SVM approach, we show how to profit from combining time- and

dose-dependent data from multiple time points into a sole prediction model, whenever the

number of samples at each single time point is small. Moreover, we show that our multitask

SVM approach is less affected by highly correlated features over a range of Pearson correlation

coefficients and achieves robust accuracy scores in comparison to the state-of-the-art

approaches (Figs A and B in S1 Appendix). This might be of great interest in the biomedical

context, where the number of available samples is often limited and strong correlations

between features can be assumed. Here, in the analysis of a large proteome microarray

(p = 7,455) was analyzed, we assumed strong correlations due to e.g., similar epitopes, between

fragments representing one protein, and cross-reactivity [15]. Furthermore, we excluded the

antibody responses after CHMI (post-CHMI) from our malaria vaccine efficacy prediction

analysis and our implementation of our multitask SVM approach due to the reason that the

control group underwent a CHMI at this time point as well.

For the evaluation of informative Pf-specific antigens from the multitask SVM approach,

we decided to only consider only the first top 50 Pf-specific antigens with the highest ESPY val-

ues per time point. Using ESPY evaluation, we estimated the contribution of each single Pf-

specific antigen towards the classification of protected vaccinees and non-protected vaccinees

and controls. In this analysis strongly linearly correlated features do not have the same influ-

ence on the evaluation procedure as they might have it in the RLR and RF approach. With this

analysis we could show that PfSPZ-CVac immunized protected individuals react against a

broad spectrum of known and unknown Pf-specific antigens, such as PfEMP1, CSP, MSP2/4,

LSA1, GLURP conserved (membrane) proteins of unknown function, and intra-cellular/trans-

membrane proteins after immunization and before CHMI.

The antibody breadth of PfSPZ-CVac immunized individuals varied based on the received

PfSPZ-CVac dose. The number of identified Pf-specific antigens showed an overall, medium

to high antibody reactivity among individuals who received a low and medium dose of

PfSPZ-CVac and in the control group. Assuming that this result is not induced due to a high

background noise, we hypothesize that these antigens are recognized by humoral immunity of

individuals that were never in contact with human malaria before. This might be explained

through cross-reactivity. Murugan et al. [25] supports the idea that the repertoire before

immunization is important for the generation of high affinity antibodies (in this case anti-

CSP). Further analysis of the antibody profile before vaccination of those individuals who

underwent a successful immunization is needed to determine whether a high abundance of

antibodies correlates with a higher chance of vaccination. Protected individuals who received
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the highest dose of PfSPZ-CVac showed higher antibody reactivity against a comparatively

small set of Pf-specific cell-surface antigens of the pre-erythrocytic and erythrocytic stage, like

CSP, PfEMP1, MSP2/4, LSA1, GLURP and conserved Pf (membrane) proteins with unknown

function. In agreement with these findings, Mordmüller et al. [8] showed that LSA1, MSP4,

GLURP and conserved Pf proteins with unknown function were recognized by more than half

of the protected individuals in the high-dose group, whereas, PfEMP1 was not recognized by

at least 5/9 of the protected individuals in the high-dose group. Further, Mordmüller et al. [8]

showed by ELISA that all of those protected individuals strongly reacted against CSP. Our

analysis of Pf-specific antigen identification evaluated most of the informative proteins found

by Mordmüller et al. [8], as well as new ones that seem to improve the prediction performance.

Antibodies against CSP have significant functional activity in the protection against human

malaria [8, 26], and CSP is a dominant antigen in the early (pre-erythrocytic) phase of the

infection. However, the most advanced malaria vaccine candidates, RTS,S (Mosquirix) and

