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Abstract

The spread of cancer from organ to organ (metastasis) is responsible for the vast majority of

cancer deaths; however, most current anti-cancer drugs are designed to arrest or reverse

tumor growth without directly addressing disease spread. It was recently discovered that

tumor cell-secreted interleukin-6 (IL-6) and interleukin-8 (IL-8) synergize to enhance cancer

metastasis in a cell-density dependent manner, and blockade of the IL-6 and IL-8 receptors

(IL-6R and IL-8R) with a novel bispecific antibody, BS1, significantly reduced metastatic bur-

den in multiple preclinical mouse models of cancer. Bispecific antibodies (BsAbs), which

combine two different antigen-binding sites into one molecule, are a promising modality for

drug development due to their enhanced avidity and dual targeting effects. However, while

BsAbs have tremendous therapeutic potential, elucidating the mechanisms underlying their

binding and inhibition will be critical for maximizing the efficacy of new BsAb treatments.

Here, we describe a quantitative, computational model of the BS1 BsAb, exhibiting how

modeling multivalent binding provides key insights into antibody affinity and avidity effects

and can guide therapeutic design. We present detailed simulations of the monovalent and

bivalent binding interactions between different antibody constructs and the IL-6 and IL-8

receptors to establish how antibody properties and system conditions impact the formation

of binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes. Model

results demonstrate how the balance of these complex types drives receptor inhibition, pro-

viding important and generalizable predictions for effective therapeutic design.
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Author summary

Metastasis, the process of cancer cells spreading from one organ to another, leads to more

severe disease and poorer outcomes for patients; unfortunately, many current drugs focus

solely on halting tumor growth rather than directly addressing the spread of cancer cells.

Two proteins that regulate the immune system, interleukin-6 and interleukin-8, work

together to promote cancer spread when secreted by metastatic cancer cells. By blocking

the receptors for these proteins, we can reduce cancer cell migration.

Bispecific antibodies are an attractive therapeutic format because they can bind to two

different targets at the same time, making them potentially more targeted (cell-type spe-

cific) and thus more effective than traditional monospecific antibodies. Here, we built a

computational model of a novel bispecific antibody, BS1, that can bind to both an inter-

leukin-6 receptor and an interleukin-8 receptor, and thus targets the interleukin-6/inter-

leukin-8 system for the prevention of metastasis. We compare our model simulations of

BS1 to simulations of antibodies that bind only one receptor, and thereby demonstrate

how the bispecific characteristic of antibodies affects target inhibition. This provides

important insights into the optimal design for BS1 and other bispecific therapeutics.

Introduction

Interleukin-6 (IL-6) and interleukin-8 (IL-8) play key roles in inflammation and have been

implicated in cancer progression. IL-6 is a pro-inflammatory cytokine that, along with TNFα
and IL-1β, contributes to the early response to infection [1]. IL-6 is produced by macrophages,

dendritic cells, and epithelial cells in response to pathogens, and this cytokine drives T cell dif-

ferentiation as well as plasma B cell differentiation [2]. IL-8 (CXCL8) is a chemokine produced

by monocytes, macrophages, fibroblasts, and other cells [3–5], and it is responsible for attract-

ing leukocytes (typically but not exclusively neutrophils) to the site of inflammation by

enhancing extravasation and by chemoattraction within tissue [4].

Both IL-6 and IL-8 have been implicated in the pathogenesis and progression of several

solid tumor types, including breast [6], prostate [7], colon [8], and pancreatic [9] cancers, and

indeed elevated expression of both molecules has been associated with increased cancer

aggressiveness and metastatic burden [8,10,11]. It has recently been demonstrated that IL-6

and IL-8 paracrine signaling in metastatic cancer cells increases motility in a cell density-

dependent manner [12]. Above a threshold cell density, cancer cells secrete IL-6 and IL-8,

which synergistically activate a complex paracrine signaling pathway via Janus kinase (JAK2)

and signal transducer and activator of transcription 3 (STAT3) that prompts cancer cells to

form Arp2/3-dependent dendritic protrusions and undergo migration. Simultaneous inhibi-

tion of the IL-6/IL-8 signaling network with tocilizumab, a monoclonal anti-IL-6 receptor-

alpha (IL-6Rα, hereafter denoted IL-6R) antibody primarily used to treat rheumatoid arthritis

[13], and reparixin, a small molecule allosteric inhibitor of the IL-8 receptor (IL-8R) that

recently completed phase II clinical trials against breast cancer [14], was found to decrease in
vitro cell migration and significantly decrease in vivo metastasis without affecting rates of

tumor growth [12,15]. Collectively, these data suggest that targeting IL-6, IL-8, and their recep-

tors is a promising approach to inhibiting tumor metastasis and cancer lethality.

Monoclonal antibodies (mAbs) have been a fixture in anti-cancer therapeutic regimens

over the past 20 years [16,17] due to their target specificity, in vivo stability, modular construc-

tion, and multi-faceted actions. However, monospecific mAbs have limitations, including the
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emergence of acquired resistance as cancer cells mutate [18]. Bispecific antibodies (BsAbs),

antibodies engineered to simultaneously engage two different target molecules, demonstrate

great potential to overcome the shortcomings of antibody drugs [19–21]. Binding in cis, i.e.,

with the BsAb bridging different receptors on the same cell, confers avidity, improved tissue

selectivity, and reduced off-target side effects [22–24], while also reducing the likelihood of

drug resistance [25]. Additionally, concurrent binding to separate targets can prevent receptor

homodimerization [26] and increase treatment potency in target tissues [27].

To study and potentially better target the IL-6/IL-8 signaling network for metastasis inhibi-

tion, Yang and colleagues recently engineered a novel bispecific antibody, BS1, against IL-6R

and IL-8RB (also known as CXCR2, hereafter called IL-8R) [28]. BS1 contains arms with vari-

able domains of two distinct antibodies: the anti-IL-6R antibody tocilizumab and the anti-IL-

8R antibody 10H2 [5,29] (Fig 1A). BS1 significantly reduced in vitro cancer cell migration,

effecting greater inhibition of migration than either the combination of tocilizumab and repar-

ixin or the combination of tocilizumab and 10H2 [28]. Furthermore, BS1 potently decreased

metastatic burden in vivo in orthotopic mouse xenograft models and, when paired with the

anti-proliferative agent gemcitabine, significantly decreased both metastasis and tumor growth

[28]. In all studies, BS1 outperformed combination treatments, demonstrating the effective-

ness of bispecific agents in targeting complex signaling networks.

However, while the dual-targeting ability of BsAbs holds promise, it will be crucial to

understand the mechanisms underpinning BsAb binding and how those mechanisms differ

from treatment with a combination of monospecific mAbs in order to maximize efficacy. As

antibodies are multivalent, their binding is driven both by the inherent affinity of each binding

domain for its target antigen and by avidity, the accumulated binding strength from each of

the individual molecular interactions [30–32]. While it has been established that avidity plays a

key role in BsAb tissue selectivity and therapeutic efficacy [23,33], the interplay of individual

domain affinity, overall avidity, target expression, and therapeutic concentration in the context

of cell binding remains poorly understood. Mechanistic computational models of antibody-

target interactions can address this knowledge gap—by incorporating parameters for both

monovalent binding affinity and multivalent binding avidity with differential equations

describing the binding kinetics, we can investigate the influence of these factors on the binding

of monospecific and bispecific antibodies [34–36].

Mathematical models of the kinetics of heterobivalent antibody binding to cell surface tar-

gets have been characterized previously [24,37–41], providing a general framework for model-

ing multivalent binding. The modeling approaches and findings from those works are well

summarized in a recent comprehensive review [34]. Briefly, Harms et al. [38] simulated BsAbs

with different inherent cross-linking efficiencies (i.e., different propensities to form receptor-

antibody-receptor complexes) to explore the impact of cross-linking on antibody potency. The

models presented by van Steeg et al. [24] and Rhoden et al. [39] each approximated the rate of

cross-linking based on the effective local receptor concentration in proximity of the bound

antibody, analyzing binding across cell lines with different receptor expressions to aid in the

design of bispecific therapeutics. Sengers et al. [40] simulated the kinetics of receptor-anti-

body-receptor complex formation as diffusion-limited to model BsAb binding at low receptor

densities.

Here, we extend existing general modeling frameworks to build a quantitative, computa-

tional model for a specific therapeutic target: antibodies targeting the IL-6 and IL-8 receptors

for the prevention of cancer metastasis. To therapeutically inhibit IL-6/IL-8-mediated metasta-

sis, we are examining two existing monospecific antibodies, tocilizumab (denoted anti-IL-6R)

[42] and 10H2 (denoted anti-IL-8R) [5,29], and the novel bispecific antibody, BS1 (denoted

anti-IL-6R/anti-IL-8R), first described by Yang et al. [28] (Fig 1A). Binding mechanics
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Fig 1. Bivalent antibody binding model antibodies, rate constants, and reactions. A, Monoclonal (mAb) and bispecific (BsAb) antibodies

simulated in our computational model. Tocilizumab is a recombinant humanized mAb with two anti-IL-6Rα (denoted anti-IL-6R) binding

domains; 10H2 is a mAb with two anti-IL-8RB (denoted anti-IL-8R) binding domains; BS1 is an anti-IL-6Rα/anti-IL-8RB BsAb synthesized

from the binding domains of tocilizumab and 10H2 by combining the knobs-into-holes and single-chain Fab methodologies. B, Schematic of

the IL-6Rα/IL-8RB/BS1 antibody-binding model kinetics. BS1 can bind to either IL-6Rα or IL-8RB, and, having done so, the BS1-receptor

complex can then bind to the other receptor. kon,6R and kon,8R describe the association rates for the formation of binary antibody-receptor

complexes, and kon,6R* and kon,8R* describe the association rates for the formation ternary receptor-antibody-receptor complexes. The same

koff,6R and koff,8R rate constants are used for the dissociation of both the binary and the ternary complexes. Schematics for the two monoclonal

antibodies, tocilizumab and 10H2, are included in the Supporting Information (S1 Fig). C, Simplified view of the schematic in B illustrates how

the reactions form a thermodynamic cycle. The reactions can proceed in a clockwise or counter-clockwise manner to return back to the starting

reactants, forming a cycle with a net free energy change of 0. This figure was created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1012157.g001

PLOS COMPUTATIONAL BIOLOGY Modeling of monospecific and bispecific antibodies targeting interleukin-6/8 receptors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012157 June 7, 2024 4 / 35

http://BioRender.com
https://doi.org/10.1371/journal.pcbi.1012157.g001
https://doi.org/10.1371/journal.pcbi.1012157


(receptor complex formation) of each antibody are expressed in a series of coupled differential

equations, and we use quantitative experimental data of the interactions of antibodies with IL-

6R and IL-8R to estimate the kinetic constants for the system and create a complete model of

antibody interactions that is faithful to the biophysics.

Our detailed simulations of the in vitro monovalent and bivalent binding interactions

between different antibody constructs and the target receptors, IL-6R and IL-8R, establish how

binary (antibody-receptor) and ternary (receptor-antibody-receptor) complex formation

drives target inhibition. We demonstrate that the ratio between expression levels of IL-6R and

IL-8R is crucial to bispecific antibody binding in vitro and leads to significant differences in

monospecific and bispecific antibody behavior. Simulations also predict necessary antibody

concentrations for optimal binding, namely that the most stable antibody-receptor complex

formation occurs at high receptor concentrations and intermediate antibody concentrations.

Overall, our model simulations with different antibody constructs clarify the effects of binding

domain affinity and target expression on receptor inhibition, providing insight that is applica-

ble not only to our particular BsAb system, but also more broadly to bispecific antibody thera-

peutic design.

Methods

Monospecific and bispecific antibodies

The three key antibodies of interest we are using to target the receptors in the IL-6/IL-8 system

are tocilizumab (anti-IL-6Rα), 10H2 (anti-IL-8RB), and a novel bispecific antibody developed

by Yang et al. [28], BS1 (anti-IL-6Rα/anti-IL-8RB) (Fig 1A). BS1 is a human immunoglobulin

G (IgG)-based bispecific antibody synthesized by combining the knobs-into-holes strategy

[43] with single-chain Fab design [44], and it was developed to increase high-affinity selective

targeting of IL-6R and IL-8R, decrease off-target toxicity, and reduce risk of acquired resis-

tance [28]. The IL-6Rα-blocking arm of BS1 comes from tocilizumab, a monoclonal anti-IL-

6Rα antibody used to treat rheumatoid arthritis [13]. There are no clinically-approved anti-IL-

8R antibodies, but the experimental anti-IL-8RB antibody 10H2 blocks IL-8 binding and activ-

ity [5,29,45] and is used for the IL-8RB-blocking arm of BS1. BS1 is bivalent (one anti-IL-6Rα
domain and one anti-IL-8RB domain) and interacts with IL-6Rα+/IL-8RB+-transduced HEK

293T cells in flow cytometry-based binding studies (KD = 14.4 nM) [28].

Binding model equations

To describe the ligand-receptor and antibody-receptor binding kinetics, we built a coupled set

of ordinary differential equations (ODEs) using the law of mass action. Each individual ODE

describes one molecule or molecular complex, with terms representing each binding interac-

tion (binding and unbinding processes) in the system (Figs 1B and S1).

The equations take the form:

d½R1 � Ab�
dt

¼ kon;R1
½R1�½Ab� þ koff ;R2∗

½R1 � Ab � R2�

� kon;R2∗
½R2�½R1 � Ab� � koff ;R1

½R1 � Ab�
ð1Þ

d½R1 � Ab � R2�

dt
¼ kon;R1∗

½R1�½R2 � Ab� þ kon;R2∗
½R2�½R1 � Ab�

� koff ;R1∗
½R1 � Ab � R2� � koff ;R2∗

½R1 � Ab � R2�

ð2Þ
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These equations represent the antibody first binding one receptor and then binding a sec-

ond receptor (of the same or different type, depending on the antibody). The “second binding”

events, describing the cross-linking of an antibody-receptor complex with an additional recep-

tor, are indicated by asterisks in the equations. The full model equations are included in the

Supporting Information (S1 File).

Previous bispecific antibody binding models estimated the rate constants for the cross-link-

ing steps (kon,R*) by making assumptions about the geometrical constraints of antibody-recep-

tor complex formation [24,39] or receptor diffusion within a membrane [40]. In contrast, here

we were able to fit our association and dissociation rate constants using direct experimental

data measuring binding for the IL-6R/IL-8R/antibodies system. The experimental data to

which we are comparing our model simulations [28] were acquired at 4˚C. As a result, other

processes that could have been incorporated into the model, including receptor synthesis,

internalization, and degradation, were assumed to be negligible because they are typically sup-

pressed at low temperatures.

Rate constant values and similarity of binding sites

To simulate the complete mechanistic ODE model (see equations in S1 File) for three different

antibodies requires values for the many parameters in the model—primarily, rate constants.

The number of unique parameters for which we need values can be reduced using (a) the iden-

tification of a thermodynamic cycle and (b) assumptions of the similarity of binding sites

across antibodies, as described in the next two sections.

BsAb-receptor binding reaction cycle

The bivalent antibody reactions function in a cycle where all of the species are linked by the

reactions. Given the reactions:

Abþ R1 Ð
kon;R1

koff ;R1

Ab � R1 ðReaction 1Þ

Abþ R2 Ð
kon;R2

koff ;R2

Ab � R2 ðReaction 2Þ

Ab � R2 þ R1 Ð
kon;R1

∗

koff ;R1
∗
R1 � Ab � R2 ðReaction 3Þ

Ab � R1 þ R2 Ð
kon;R2

∗

koff ;R2
∗
R1 � Ab � R2 ðReaction 4Þ

These reactions form a cycle because it is possible to find a path through the reactions that

leads back to the starting point. For example, starting with the antibody in Reaction 1, the for-

ward reaction (binding) produces Ab�R1. Then, the forward reaction in Reaction 4 creates

R1�Ab�R2. Using the reverse reaction in Reaction 3, Ab�R2 is obtained. Finally, through the

reverse reaction in Reaction 2, the original antibody is returned. Because there is a path

through the reactions that returns the original reactant and does not repeat any reactions, the

reactions form a cycle, with the forward reactions of Reactions 1 and 4 and the reverse reac-

tions of Reactions 2 and 3.

For each of these reactions, at equilibrium, the rate of the forward reaction must be equal to

the rate of the reverse reaction by the principle of detailed balance [46,47]. Thus, for each
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reaction, the concentrations at equilibrium and the rate constants can be related:

K1 ¼
½Ab�eq½R1�eq

½Ab � R1�eq

¼
koff ;R1

kon;R1

K2 ¼
½Ab�eq½R2�eq

½Ab � R2�eq

¼
koff ;R2

kon;R2

K3 ¼
½Ab � R2�eq½R1�eq

½R1 � Ab � R2�eq

¼
koff ;R1∗

kon;R1∗

K4 ¼
½Ab � R1�eq½R2�eq

½R1 � Ab � R2�eq

¼
koff ;R2∗

kon;R2∗

ð3Þ

To relate the rate constants for the full reaction cycle, we can multiply the equilibrium con-

stants for each reaction, using the inverse equilibrium constant for each reaction that is

reversed (Reactions 2 and 3):

K1K4K � 1
2

K � 1
3

¼
koff ;R1

koff ;R2∗
kon;R2

kon;R1∗

kon;R1
kon;R2∗

koff ;R2
koff ;R1∗

¼
½Ab�eq½R1�eq½Ab � R1�eq½R2�eq½R1 � Ab � R2�eq½Ab � R2�eq

½Ab � R1�eq½R1 � Ab � R2�eq½Ab�eq½R2�eq½Ab � R2�eq½R1�eq

¼ 1

ð4Þ

All of the concentrations in Eq 4 cancel out, and the product of the equilibrium constants

for the cycle reactions is unity. This is an established behavior for cycles where ligand is bound

and released into a single volume with no other reactions [48,49]. Although Eq 4 was derived

from the equilibrium relationships, the result only involves the system constants, and thus it

applies even when the system is not in equilibrium [48].