R21/Matrix-M, confer only limited and short-lived protection against clinical malaria in the

former one [27–29] and in the latter one the R21/Matrix-M candidate achieved the WHO-

stated vaccine efficacy goal over 75% [30, 31] against Pf clinical malaria but only in one specific

malaria endemic area. We hypothesize that sterile protection against human malaria induced

through PfSPZ-CVac is not alone conferred by the humoral immunity, but rather is the result

of both humoral and cellular immune responses to a number of different antigens. Recent

findings from many clinical studies [7, 32–35], administering chemoattenuated PfSPZ or irra-

diated sporozoites, reproducibly confirm that PfSPZ-based vaccines induce an increase in cel-

lular immune responses. CD4 T cells, CD8 T cells and γ δ T cells are supposed to be primary

effectors in the elimination of parasite-infected hepatocytes. Especially memory CD8 T cells

are associated with the direct killing of infected hepatocytes; at least in animal models of

malaria [36]. However, these processes occur in the liver and are therefore difficult to study in

humans. Malaria vaccine candidates, such as RTS,S (Mosquirix) or R21/Matrix-M, target one

major surface protein and thereby are not able to induce highly potent cellular immune

responses against infected hepatocytes. Thus, the additive effect of antibodies in the ensemble

of a cellular immune response against sporozoites is likely to lead to robust sterile protection

and is yet missing in single protein based vaccine attempts. Further analysis of T- and B-cell

mediated immune response against human malaria is hence needed for the prediction of a

succsessful immunization.

A clear limitation of this study is that proteins on the microarray are not in their natural

context and may have different conformation and post-translational modifications [37]. Fur-

thermore, the microarray chip contains different concentrations of Pf-specific antigens per

spot resulting in the problem of optimal quantification of informative Pf-specific antigens.

This might also account for the relatively small number of identified Pf-specific antigens that

were related to the protection status. In addition, the biological life cycle of the parasite is com-

plex and the metabolically active parasite resides mostly intra-cellularly in hepatocytes and

erythrocytes, with only transient extracellular phases. Therefore, the response is likely to

mainly target cell-surface expressed antigens of merozoites, the extracellular form of Pf, and

parasite-antigens that are presented by the infected cell. Importantly, the small number of

identified Pf-specific antigens were sufficient to discriminate the protection status of protected

vaccinees and non-protected vaccinees and controls. In general, all methods we have used are

limited, if the antibody profiles are not similar between subjects. Here, the antibody breadth

might be more important than a specific pattern favoring sterile protection against human

malaria.
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Conclusion

The large number of more than 5,300 genes that are expressed during the life cycle of Pf, may

explain why we still do not know which antigens are central to the induction of a sterile protec-

tion against human malaria. Proteome microarrays enabled us to measure antibody reactivity

against Pf-specific antigens representing about 91% of the Pf proteome. Felgner et al., Obiero

et al., and Illingworth et al. [6, 21, 38] earlier suggested that the immune response against

human malaria is induced by a wide range of these proteins, yet only a few of these proteins

have been clinically tested as a malaria vaccine. In medical trial studies, where new anti-

malaria vaccine candidates are tested, the number of samples is often restricted to a small size.

To overcome this problem, here we combined time- and dose-dependent data of PfSPZ anti-

body profiles of immunized and non-immunized individuals from multiple time-points into

one sole prediction model. This approach is beneficial, since clinical vaccine studies are usually

limited in their number of samples. Additionally, we proposed the new ESPY method to

explain predictions from a non-linear SVM model. We could show, on simulated data, that

ESPY evaluation can identify all informative features and provides explanations comparable to

the SHAP framework for kernel SVMs. We successfully applied the ESPY method to find

informative Pf-specific antigens for the prediction of protected and non-protected

PfSPZ-CVac vaccinees and controls based on their antibody reactivity profiles. Our findings

might help to extend the knowledge about Pf-specific antigens that induce B-cell activation.

However, to fully understand the immune response against human malaria, a further step will

be to include T-cell activation and RNA-seq data.

Materials and methods

Ethics statement

The study was approved by the ethics committee of the medical faculty and the university clin-

ics of the University of Tübingen (project number 537/2013AMG1). All trial participants were

thoroughly informed and gave written informed consent before any study procedure, record-

ing of data or analysis was carried out.