Similarity of binding sites

Using the relationship of the equilibrium constants to the rate constants, we can rewrite the

cycle constraint:

kon;R1∗
koff ;R1

kon;R1
koff ;R1∗

¼
kon;R2∗

koff ;R2

kon;R2
koff ;R2∗

ð5Þ

Due to the similarity of the dissociation reaction kinetics between the different antibody

domains [50], the parameter space can be simplified by assuming that the koff values for the

first binding and second binding reactions are equal (i.e., koff,R1 = koff,R1* and koff,R2 = koff,R2*).

This assumption further simplifies the rate constant relationship to:

kon;R1∗

kon;R1

¼
kon;R2∗

kon;R2

ð6Þ

In their bivalent antibody model, Harms et al. termed this ratio of kon,R* to kon,R as the

“cross-arm binding efficiency” (χ) [38,51]. This value combines multiple factors that impact

multivalent binding, including the increased rate of binding due to the restriction of the

bound antibody to a small volume adjacent to the cell membrane and the decreased flexibility

and rotational freedom of the tethered antibody. Greater values of χ indicate stronger cross-

arm binding, leading to greater rates of ternary complex formation.
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With the reaction cycle constraint and above koff assumption, the number of unique param-

eters needed to describe an individual bivalent antibody is reduced from eight to five—three

kon values and two koff values.

We can further simplify the overall number of parameters describing the binding of the

three antibodies being studied here by noting that BS1 is synthesized using the IL-6Rα and IL-

8RB binding domains of tocilizumab and 10H2, respectively. Thus, we made an additional

simplifying assumption that the association rate constants were equal for the similar binding

domains. With this assumption, the independent association rate constants become:

kon;6R ¼ kon;Toci� 6R ¼ kon;BS1� 6R ð7Þ

kon;8R ¼ kon;10H2� 8R ¼ kon;BS1� 8R ð8Þ

kon;6R∗ ¼ kon;Toci� 6R∗ ¼ kon;BS1� 6R∗ ð9Þ

kon;8R∗ ¼ kon;10H2� 8R∗ ¼ kon;BS1� 8R∗ ð10Þ

With the previous parameter space reduction from the binding reaction cycle constraint

and the assumption that first and second koff values are equal, the full parameter space for toci-

lizumab, 10H2, and BS1 is reduced to five independent parameters: kon,6R, kon,8R, kon,6R*,

koff,6R, and koff,8R, with kon,8R* being dependent on the values of the other association rates.

IL-6Rα and IL-8RB HEK 293T cell surface binding assays

The values of the association and dissociation rate constants for the antibody-receptor com-

plexes in the ODE model were estimated by optimization (fitting) of the model outputs to

experimental data from in vitro cell surface binding flow cytometry assays; these data were pre-

viously reported [28] and detailed methods can be found in the original publication. Briefly,

the IL-6Rα and IL-8RB genes were transduced into HEK 293T cells, generating four cell lines:

IL-6Rα+/IL-8RB-, IL-6Rα-/IL-8RB+, IL-6Rα+/IL-8RB+, and IL-6Rα-/IL-8RB-. The receptor

expression on the transduced cell lines was quantified through flow cytometry (Table 1).

The transduced cell lines were placed into 96-well plates (1 × 105 cells per well) and incu-

bated with doses of monoclonal or bispecific antibodies (tocilizumab, 10H2, and BS1) for two

hours at 4˚C. Eleven different antibody doses were used, with concentrations ranging from

10−2 to 103 nM. Cells were then washed and incubated with an allophycocyanin (APC)-conju-

gated anti-human IgG1 antibody for 15 min at 4˚C. Antibodies binding to the receptors were

quantified with flow cytometry and reported as Mean Fluorescent Intensity (MFI) detected.

The experiments were performed with three technical repeats, and the average of the data

from all three replicates was used for the optimization of the binding parameter values.

Table 1. IL-6Rα and IL-8RB quantification on transduced HEK 293T cells (expressed in # receptors/cell).

Cell Line IL-6R Expression IL-8R Expression

IL-6Rα+/IL-8RB- 5.08×105 N/A

IL-6Rα-/IL-8RB+ N/A 1.30×106

IL-6Rα+/IL-8RB+ 3.16×105 6.18×105

https://doi.org/10.1371/journal.pcbi.1012157.t001
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Model parameterization: Optimization of binding rate constants

To estimate the values of the association and dissociation rate constants for each binding step in

the model, we fit the antibody-receptor binding model results to the experimental flow cytome-

try binding assay data. To reduce the number of parameters required to fully characterize the

model, multiple simplifying assumptions were made about similarities in binding domain struc-

ture and protein geometry, and from the thermodynamic cycle constraint, as described in the

previous sections. Thus, to describe the system fully for tocilizumab, 10H2, and BS1, we need

values for five unique parameters: kon,6R, kon,8R, kon,6R*, koff,6R, and koff,8R, with the value of

kon,8R* being dependent on the values of the other parameters (Fig 1B and 1C).

We created MATLAB code to describe the ordinary differential equation (ODE) model as a

system of equations and used the ode15s solver to simulate the system over time. Simulations

were performed under conditions replicating the in vitro experiments as closely as possible.

For example, the initial concentration of receptors for each cell line was set to values from the

transduced HEK293T cells (Table 1), and the initial antibody concentrations used in the simu-

lation were the same as the range of the experimental values. The antibody was added at

time = 0, and the free antibody concentration was set to 0 at time = 2 hours to simulate the

washing out of unbound antibody. The simulation was continued for 15 minutes after the

washout to mimic the incubation with the APC-conjugated antibody. Data from the seven

antibody-cell line combinations where binding occurred (e.g., Tocilizumab binding to IL-6R+

and IL-6R+/IL-8R+ cells but not IL-8R+ cells) was used for the optimization, for a total of 77

data points. The total bound antibody at the final simulation time point was compared to the

Mean Fluorescent Intensity (MFI) values from the flow cytometry binding assays, which repre-

sent the total bound antibody in that experiment.

We used the non-linear least squares optimization function lsqnonlin to determine the

parameter values (i.e., rate constant values) that minimized the sum of the squared differences

between the simulation output and the experimental data points. Three hundred sets of initial

guesses for the parameter values were generated using Latin Hypercube Sampling, using a log-

uniform distribution for each parameter over the ranges listed in Table 2. The ranges for the

initial guess values were centered around association and dissociation rate constant values

reported in literature for other bispecific antibodies [24,39,40] with wide ranges used for each

parameter to identify if the optimized values found were dependent on the initial guess used.

The optimization process was repeated for each set and for each type of simulation normaliza-

tion (described below), and optimizations that did not converge or that did not vary from the

initial guesses were discarded (approximately 13% of the total optimization runs).

Table 2. Binding rate constants estimated from IL-6Rα and IL-8RB HEK 293T cell surface binding assays. S.D. = standard deviation of log-transformed optimized

values. α = 8.3 × 10−7 nM/(# / cell) is used to convert the rate constants between nM and number of receptors per cell. The derivation of this value for the unit conversion

is included in the Supporting Information (S1 File).