Data

Proteome microarray. We analyzed the Pf-specific antibody reactivity profile from the

PfSPZ-CVac clinical trial TÜCHMI-002 (ClinicalTrials.gov Identifier: NCT02115516), which

has been previously described [8]. In brief, Pf-specific antibody-mediated response profiles of

40 malaria-naïve individuals, vaccinated three times over 8 weeks with placebo (normal saline)

or different doses of PfSPZ (3.2 × 103 PfSPZ, 1.28 × 104 PfSPZ, 5.12 × 104 PfSPZ) by direct

venous inoculation under chloroquine chemoprophylaxis (Sanaria PfSPZ-CVac), were mea-

sured at four different time points: before vaccination (I-1), following the third vaccination

(III+14), one day before CHMI (C-1), and four weeks after CHMI (C+28). The proteome

microarray contains 7,455 Pf-specific protein fragments representing 4,805 unique Pf genes of

the NF54 Pf strain. This resulted in a dataset containing 40 individuals per time point with Pf-

specific antibody intensity signals from 7,455 Pf-specific fragments. At each dosage, 9 individ-

uals were vaccinated (for a total of 27 across 3 PfSPZ-CVac doses) and 13 individuals were

allocated to the placebo group. For each individual, the protection status is defined by the pri-

mary efficacy endpoint as described earlier by Mordmüller et al. [8]. An individual was consid-

ered not protected against malaria, if any parasitemia was detected by thick blood smear, and

protected, if no parasite was detected within 21 days following CHMI. All parasitemic volun-

teers were treated promptly with a highly active antimalarial. The data underlying this study
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were obtained from proteome microarray data as described by Mordmüller et al. [8]: “Raw

spot and local background fluorescence intensities, spot annotations and sample phenotypes

were imported and merged in R, where all subsequent procedures were performed. Fore-

ground spot intensities were adjusted by local background by subtraction, [. . .].” Baseline (I-1)

antibody responses of immunized and control individuals were subtracted from the data gen-

erated post-immunization (III+14 and C-1) for each individual to focus on PfSPZ-CVac

induced antibody responses [6]. Antibody responses after CHMI (C+28) were excluded from

our malaria vaccine efficacy prediction analysis, because also controls underwent CHMI at

this time point. Thus, after CHMI, there are no samples for the unprotected class anymore

and, therefore, applying binary classification models will not be feasible. The resulting dataset

contains 80 samples associated to 40 patients at two different time points (III+14 and C-1).

Subsequently, the Pf-specific antibody signal intensities were arcsine transformed.

In a second step, we defined a set of cell surface Pf-antigen fragments from the whole set of

Pf-specific fragments of the proteome microarray. Cell surface Pf-antigen fragments and Pf-

antigen fragments of uncharacterized proteins (m = 1,194) were selected from the proteome

microarray supplement information based on their protein name/description, representing

extracellular/membrane and uncharacterized proteins. In this subset, we assumed that

responses to cell surface antigens are over-represented compared to intra-cellular antigens.

Simulated data. To evaluate how our feature importance measurement performs, we

used python and sklearn.datasets.make_classification(n_samples = 500, n_features = 1000,
n_informative = 15, n_redundant = 0, n_repeated = 0, n_classes = 2, random_state = 42) from

the Scikit-learn [39] package to generate a random two-class classification problem. Said

method creates clusters of points that are standard normally distributed about vertices of an

15-dimensional hyper-cube and assigns an equal number of clusters to each class. The result-

ing data matrix X 2 R500�1000 consists of 15 informative feature columns, while the remaining

feature columns are filled with random noise.

Prediction models for time-series data

Our proposed approach for identifying Pf-specific immune signatures from protected and

non-protected individuals tackles two problems. First, identifying appropriate machine learn-

ing models that are able both to deal with high-dimensional data and can learn from time and

dose dependent data. Second, identifying informative Pf-specific antigens between protected

and non-protected individuals.

Since individuals were exposed to different PfSPZ doses in the PfSPZ-CVac clinical trial at

two (actually three, but we excluded the third time point, due to the reasons described in sec-

tion Proteome microarray) consecutive time points, we built different prediction models to

analyze the dependent time-series data. All models are binary classifiers that predict the pro-

tection state of the Pf-specific proteome microarray-based on antibody reactivity profile.

In a first scenario, the RLR [11], RF, and single-task RBF-SVM models were trained sepa-

rately for both time-points. For this purpose, the dataset was split into two smaller “single-

time” datasets corresponding to the time points III+14 and C-1, respectively. Each dataset con-

tains antibody intensity signals for all PfSPZ doses (3.2 × 103 PfSPZ, 1.28 × 104 PfSPZ,

5.12 × 104 PfSPZ), associated to a single time point, augmented by the PfSPZ dose as auxiliary

information.

Tasks, that are related to each other, can be used in a prediction model simultaneously (so-

called multitask-learning) [40, 41]. Considering the small number of samples per time point

and the very large amount of features (sample size Npatients = 40, number of features P = 7,

455), establishing a prediction model that uses related samples from additional time points is
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more promising than training independent models with data for the specific task only. There-

fore, in a second scenario, we cast the prediction problem into a multitask learning problem

and treat prediction based on time point, PfSPZ dose, and antibody intensity signal data as

separate tasks. To implement the multitask approach, we represented the relationships

between individuals for each task (time point, PfSPZ dose, antibody intensity signals) by a sep-

arate feature matrix. Within the multitask approach we were able to classify individuals into

protected and non-protected using the measured immune profile of all 40 individuals for each

time point (III+14 and C-1) and dose (3.2 × 103 PfSPZ, 1.28 × 104 PfSPZ, 5.12 × 104 PfSPZ) at

once in one model resulting in 80 samples.

In a third scenario, to accomplish a fair comparison between our multitask SVM approach

and the other methods, namely RLR, RF and RBF-SVM, we additionally trained those on the

original “multi-time” dataset, containing 80 samples associated to 40 patients at two different

time points (III+14 and C-1) augmented by the PfSPZ dose. For details please refer to the sub-

sequent section Prediction performance assessment.

A multitask SVM approach for time- and dose-dependent proteome data

Kernels of SVMs can be used to model relationships between single related tasks and combine

them into one prediction model [42, 43]. Combining such small single datasets, that are related

to each other, can lead to an improvement in classification. Kernel-based multitask learning

can be achieved by the element-wise product of two kernel matrices. According to the Schur
product theorem [44], the Hadamard (element-wise) product of two positive (semi-)definite

matrices is also a positive (semi-)definite matrix. For the measured immune profile, an anti-

body signal intensity matrix Xantibody 2 RN�P is given, where N is the number of samples

(N = 2 × Npatients) and P the number of features. The value at entry xnp is the detected antibody

signal intensity of feature p for sample n. Additionally, two vectors are given: the time-series

vector gt 2 R
N , where t represents the date of antibody profile collection, and the dose vector

gd 2 R
N

, where d represents the dose of PfSPZ. To simulate the clinical trial of PfSPZ-CVac

over the two time points, we used a radial basis function (RBF) kernel to represent the relation-

ship between the individuals based on time points, resulting in the kernel matrix K1(nt, nt0). As

a representation of the relationship between the individuals based on the administered PfSPZ

dose, we used either an RBF or a polynomial kernel function, resulting in a kernel matrix

K2(nd, nd0). Finally, the relationship between the individuals based on antibody signal intensi-

ties was represented by either an RBF or a polynomial kernel function, resulting in a kernel

matrix K3(np, np0). The resulting kernel matrices were combined by element-wise multiplica-

tion:

Kmultitaskððnt; nd; npÞ; ðnp0 ; nt0 ; np0 ÞÞ≔

K1ðnt; nt0 Þ � K2ðnd; nd0 Þ � K3ðnp; np0 Þ
ð1Þ

where Kmultitask is a positive semi-definite (psd) kernel matrix, containing all feature intensities

signals for two time points (III+14 and C-1) and all PfSPZ doses.