Parameter Initial Guess Range Optimization Bounds Best Fit Value S.D. Units Reference

kon,6R [10−9,10−2] [10−11,1] 5.92×10−6 1.15 nM−1s−1 Best fit to the data

kon,8R [10−9,10−2] [10−11,1] 9.03×10−6 0.953 nM−1s−1 Best fit to the data

kon,6R* [10−13,10−5] [10−15,10−3] 8.11×10−8 2.10 #

cell

� �� 1s� 1 Best fit to the data

α−1 kon,6R* [1.2×10−7,12] [1.2×10−9,1.2×103] 9.77×10−2 2.10 nM−1s−1 kon,6R* converted to nM−1s−1

kon,8R* — — 1.24×10−7 2.25 #

cell

� �� 1s� 1 Dependent on other binding constants

α−1 kon,8R* — — 1.49×10−1 2.25 nM−1s−1 kon,8R* converted to nM−1s−1

koff,6R [10−7,10−2] [10−9,1] 5.61×10−5 1.08 s−1 Best fit to the data

koff,8R [10−7,10−2] [10−9,1] 6.38×10−5 1.36 s−1 Best fit to the data

https://doi.org/10.1371/journal.pcbi.1012157.t002
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The MFI values from the flow cytometry binding assays were normalized against the values

for bound BS1 at the initial antibody concentrations where binding reached saturation. The

MFI values for BS1 where binding reached saturation were averaged and used as the denomi-

nator to normalize all of the data for all antibodies in a single cell line; each cell line was nor-

malized separately. For the simulation results, four different normalization schemes were

tested in the parameter optimization; these normalizations are summarized in Table 3 and are

defined as follows. BS1 indicates simulations that were normalized against the amount of

bound BS1 in the corresponding cell line, and Ab indicates simulations where each antibody

was normalized against the amount of that specific antibody bound in the corresponding cell

line. Data indicates simulations that were normalized using output at the same concentrations

that were used to normalize the experimental data, and Max indicates simulations that were

normalized using the output at the maximum antibody concentration.

As discussed in the Results, the optimizations performed with normalization against BS1 at

binding saturation (labeled “BS1, Data”) show stronger convergence around a single optimal

value for each parameter and less dependence on the initial value used, so this normalization

scheme was selected for the parameter optimization. The cost of the parameter set was calcu-

lated as the sum of the squared difference between the normalized model output and normal-

ized experimental binding at each input concentration. The best fit parameter set was used for

further binding model simulations (Table 2).

Simulation output

As described above, for the optimization of the binding parameters, the total receptor-bound

antibody at the final simulation time point was output from the model simulations for com-

parison to the experimental MFI values, which represent the total bound antibody in the flow

cytometry assays. For the subsequent model simulations, as bivalent antibodies can form both

binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes, quantifying

the amount of antibody-bound receptor (as distinct from receptor-bound antibody) provides

more information about the inhibition of the system. Thus, for the simulations using the

parameterized model, we output the concentration of antibody-bound receptor (in # recep-

tors/cell). Results are given as the concentration of receptor bound in a particular complex

type, either binary complexes (with a single receptor) [Eq 11] or ternary complexes (with two

receptors) [Eq 12], or the total bound receptor [Eq 13], which is the sum of receptor bound in

binary and ternary complexes. Results are also shown for the receptor fractional occupancy,

which is calculated as the fraction of the total receptor concentration in the system that is

bound either in a specific complex type or overall. Unless stated otherwise, the bound receptor

refers to the sum of IL-6R and IL-8R bound in a particular complex type or overall.

½R�bound;binary ¼ ½Ab � R1� þ ½Ab � R2� ð11Þ

½R�bound;ternary ¼ 2∗½R1 � Ab � R2� ð12Þ

Table 3. Normalization schemes tested in the optimization of the binding rate constants against the flow cytome-

try binding assay data. The “BS1, Data” scheme was selected for the parameter optimization.

Scheme Normalized Against Initial Concentrations

BS1, Data BS1 Concentrations used for experimental data

BS1, Max BS1 Maximum antibody concentration

Ab, Data Individual Ab Concentrations used for experimental data

Ab, Max Individual Ab Maximum antibody concentration

https://doi.org/10.1371/journal.pcbi.1012157.t003
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½R�bound;total ¼ ½R�bound;binary þ ½R�bound;ternary ð13Þ

Univariate sensitivity analysis

We performed local and global univariate sensitivity analyses of the binding model rate con-

stants and the species concentrations to determine the effects of the individual parameters on

the model output. For the local sensitivity analysis, simulations were performed for two hours

after antibody dosing, with a baseline BS1 concentration of 10 nM and baseline receptor con-

centrations of 5 × 104 receptors/cell for both IL-6R and IL-8R. Each rate constant and initial

concentration was varied 10 percent above its baseline value, with each parameter varied indi-

vidually in separate simulations. The Area Under the Curve (AUC), calculated as the integra-

tion of the BS1-receptor complex concentration over time, was output for both ternary

complexes and total bound receptors. The sensitivity for each parameter-output combination

was calculated as the percentage change in the output value divided by the percentage change

in the parameter value (10 percent for all simulations).

In the global sensitivity analysis, simulations were performed for 24 hours after antibody

dosing, with constant receptor concentrations of 5 × 104 receptors/cell for both IL-6R and IL-

8R. The longer simulation time was selected for this analysis to examine the model output

closer to equilibrium. Each association and dissociation rate constant was separately varied

over two orders of magnitude below and above its optimized value. The receptor fractional

occupancy was output for ternary complexes and total bound receptor, with fractional occu-

pancy calculated as the fraction of the total receptor (IL-6R + IL-8R) that is bound in ternary

complexes or bound in total in either binary or ternary complexes.

Results

Binding parameter optimization and parameter identifiability

We optimized the association and dissociation rate constants for the antibody-receptor bind-

ing model using the experimental in vitro flow cytometry data with a range of initial guesses

for each parameter, as described in the Methods. The optimization generated a range of opti-

mal parameter sets depending on the initial guesses used (Fig 2A). About half of the optimized

parameter sets, and in particular those of the lowest cost (i.e., best fit), resulted in consistent

parameter values (horizontal patterns on the graph) that are independent of the initial guess

values. Some of the optimization results do give parameter sets that are correlated to initial

guesses, but these are higher in cost (i.e., poorer fit overall) and fewer in number; since each

point is moderately transparent in the graph, darker regions indicate many overlapping opti-

mized values. All five of the parameters optimized show consistent optimal parameter values

obtained from a wide range of initial guesses. This is evidence of good parameter identifiability

—given five parameters being optimized against eleven antibody doses used in seven anti-

body-cell line combinations (for a total of 77 data points).

We tested whether the choice of simulation normalization scheme, as described in the

Methods, influenced the optimization. The optimizations performed with normalization

against BS1 show stronger convergence around a single optimal value for each parameter and

less dependence on the initial value used (Fig 2A, lower panel), compared to simulations nor-

malized to results for each antibody individually, which show a wider spread in the optimal

values obtained and a greater reliance on the value of the initial guess (S2 and S4 Figs). Further
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Fig 2. Optimization of binding association and dissociation constants to experimental data. The cost function is calculated

as the sum of the squared differences between the normalized model output and the normalized experimental data at each

antibody concentration used. “All Norm” includes all of the optimized parameter sets from each of the different normalization

options described in the Methods, and “BS1 Norm” highlights the parameter sets where the model output was normalized

against the bound concentration of BS1 at the initial concentrations used to normalize the experimental data, which was the

best-performing normalization. Figures separated by normalization scheme and figures with a narrow range of parameter

values are available in the Supporting Information (S2–S4 Figs). A, Relationship between initial guesses and optimized values for

each binding reaction rate constant. kon,8R* is not pictured because its initial and ‘optimized’ values were determined from the

other parameters using the thermodynamic cycle relationship. B, Distribution of optimized parameter values across all

optimizations performed. Marked points indicate the values of the lowest cost parameter set (values are listed in Table 2). C,

Relationship between optimized parameter values and the cost of the optimized parameter sets compared to experimental data,

separated by parameter. Optimized points with the same value are grouped into a single point, with the point size indicating

how many optimized parameter values are in the group.

https://doi.org/10.1371/journal.pcbi.1012157.g002
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discussion of the results from the different normalization schemes is included in the Support-
ing Information (S2 File).

The frequency distributions of the optimized parameter values are narrow, again support-

ing good parameter identifiability and indicating that the parameters are well-constrained by

the data (Figs 2B and S3); the location of the best-fit (i.e., lowest cost) value is marked for each

parameter. The parameter distributions contain multiple small peaks, expressing separate

reoccurring optimal values, but each parameter demonstrates a distinct, most frequent value

that also corresponds with the lowest cost value. Of note, the first association steps (kon) are

better constrained, while the second steps (kon*) have a slightly larger range of potential values

(Table 2).

Across the normalization schemes tested, the most frequent parameter set corresponded

well with the lowest cost parameter set (Fig 2C). In this visualization, optimized parameters

with the same value and cost were grouped into a single point, and the area of the point was

scaled with the number of parameters in the group–in other words, large dots represent

parameter value-cost pairs that occur more frequently across the 300 optimizations. All six

parameters (with five parameters being optimized and kon,8R* being calculated from the ther-

modynamic cycle constraint) show an optimal lowest-cost point that occurs most frequently,

with a spread of less frequently occurring values around this central value.

Based on its low dependence on initial guess, high proportion of low-cost optimal parame-

ter sets, and narrow distribution of optimal values, the normalization scheme with BS1 data at

binding saturation was selected as the primary normalization method for the remaining analy-

sis. The lowest cost parameter set from the optimizations performed with this normalization

scheme was selected for the binding model parameter values (Table 2) and is indicated on the

frequency distribution (Fig 2B).