Adapted spectral translation approach

The Schur product theorem [44] states that the Hadamard product of two psd matrices is psd as

well. In practice, due to numerical issues arising from limited machine precision, the multitask

kernel matrix Kmultitask, resulting from the element-wise multiplication of the single-task ker-

nel matrices, might be slightly disturbed and not psd within numerical precision. To deal with

this issue, we implemented the following procedure.
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After element-wise multiplication of the single-task kernel matrices, we applied a variant of

the so-called spectral translation approach [45]. Originally, as described by Vert et al. [45], the

smallest negative eigenvalue is subtracted from (i.e., its absolute value is added to) the diagonal

of a non-psd symmetric matrix, resulting in a psd kernel matrix. This approach exploits the

fact that a psd matrix is symmetric and all its eigenvalues are non-negative per definition. By

adding the absolute value of the smallest negative eigenvalue to its diagonal, the spectrum of

the non-psd matrix is effectively shifted upwards and, thus, the matrix becomes psd. Since, in

practice, again due to numerical instabilities, this approach sometimes does not result in a psd

matrix, we adapted it into an iterative procedure as follows: We computed the real eigenvalues

ei of Kmultitask and tested if any of them were negative. If negative eigenvalues were found,

max ~�;mini eið Þf gð Þ was added to the diagonal of Kmultitask, with ~� ¼ 103 � � and � being the

machine precision. This approach was repeated for a maximum of 1000 iterations (if the

matrix was not psd after 1000 iterations, a value of 1.0 was added to the diagonal and the

resulting matrix was used) or until no further negative eigenvalues were found, thus resulting

in a psd multitask kernel matrix Kmultitask. Based on the multitask kernel matrix, we trained

and tested different settings of parameters to create a predictive model.

Dealing with strongly linearly correlated features

To better understand and predict a successful vaccination, identification and interpretation of

single Pf-specific antigens is important. In the underlying dataset we are dealing with a large

number of features compared to a small number of samples. Further, strong correlations

between the features can be assumed due to, e.g., several fragments representing a single pro-

tein, similar epitopes, and cross-reactivity [15]. Reducing the number of irrelevant and unin-

formative features can increase performance [13, 16, 17]. As earlier shown by Valletta et al.

[13], a Pearson correlation coefficient of pcc = 0.8 seems to be a reasonable threshold for

removing strongly linearly correlated features of such proteome microarray data. Nonetheless,

we assessed the influence of correlated features on the prediction performance of the studied

machine learning models, by removing features that were linearly correlated above a certain

Pearson correlation threshold pcc, varying the threshold between 0.1 and 1.0 in steps of 0.1.

The results of this analysis are visualized in supplementary figures Figs A and B in S1 Appen-

dix. For both datasets, the whole proteome microarray (Fig A in S1 Appendix) and the pre-

selected cell surface microarray (Fig B in S1 Appendix), we can show, that the prediction per-

formance of the state-of-the-art methods is more influenced by strongly linear correlated fea-

tures than our multitask SVM approach with a kernel combination of either ‘RRR’ or ‘RPR’.

Furthermore, the Pearson correlation coefficient of pcc = 0.8 seems to be also a reasonable

threshold for our datasets. Therefore, we removed strongly linear correlated features above a

Pearson correlation coefficient of pcc = 0.8, which corresponds to around 8% of the original

whole proteome microarray and to around 16% of the original pre-selected cell surface

microarray.

Prediction performance assessment

To assess the prediction performance of the studied machine learning models, we proceeded

as follows. We compared multitask SVM models with single- and multi-time single-task

RBF-SVM, RF, and RLR models.

For the RLR models we used the so-called elastic net regularization as implemented in the

sklearn.linear_model.LogisticRegression class of the Scikit-learn [46] package. Elastic net RLR

uses a combination of ℓ1 and ℓ2- regularization, where ρ defines the compromise between
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ℓ1 (ρ = 1) and ℓ2 (ρ = 0) penalty, and minimizes the following cost function:

min
w;c

1 � r

2
wTwþ rkwk1 þ C

XN

i¼1

logðexpð� yiðX
T
i wþ cÞÞ þ 1Þ

 !

ð2Þ

We tuned and assessed the single- and multi-time RLR models during a 10-times repeated

nested stratified 5-fold cross-validation, as described by Krstajic (Algorithm 2 in [47]) and

implemented in the RepeatedStratifiedNestedCV class of the nestedcv [48] package, over a grid

of ρ and the regularization parameter C (Table A in S1 Appendix). The single- and multi-time

single-task RBF-SVM models (using the C-Support Vector Classification method in sklearn.

svm.SVC) were tuned and assessed likewise by performing a 10-times repeated nested stratified

5-fold cross-validation over a grid of the RBF kernel coefficient γ and regularization parameter

C (Table A in S1 Appendix). In case of single- and multi-time RF models, we used the Ran-
domForestClassifier implemented in sklearn.ensemble and assessed its performance likewise by

executing a 10-times repeated nested stratified 5-fold cross-validation over a number of

parameters, namely the number of trees ntrees and the maximal number of features max_fea-

tures per split (Table A in S1 Appendix). The multitask SVM models were deployed by pre-

computing the multitask kernel matrices as described above in section A multitask SVM

approach for time- and dose-dependent proteome data for different parameter combinations

(listed in Table A in S1 Appendix) and feeding the pre-computed kernel matrices into the

C-Support Vector Classification method implemented in sklearn.svm.SVC. The models were

assessed and optimized over a parameter grid (listed in Table A in S1 Appendix) using

10-times repeated nested stratified 5-fold cross-validation utilizing nestedcv.RepeatedStratified-
NestedCV. All models were optimized and evaluated on exactly the same cross-validation

folds. In case of multitask SVM models and multi-time RF, RLR, and single-task RBF-SVM

models, test sets (aka test “folds” in the cross-validation context) were always constituted of

samples from a certain single time point (III+14 or C-1), while the associated train folds were

constituted from samples from both time points (III+14 and C-1). It was ensured that all sam-

ples taken from patients that were represented by a sample included in a test fold were

excluded from the associated disjoint train fold. Model performances were measured using the

Area Under the Precision Recall Curve (PR-AUC) where a higher PR-AUC score equates to

perfect prediction and a lower PR-AUC score to random guessing. Precision recall curves are

commonly used to evaluate the prediction performance of a model with imbalanced data, that

is, when the number of samples of one class (e.g. class 0) is much higher than the number of

samples of the other class (e.g. class 1) [49]. To assess the prediction performance of the under-

lying models, namely RLR, single-task RBF-SVM, RF and multitask SVM models, we per-

formed 10 repetitions of nested stratified 5-fold cross-validation for each model, as described

in detail above. To evaluate the PR-AUC, the predictions on the test sets of the models trained

on the train folds were collected and used to calculate a nested cross-validation PR-AUC score

for every repetition as described by Krstajic (Algorithm 2 in [47]). The final nested cross-vali-

dation score is then calculated as the average of the resulting scores of each repetition.

Tuning models for feature evaluation

Before using the multitask SVM approach to evaluate informative features, we had to optimize

the parameters. The multitask SVM models were deployed as described in the previous sec-

tion. They were tuned over a parameter grid (listed in Table A in S1 Appendix) using 10-times

repeated stratified 5-fold grid-search cross-validation, as described by Krstajic (Algorithm 1 in

[47]), utilizing nestedcv.RepeatedGridSearchCV. Again, all models were optimized and evalu-

ated on exactly the same cross-validation folds. In the case of multitask SVM models, test folds
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always comprised of samples from a certain single time point (III+14 or C-1), while the associ-

ated train folds comprised samples of both time points (III+14 and C-1). It was ensured that

all samples taken from patients that were represented by a sample included in a test fold were

excluded from the associated disjoint train fold.

The obtained parameters were then used to predict the mean PR-AUC performance on the

hold-out test dataset for the whole proteome microarray and the pre-selected cell-surface pro-

teome microarray and are listed in Table B in S1 Appendix. Afterwards, the trained model

(either trained on the whole proteome microarray or on the pre-selected cell-surface proteome

microarray) was used to evaluate the ESPY value (as explained in detail in the following section

ESPY (fEature diStance exPlainabilitY)) for each single feature on the test data.