Best-fit parameters recapitulate experimental observations

The best-fit association and dissociation constants (Table 2) fall within the range of typical val-

ues for antibody binding [52]. The association rates for binding to IL-6R and IL-8R are very

close in value, and there is not a substantial difference in the monovalent binding domain

affinities for either receptor (Table 4), as was observed experimentally [28]. Moreover, the cal-

culated monovalent affinities are consistent with the results from the experimental characteri-

zation of BS1 (S2 Table) [28], supporting the estimated rate constants used in the model. The

second binding step, where the binary antibody-receptor complex cross-links with an addi-

tional receptor to form a ternary receptor-antibody-receptor complex, is substantially faster

than the initial binding. This is expected for bivalent binding, as the antibody is tethered to the

cell surface and held in close proximity to the membrane receptors, promoting interaction

with a second receptor. The cross-linking equilibrium constants are in the sub-picomolar

range, and the ratio of kon,R* to kon,R, sometimes termed the “cross-arm binding efficiency”

[38], is 1.6 × 104, indicating strong avidity of BS1 binding.

Table 4. Dissociation equilibrium constants for the initial binding to form binary complexes and the cross-linking

to form ternary complexes. Values are calculated from the binding rate constants (Table 2) via KD = koff / kon. The

antibodies share the same equilibrium constants due to the assumptions made in the parameter optimization.

Equilibrium Constant Description Value (nM)

KD,6R Initial binding to IL-6R for tocilizumab and BS1 9.5

KD,8R Initial binding to IL-8R for 10H2 and BS1 7.1

KD,6R* Cross-linking to IL-6R for tocilizumab-IL-6R and BS1-IL-8R 5.7×10−4

KD,8R* Cross-linking to IL-8R for 10H2-IL-8R and BS1-IL-6R 4.3×10−4

https://doi.org/10.1371/journal.pcbi.1012157.t004
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Simulations using this best-fit parameter set indeed recreate the experimental in vitro flow

cytometry data (i.e., binding of antibody to the cell surface) that was used to fit the parameter

values very well (Fig 3). The dose-dependence, antibody-dependence, and cell-type-depen-

dence (i.e., receptor-expression dependence) of the data were all captured in the simulation.

In the single-receptor-positive cell lines (denoted IL-6R+ and IL-8R+), at low antibody con-

centrations, there is greater binding of the monospecific antibodies than of BS1 because each

monospecific antibody molecule has two binding sites (doubling overall likelihood of bind-

ing), plus avidity effects promote increased binding. As the antibody concentration increases

within the experimentally-tested range, the monospecific antibody curves appear to saturate at

a lower level of total antibody bound than BS1 (consistent with the experimental measure-

ments) because much of the monospecific antibody is bound bivalently, with a single antibody

occupying two receptors. In contrast, BS1 can only bind monovalently because its second

binding site is for a receptor not expressed on that cell type. Thus, BS1 forms antibody-recep-

tor complexes whereas tocilizumab and 10H2 form receptor-antibody-receptor complexes,

resulting in a lower measured signal since binding is quantified by the number of antibodies

bound.

At simulated antibody concentrations higher than those experimentally tested (Fig 3,

dashed lines), we predict further increased binding of the monospecific antibodies; at very

high antibody concentrations, the antibody is present in such excess that all of the antibody is

bound monovalently, matching the behavior of BS1, i.e., receptor-antibody-receptor com-

plexes are lost in favor of antibody-receptor complexes. As a result, at the highest concentra-

tions, the overall binding of each antibody is predicted to be equivalent; however, at practical

experimental concentrations, we can see and explain the higher binding of BS1.

In these single-receptor-positive cell lines, BS1 has a sigmoidal binding curve because it is

effectively monovalent; however, in the double-receptor-positive cell line (denoted IL-6R+/IL-

8R+, which expresses about twice as many IL-8 as IL-6 receptors (Table 1) [28]), BS1 is now

effectively bivalent and exhibits a binding curve similar to and higher than the individual

Fig 3. Model simulation results using the best-fit parameter set compared to the experimental data used to fit the model parameters. Simulations were

performed under the same conditions as the experiment: 105 cells/well, receptor expression levels from the transduced cell lines (Table 1), and with a 2-hour

initial association period followed by a 15-minute free antibody washout. The model simulation results (lines) are compared to the equivalent experimental

data (dots). Simulations beyond the range of antibody concentrations used in the experimental data are indicated with dashed lines. Experimental data was not

obtained for the combination of tocilizumab and 10H2, but simulations are presented here for comparison. Model output and experimental data are each

normalized to the bound BS1 concentration from the initial antibody concentrations where binding reached saturation. The error bars depict the standard

error from three experimental replicates; the experimental data was previously published [28]. Simulation results with all obtained parameter sets are included

in the Supporting Information (S7 Fig).

https://doi.org/10.1371/journal.pcbi.1012157.g003
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tocilizumab and 10H2 curves. This shape is due to BS1 bivalently binding both IL-6R and IL-

8R simultaneously, and the total BS1 binding at the highest levels (Fig 3, dashed lines) is

higher than either tocilizumab or 10H2 because it can bind to either IL-6R or IL-8R. The

bound receptor concentrations can be further separated by complex type, distinguishing

binary antibody-receptor complexes from ternary receptor-antibody-receptor complexes (S6

Fig). The separation of complex types confirms that the shape of the binding curve in the dou-

ble-receptor-positive cell line is due to the formation of ternary complexes through bivalent

binding.

We also simulated the exposure of each of the three cell types to a combination of the two

monospecific antibodies (tocilizumab + 10H2), and, as expected, in simulations of single-

receptor-positive cell lines, the combination behaved similarly to the single monospecific;

while in the double-receptor-positive cell lines, the combination behaved similar to the bispe-

cific. This has potentially useful implications for the ability of the bispecific (vs the monospe-

cific combination) to bind to and inhibit receptors on cells expressing these two receptors at

different levels.

Bivalent antibody binding over time

We simulated the formation of the BS1-receptor complexes over time (Fig 4), using an equiva-

lent timeline to the experiments: an initial 2-hour binding period, followed by a washout of all

free (unbound) BS1 from the system at t = 2 hours to simulate dissociation of the antibody-

receptor complexes. The initial antibody concentration was set to 100 nM to ensure the anti-

body fully saturated the available receptor by 2 hours; similar results are also demonstrated for

lower antibody concentrations (S8A Fig).

Binding of BS1 in the single receptor-positive cell lines, IL-6R+ and IL-8R+, shows forma-

tion of binary antibody-receptor complexes in the association phase, followed by dissociation

of those complexes in the washout phase. Binding is greater in the IL-8R+ cell line because

there is a higher receptor expression in those cells than in the other cell lines (Table 1).

Fig 4. Simulations illustrate the dynamics of BS1 antibody binding to IL-6R and IL-8R over time. Initial BS1 concentration = 100 nM and 105 cells/well for

all simulations. Free (unbound) BS1 concentration was set to 0 nM at 2 hours to simulate antibody washout from the system. The expression levels of IL-6R

and IL-8R from the transduced experimental cell lines (Table 1) were used in the simulations. Simulation results for additional antibodies and antibody

concentrations are included in the Supporting Information (S8 Fig).

https://doi.org/10.1371/journal.pcbi.1012157.g004
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In the double-receptor-positive cell line, IL-6R+/IL-8R+, the association phase shows sub-

stantial ternary IL-6R-BS1-IL-8R complex formation (Fig 4, purple line), with fewer binary

BS1-IL-8R complexes and almost no BS1-IL-6R complexes being formed. Initially, formation

of the ternary complexes progresses rapidly, quickly reaching a steady concentration. After the

first 20 minutes, as the free IL-6R becomes saturated with antibody, more binary BS1-IL-8R

complex formation occurs because there is no free IL-6R remaining to form ternary com-

plexes. A small amount of binary BS1-IL-6R complex forms near the end of the association

phase, but there is much greater binary BS1-IL-8R complex formation because IL-8R is in

excess of IL-6R in this cell line.

During the dissociation phase in the IL-6R+/IL-8R+ cells, the concentration of the binary

BS1-IL-6R and BS1-IL-8R complexes decreases as antibody unbinds due to mass action follow-

ing removal of the excess free (unbound) antibody. Perhaps counterintuitively, the concentra-

tion of the ternary IL-6R-BS1-IL-8R complexes actually slightly increases in this phase, as

more receptors are freed and become available to bind to existing binary complexes, and the

ternary complex concentration achieves a steady value and does not decrease during the simu-

lation time period. This same behavior is also observed in binding of the two monospecific

antibodies, tocilizumab and 10H2, to their target receptors (S8B and S8C Fig). This illustrates

the importance of avidity in bivalent antibody binding; each of the antibodies is able to form

ternary complexes as more receptor becomes available for binding, and these complexes per-

sist at a consistent concentration for a significant period of time after antibody removal.

Effect of varying antibody concentration and receptor expression

To better understand the impact of the antibody concentration on bispecific antibody-receptor

complex formation, and in particular on the relative formation of binary (BS1-IL-6R or

BS1-IL-8R) versus ternary (IL-6R-BS1-IL-8R) complexes, we performed simulations of BS1

binding over a range of initial antibody concentrations and for cells with differing levels of

combined IL-6R and IL-8R expression (Fig 5). Because BS1 requires both IL-6R and IL-8R

available to form ternary complexes, BS1-receptor complex formation is very sensitive to the

ratio of IL-6R to IL-8R expression in the system. Thus, to specifically isolate the impact of

overall receptor expression on BS1 binding, IL-6R and IL-8R were kept in a 1:1 ratio for these

simulations. In these results and the results that follow, the bound receptor is reported as the

receptor fractional occupancy, which is calculated as the fraction of the total receptor concen-

tration (IL-6R + IL-8R) that is bound in a particular complex type (i.e., binary or ternary) or

that is bound overall (i.e., total bound).

At higher antibody concentrations and lower receptor expression levels, the antibody levels

are saturating and very little of the antibody is consumed in the bound complexes (Fig 5A and

5B). At lower antibody concentrations and higher receptor expression levels, however, the free

receptor is in excess of the free antibody and a substantial fraction of the antibody is bound to

receptor (up to 100 percent at the highest simulated receptor expression level).

The relative excess of antibody or receptor is important for the proportion of binary anti-

body-receptor and ternary receptor-antibody-receptor complexes that are formed. Ternary

complexes require two dissociation reactions to fully separate, and binary complexes tether the

antibodies in close proximity to free receptor, promoting recreation of ternary complexes

when they do dissociate; thus, ternary complexes represent a more stable antibody binding for-

mat relative to binary complexes. When the antibody is present in excess of the receptor (i.e.,

at high antibody concentrations and low receptor expression), the majority of complexes that

form are the less-stable binary complexes. Additionally, at any given receptor density, as the

concentration of antibody is increased, more binary complexes are created (Fig 5C and 5D).
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Ternary receptor-antibody-receptor complexes, in contrast, are favored at intermediate anti-

body concentrations, around 100 to 102 nM (recall Fig 3). Initially, increasing the antibody con-

centration causes more ternary complexes to form, but, past a certain threshold, the free antibody

overwhelms the number of available receptors. At these higher antibody concentrations, there are

few remaining receptors available for the second binding reaction to convert binary complexes

into ternary complexes (Fig 5C and 5D). This bell-shaped relationship between ternary systems

and bivalent molecule concentration has been described previously [53]; the decreased ternary

complex formation at high concentrations is termed “autoinhibition.”

Interestingly, model simulations demonstrate that, at a constant antibody concentration, as

the receptor expression is increased, a greater fraction of the receptor is bound to antibody

(Fig 5D). This initially appears counterintuitive because increasing receptor expression means

the system contains more binding sites for the same amount of antibody. However, this result

can be rationalized by the fact that the increase in receptor expression causes a greater propor-

tion of the bound complexes to be of the higher-stability ternary format, which benefit from

avidity effects and therefore readily rebind if one arm dissociates, making them less likely to

fully dissociate.

Fig 5. Simulated Binary (Ab-R), Ternary (R-Ab-R), and Total Bound (Binary + Ternary) levels of bispecific BS1-Receptor complexes, over a range of

antibody doses and receptor expression levels. In these simulations, IL-6R and IL-8R are present in a 1:1 ratio, and simulations were performed for 24 hours

after antibody dosing. A-B, Fraction of total BS1 concentration in free (unbound) state for different levels of initial BS1 (A) and receptor (B). C-D, Fraction of

total receptor (IL-6R + IL-8R) in different forms/complexes for different levels of initial BS1 (C) and receptor (D). E, Bound receptor fraction across different

levels of initial BS1 and receptors. The color indicates the fraction of the total receptor (IL-6R + IL-8R) that is bound to BS1 in each antibody-receptor complex

type. A similar heat map for different tocilizumab and 10H2 concentrations is included in the Supporting Information (S9 Fig).

https://doi.org/10.1371/journal.pcbi.1012157.g005
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Increased proportion of bound receptor with increasing receptor concentration is only

observed when the antibody amount is still in excess of the receptor. At higher receptor expres-

sion levels with lower antibody concentrations, the receptor becomes the excess molecule,

resulting in a greater proportion of the receptor remaining unbound (Fig 5D).

The combined impact of antibody concentration and receptor expression creates “zones”,

wherein different antibody-receptor complex types are favored (Fig 5E). Overall, increasing

the antibody concentration causes more of the receptor to be bound in total. Binary antibody-

receptor complexes are favored at higher antibody concentrations and lower receptor expres-

sion levels; whereas, ternary receptor-antibody-receptor complexes are the predominant type

at high receptor expression levels with intermediate to high antibody concentrations. This

same pattern is also observed in simulations of combination treatment with the two monospe-

cific antibodies, tocilizumab and 10H2, modeled together in a 1:1 concentration ratio (S9 Fig).

Monovalent and bivalent binding

To further explore how ternary receptor-antibody-receptor complex formation leads to greater

fractional receptor binding as receptor expression increases, we compared the bivalent anti-

body binding behavior to simulations of BS1 that we artificially restricted to monovalent bind-

ing only (Fig 6). In these simulations, the association rate constants for the second binding

step (kon,6R* and kon,8R*) were fixed at 0 to prevent ternary complex formation and restrict BS1

to monovalent binding only. The rate constants for the initial association into binary

Fig 6. Simulations of monovalent BS1 binding over varying initial antibody and receptor concentrations. In these simulations, although the cells express

both receptors, the formation of ternary complexes was suppressed by setting kon,6R* and kon,8R*to 0. IL-6R and IL-8R are present in a 1:1 ratio, and simulations

were performed for 24 hours after antibody dosing. Similar results for the combination of the monospecific antibodies tocilizumab and 10H2 are included in

the Supporting Information (S11 Fig). A, Fraction of total BS1 that is free (unbound) for different levels of receptor expression and initial BS1 concentration. B,

Fraction of total receptor concentration (IL-6R + IL-8R) that is unbound (free) or bound (in binary antibody-receptor complexes) for different levels of

receptor expression and initial BS1 concentration. The same results, but with antibody and receptor visualization reversed, are included in the Supporting
Information (S10 Fig). C, Bound receptor fraction across different initial BS1 and receptor levels. The color indicates the fraction of the total receptor (IL-6R

+ IL-8R) that is bound to antibody. D, Comparison of monovalent and bivalent binding. The lines indicate the fraction of total receptor (IL-6R + IL-8R) that is

bound in different complex types in the original simulations and the simulations restricted to monovalent binding only. Each panel represents a different

receptor level (in # receptors/cell).

https://doi.org/10.1371/journal.pcbi.1012157.g006
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complexes (kon,6R and kon,8R) and for the dissociation of antibody-receptor complexes (koff,6R

and koff,8R) were kept at their previous values (Table 2).

Similar to the simulations of bivalent BS1 binding, at lower receptor expression levels, the

antibody is present in excess of the receptor and fully saturates the receptor (Figs 6A and S10).

At the highest receptor expression levels, more of the antibody is consumed in the binding,

but there is still a substantial fraction of free antibody available. Unlike the previous bivalent

binding simulations, however, the simulations of monovalent binding show that the fraction

of receptor that is bound to antibody is nearly entirely independent of the receptor expression.

For most of the receptor levels, the bound receptor fraction varies only with the initial anti-

body concentration and remains constant as receptor expression is increased (Fig 6B and 6C).

The only deviation from this pattern is at the highest receptor expression levels for intermedi-

ate antibody concentrations, wherein the antibody is no longer saturating the receptor, leading

to a greater proportion of free receptor remaining.

When the antibody is restricted to only binding monovalently, as long as the antibody is

present in excess of the receptor, varying the receptor expression level does not change the pro-

portion of the receptor that is bound. In contrast, when the antibody binds bivalently, the

receptor expression level in the system determines the proportion of binary and ternary com-

plexes that form (Fig 6D). At the lower receptor expression levels, the antibody fully saturates

the receptor and the receptor is primarily bound in binary antibody-receptor complexes. As

the receptor expression increases, the proportion of receptor in binary complexes decreases

and ternary complexes begin to dominate. Because ternary complexes are the more stable

form, the proportion of bound receptor overall also increases, leading to the previously illus-

trated pattern of greater fractional receptor binding with increasing receptor expression for a

given antibody concentration. While these results focus on the bispecific antibody BS1, this is

a general pattern of bivalent antibody binding and is seen for the monospecific antibodies toci-

lizumab and 10H2 as well (S11 Fig).