ESPY (fEature diStance exPlainabilitY)

We propose ESPY values as a measure of importance of each single feature based on a (multi-

task) SVM model. The method is inspired by a feature importance measure for sequence-

based non-linear predictions proposed by Pfeifer and Lengauer [18]. ESPY uses systematically

and specifically triggered changes in the distance of a consensus sample to the classification

boundary of the SVM to estimate the importance of features as described below. The distance

to the classification boundary can be computed for a sample~x, the optimized parameter α 2
Rn, offset b, and class labels yi 2 [0, 1]:

dð~xÞ ¼
Xn

i¼1

yiðaikð~x;~xiÞ þ bÞ ð3Þ

The idea of the approach is to determine if a change in the antibody intensity signal of each

feature at a time results in a distance change towards the negative or positive side of the classi-

fication boundary. If the signal leads to a change to the positive side, the antibody response is

more similar to the positive samples and vice versa. To compare the change in the antibody

intensity signal of each feature at a time, a consensus sample is generated. The consensus sam-

ple~x Q2 is element-wise defined as the median (alias second quartile Q2) antibody intensity sig-

nal x Q2
j ¼ medianðXjÞ over all samples per feature Xj. Xj is the j-th column of the data matrix

X 2 RN�M, which was constructed by appending the time point vector gt 2 R
N and the dose

vector gd 2 R
N

as columns to the antibody signal intensity matrix Xantibody 2 RN�P
. To evaluate

the ESPY value and therefore the importance of each feature, we measured the change in dis-

tance when varying the consensus at a certain feature j to the first quartile Q1 (25% percentile)

and third quartile Q3 (75% percentile), respectively:

dQ1
j ¼ dð~x Q1

j Þ � dð~x Q2Þ ð4Þ

dQ3
j ¼ dð~x Q3

j Þ � dð~x Q2Þ ð5Þ

where~xQp
j ≔ðx

Q2
1 ; x Q2

2 ; :::; x Q2
j� 1; x

Qp
j ; x

Q2
jþ1; :::x Q2

m Þ
T

and xQp
j is the pth quartile of Xj. Based on this,
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we define the ESPY value per feature j as:

IESPY;j≔jd
Q1
j j þ jd

Q3
j j ; ð6Þ

MESPY;j≔

þ ; dQ3
j � 0 ^ dQ1

j � 0 ^ dQ3
j 6¼ dQ1

j

� ; dQ3
j � 0 ^ dQ1

j � 0 ^ dQ3
j 6¼ dQ1

j

0 ; dQ3
j ¼ dQ1

j ¼ 0

NAN ; else

;

8
>>>>>>><

>>>>>>>:

ð7Þ

with +, −, 0, and NAN denoting a positive effect, negative effect, no effect, and an undefined
effect respectively. Finally, the ESPY value per feature j is normalized by dividing each ESPY

value by the sum of the ESPY values of all features.

ESPY evaluation on simulated data. To evaluate the ESPY values of each feature in the

simulated dataset based on 7, we trained an RBF-SVM model. At first, the simulated dataset

was split into training and test sets (70% for training, 30% for testing). This was followed by

hyper-parameter tuning using stratified 5-fold grid-search cross-validation (as implemented

in sklearn.model_selection.GridSearchCV) over a grid of the RBF γ parameter and the regulari-

zation parameter C (see Table A in S1 Appendix) on the training data, to evaluate the best

parameter combination for the RBF-SVM model. The obtained parameters were then used to

predict the AUC performance on the hold-out test dataset. Afterwards, the trained model was

used to evaluate the ESPY value for each single feature on the test data.

We compared our explanation and feature extraction method, namely ESPY, with the

SHapley Additive exPlanations (SHAP) method [19], a game-theoretic approach for making

any machine learning model interpretable. Particularly, we applied the shap.KernelExplainer
class of the shap [50] package on the trained RBF-SVM model and evaluated the features with

the highest importance scores.

Supporting information

S1 Appendix. This PDF file compiles supplementary information of this paper.

(PDF)
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