Comparison between monospecific and bispecific antibodies

Tocilizumab, 10H2, and BS1 are all bivalent antibodies that can form both binary antibody-

receptor and ternary receptor-antibody-receptor complexes when exposed to their respective

target receptors. Thus, they all share the previously discussed binding behaviors across varying

total antibody and receptor concentrations. However, BS1 differs from tocilizumab and 10H2

in that it is bispecific and simultaneously binds to both IL-6R and IL-8R. To further examine

how antibody-receptor complex formation compares between monospecific and bispecific

antibodies, we simulated BS1 and the combination of tocilizumab and 10H2 over a range of

different IL-6R and IL-8R expression levels (Fig 7A). In these simulations, the total initial anti-

body concentration was held constant at 10 nM, and tocilizumab and 10H2 were combined in

a 1:1 ratio. The combination of tocilizumab and 10H2 targets both IL-6R and IL-8R but differs

from BS1 in that each antibody can only bind one type of receptor. Although earlier results

were presented for an initial antibody concentration of 100 nM (Fig 4), the overall binding is

strong at 100 nM and the differences between the antibody types are less apparent. Results for

additional antibody concentrations are included in the Supporting Information (S12 Fig).

As was demonstrated previously, when the receptors are present in a 1:1 ratio, the complex

formation is identical between BS1 and the combination of monospecific antibodies (Figs 5E

and S9), and this behavior holds across antibody concentrations (S12 Fig). Outside of a 1:1 IL-

6R:IL-8R ratio, however, the antibodies demonstrate very different binding behaviors. BS1

requires both IL-6R and IL-8R to be available to form ternary complexes, so BS1 ternary com-

plex formation is favored when the receptors are present in a 1:1 ratio (Fig 7A). When either
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receptor is present in excess of the other, ternary complex formation is limited by the lower-

expressed receptor. In this case, the excess receptor will only be able to bind to BS1 in a less-

stable binary complex, leading to lower binding overall.

In contrast, because tocilizumab and 10H2 each bind to one type of receptor, the ratio of

IL-6R to IL-8R expression does not impact their binding; only the total receptor expression

has an effect on antibody-receptor complex formation for the monospecific antibodies (Fig

7A). At lower receptor levels where the antibodies are present in substantial excess over the

receptors, binary complexes are favored. As the total receptor expression increases, more

receptors are available to form ternary complexes, and complex binding shifts to favor the ter-

nary form.

Similar trends are observed at different total antibody concentrations as well (S12 Fig). At

lower antibody concentrations, there is less complex formation overall for all antibodies. Nota-

bly, at the highest receptor levels, the receptor is present in excess of the antibody, leading to a

low fractional occupancy of the receptor. In comparison, higher antibody concentrations lead

to greater antibody-receptor complex formation across all receptor expression levels, but oth-

erwise show the same pattern of binding behavior.

Fig 7. Comparison of antibody-receptor complex formation: BS1 vs. combination of tocilizumab and 10H2. All simulations were performed for 24 hours

after antibody dosing. A, Fraction of all receptors (IL-6R + IL-8R) that are bound in Binary and Ternary complexes, and Total Bound receptor (Binary

+ Ternary) across different IL-6R and IL-8R concentrations. The color indicates the fraction of all receptors (IL-6R + IL-8R) that are bound in each antibody-

receptor complex type. Initial BS1 concentration = 10 nM; initial tocilizumab concentration = 5 nM and initial 10H2 concentration = 5 nM. Heat maps of

additional total antibody concentrations are available in the Supporting Information (S12 Fig). B, The fractional occupancy of each receptor individually when

one receptor (IL-8R) is in excess. IL-6R was fixed at 103 receptors/cell for these simulations, while IL-8R ranged from 102 to 107 receptors/cell. The fractional

occupancy indicates the fraction of the specific receptor concentration (either IL-6R or IL-8R) that is bound to antibody (either BS1 or the combination of

tocilizumab and 10H2). Results with IL-8R as the fixed receptor are included in the Supporting Information (S13 Fig). C, Comparison of receptor bound by

BS1 (BsAb) or the combination of tocilizumab and 10H2 (mAbs) across different receptor concentrations. Relative binding is the ratio of fractional bound

receptor (the fraction of total IL-6R + IL-8R bound to antibody) when BS1 is used compared to when the combination of mAbs is used. Similar heat maps for

different total antibody concentrations are included in the Supporting Information (S14 Fig).

https://doi.org/10.1371/journal.pcbi.1012157.g007
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When the complex formation is examined for each receptor separately, however, a distinct

pattern emerges (Fig 7B). In these simulations, the concentration of IL-6R was held constant

at 103 receptors per cell, while the concentration of IL-8R ranged from 102 to 107 receptors per

cell. The proportion of each individual receptor that is bound is reported. IL-8R was simulated

as the excess receptor because it has been shown to be up-regulated relative to IL-6R in breast

cancer [28], and similar results are shown when for simulations with IL-6R in excess (S13

Fig). The monospecific antibodies (tocilizumab and 10H2) each bind to a single receptor type,

so the binding of each receptor is independent. Thus, for the combination treatment, varying

IL-8R concentration has no effect on the amount of bound IL-6R, and the bound IL-8R con-

centration shows identical behavior to the simulations where the total receptor concentration

was varied (Figs 7B and S9).

The binding of BS1, however, is highly dependent on the ratio of IL-6R to IL-8R expression.

As the concentration of IL-8R (the excess receptor in this case) increases, BS1 shows increasing

occupancy of IL-6R, the limited receptor (Fig 7B). In these simulations, the concentration of

IL-6R was not varied, so the change in IL-6R binding is driven entirely by the increased IL-8R

concentration. As greater IL-8R is present in the system, BS1 forms more binary BS1-IL-8R

complexes, tethering it to the cell surface and bringing it within close proximity of the free IL-

6R. This increases BS1 binding to IL-6R, even when it is present at substantially lower concen-

trations than the other receptor. This behavior is observed only for the bispecific antibody and

is driven by the initial interaction with the excess receptor. The tradeoff, however, is that BS1

shows lower occupancy of the excess receptor, IL-8R, at intermediate antibody concentrations,

compared to the combination of monospecific antibodies, and the occupancy declines as the

IL-8R concentration increases and the ratio of IL-6R to IL-8R moves further away from 1:1.

The impact of these differing binding patterns is apparent when the monospecific and bis-

pecific antibodies are compared directly (Fig 7C). The relative binding output from these sim-

ulations quantifies the fold-change in fractional occupancy of each receptor when BS1 binds

compared to the binding of the combination of tocilizumab and 10H2. Similar to the previous

results, for the overall bound receptor, the monospecific and bispecific antibodies show the

same results when the receptors are present at a 1:1 ratio, and the monospecific antibodies

show greater binding outside of this ratio. However, the occupancy of the individual receptors

reveals that, when one receptor is present in excess of the other, the monospecific antibodies

show greater binding to the excess receptor, while BS1 binds more of the limited receptor. The

fold-change in binding between the antibody types increases as the ratio moves further away

from equal receptor expression (Fig 7C). This pattern is observed for additional antibody con-

centrations as well, but the differences between antibody types diminish as the concentration

increases because the overall binding is high (S14 Fig). Overall, these results suggest the bind-

ing of the bispecific antibody (but not monospecific antibodies) to a low concentration recep-

tor is enriched by the presence of a high concentration of the other target molecule.

Univariate sensitivity

To analyze the impact of individual model parameters on the bispecific antibody binding, we

performed local and global univariate sensitivity analyses of the model output (Fig 8). First, we

examined the local sensitivity of ternary IL-6R-BS1-IL-8R complex formation and total recep-

tor binding to changes in the values of the association and dissociation rate constants along

with initial antibody and receptor concentrations (Fig 8A).

Overall, the antibody-receptor complex formation is more sensitive to the initial antibody

and receptor concentrations than it is to the binding rates, with the BS1 and IL-8R concentra-

tions having the greatest impact on binding. At two hours after antibody dosing, the amount
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of bound complex is still increasing (Figs 4 and S8), so increasing the concentration any of the

molecules in the system will lead to greater binding. The concentration of IL-8R is slightly

more impactful than that of IL-6R because the binding to IL-8R is estimated here to be slightly

faster than the binding to IL-6R (Table 2), leading to more binary complexes and then more

ternary complexes being formed.

Of the association and dissociation rate constants, the model output is most sensitive to the

initial binding step to form binary complexes, which is the rate-limiting step. The rate of the

second receptor binding leading to ternary complexes is so fast that the binding is able to prog-

ress immediately after binary complexes are formed, and it does not have a significant impact

Fig 8. Local and global sensitivity of model output to association and dissociation rate constants and the initial antibody and receptor concentrations. A,

Local sensitivity analysis of model output with varying rate constants and initial concentrations. 10 nM baseline BS1 concentration, [IL-6R] = [IL-8R] = 5 × 104

receptors/cell, and output at t = 2 hours for all simulations. Area Under the Curve (AUC) is calculated as the integration of the BS1-receptor complex

concentration over time, determined for the ternary complexes and for the total bound receptor (IL-6R + IL-8R). Sensitivity is calculated as the percentage

change in the output divided by the percentage change in the parameter (10% for these simulations). B, Global sensitivity of fractional bound receptor

concentration over varying rate constant value. Each parameter was varied over two orders of magnitude below and above its optimized value. Fractional

occupancy is determined as the fraction of total receptor (IL-6R + IL-8R) that is bound to BS1 in a particular complex type, separated for ternary complexes

and total bound in binary or ternary complexes. Simulations were performed for 24 hours after antibody dosing, and [IL-6R] = [IL-8R] = 5 × 104 receptors/cell

for all simulations.

https://doi.org/10.1371/journal.pcbi.1012157.g008
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on the total amount of bound receptor. Increasing the dissociation rates has a very slight nega-

tive effect on the receptor binding, but the rates are so slow that little dissociation occurs dur-

ing the two-hour simulation period and the impact of varying the rate constants is minimal.

With global sensitivity analysis of the model parameters, we examined the impact of varying

the rate constant values over a wider range (Fig 8B). The results similarly demonstrate that the

total bound receptor is most sensitive to increasing the rate of the first binding step. This is

especially true for the intermediate antibody concentrations where neither the antibody nor

the receptor are significantly in excess. Decreasing either of the first binding step rate constants

from their baseline (i.e., moving left of zero on the x-axis for kon,6R or kon,8R) individually does

not have a large impact on the total receptor binding because the antibody can still bind to the

opposite receptor to form binary complexes.

Some of those binary complexes may progress forward to forming ternary complexes (Fig

1C), but the ternary complex concentration shows very distinct behaviors depending on the

antibody concentration. For lower antibody concentrations, increasing the rate of the first

binding step leads to more ternary binding, as the limiting factor is the binary complex con-

centration. For higher antibody concentrations, however, the opposite effect is observed:

increasing the rate of binary binding leads to fewer ternary complexes, due to auto-inhibition

with the binary complexes consuming all of the available receptor. This is consistent with

“zones” of different dominant complex types when the concentrations are varied (Fig 5E) and

suggests bispecific antibody binding to form ternary complexes is dependent on the balance of

binding site affinity and species concentrations.

For the second binding step leading to the ternary complex, the concentrations of all com-

plexes are sensitive to decreasing the rate constant from the baseline but less so to increasing it

(Fig 8B). The formation of ternary complexes progresses incredibly quickly relative to the

binary complex binding, so increasing their binding rate has little effect. However, slowing the

rate of ternary complex binding causes more receptor to be consumed by less-stable binary

form, leading to less receptor being available for ternary complex binding and less bound

receptor overall. Finally, the amount of bound receptor is only sensitive to increasing the disso-

ciation rate at high magnitudes (Fig 8B). Generally, the dissociation is so slow relative to the

association that the specific value does not have a significant impact on the receptor binding,

but, at very high rates, enough dissociation occurs that it decreases the number of bound com-

plexes that are present. These results agree with the results from the local sensitivity analysis,

collectively demonstrating that the first binding step is the rate-limiting step and that only

extreme values of the second binding step and the dissociation rates have a substantial impact

on receptor binding.

Discussion

In this study, we have developed a model of a bispecific antibody (BS1) targeting two key cell

surface receptors, IL-6Rα and IL-8RB, which were recently implicated in a synergistic pathway

that drives tumor metastasis [12,28]. Our model is comprised of a series of ODEs for each of

the receptors, antibodies, and antibody-receptor complexes studied. Each association and dis-

sociation process in the system is represented as a set of terms in the ODEs, with separate

terms for the formation of binary antibody-receptor and ternary receptor-antibody-receptor

complexes. Related approaches have been used in other mechanistic models of bivalent anti-

body binding [24,38,39], and below we describe the differences between those works and this.

We used in vitro experimental data to estimate values for the binding parameters of the model;

we observed that the simulations match the experimental results and the data constrains the

parameters well. Deploying the model to simulate antibody binding to cells that express one or
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other or both of the target receptors, and comparing to simulations of combinations of mono-

specific antibodies, we gleaned insights into the mechanistic differences between these poten-

tial treatments.

Once one arm of the antibody binds a cell-surface receptor, the second receptor must be

within reach to allow for a second binding event. The distance between antigen-binding

domains of IgG antibodies generally ranges from 6 to 12 nm [54–56], but the arms are joined

by a highly flexible hinge region that can allow the arms to reach up to 17 to 18 nm when fully

extended [57]. Assuming uniform receptor distribution and a surface area of 1000 μm2, there

would be an average distance between receptors of around 50 nm for 105 receptors/cell or 500

nm for 103 receptors/cell. However, bispecific antibodies have been demonstrated to simulta-

neously engage two receptors at these receptor densities [33,58]. It has been hypothesized that

this is due to fast diffusion of receptors in the cell membrane [40,59] and non-uniform recep-

tor distribution, with receptors being co-localized in lipid rafts and other membrane struc-

tures, increasing local density [60,61].

Binding of one arm of the antibody increases the local concentration of the antibody at the

surface, leading to a significantly stronger apparent affinity for second arm binding (compared

to first arm binding) to form the ternary complex [30,50]. This may be partly reduced by a loss

in rotational flexibility and by steric hindrance from other antibody-receptor complexes in the

vicinity [37,62], but, on balance, we expect the second binding event to be effectively stronger

than the first.

Previous mechanistic bivalent binding models have incorporated the effects of binding

avidity in various ways. The models presented by van Steeg et al. [24] and Rhoden et al. [39]

use the same association rates for both binary and ternary complex formation, but they instead

use the effective local antigen concentration within reach of the bound antibody in the rate

equation for the second binding event. Flexibility limitations and steric constraints are not

explicitly included in these models. Vauquelin and Charlton [37] likewise scaled the ternary

complex formation by the effective local concentration, but they also incorporate a “penalty

factor” to the second association constant to account for the limited rotational freedom of the

bound molecule. Finally, Harms et al. [38] incorporated both the heightened effective concen-

tration and the restricted flexibility for bivalent binding into a single parameter they termed as

the “cross-arm binding efficiency” (χ). They defined χ as the ratio of the kon for ternary com-

plex formation to the kon for the initial binary complex binding (represented in our model as

kon,R* and kon,R, respectively) and hypothesized that χ was an epitope-dependent property of a

bivalent antibody, independent of the antibody’s monovalent affinity for its target [51].

Since we had an experimental data set for our system, we did not need to make assumptions

about the relative strength of first versus second binding, and instead estimated independent

values for these steps using empirical data. The ratio between these first and second binding

rate constants is the χ parameter defined by Harms et al. [38], and the value we obtained

(1.6 × 104) was consistent with the range of values for χ they reported (102 to 105). Larger val-

ues indicate stronger cross-arm binding, consistent with our results demonstrating that BS1

binds bivalently to IL-6R and IL-8R with high avidity (Figs 3, 5A, and 5C).

For our model, several key assumptions made it possible to reduce the number of unknown

parameters. First, because BS1 was constructed using the binding domains from tocilizumab

and 10H2, we assumed that the antibodies share rate constants for the first binding step to the

same receptor. Second, since all three antibodies are bivalent and IgG-based, we assumed the

geometries were similar enough that they share rate constants for the second binding step to

the same receptor (but note that the first and second step rate constants are different). Third,

we assumed that the dissociation rate constants were shared for unbinding events from a spe-

cific receptor. The rate constant values are further constrained by detailed balance (see
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Methods). These assumptions are supported by the strong fit of the model to experimental data

(Figs 3 and S7), and the well-constrained parameter sets (Figs 2 and S4). If the assumptions

were relaxed, the values of the parameters would be less constrained and thus more uncertain.

Simulations of the formation of antibody-receptor complexes over time revealed the bind-

ing dynamics in the system (Figs 4 and S8). Initially, binary antibody-receptor complex for-

mation progresses quickly, followed by conversion of binary complexes into ternary receptor-

antibody-receptor complexes shortly thereafter. When one receptor is in excess of the other, as

IL-8R was in our IL-6R+/IL-8R+ experimental cell line, we found that binary complexes with

the excess receptor will continue to accumulate after the ternary complex concentration

reaches steady state due to the consumption of the limited receptor. Perhaps surprisingly, after

the free antibody concentration is washed out of the system, the ternary complex concentra-

tion continues to increase, as binary complexes dissociate and free receptor becomes available

for binding again. Increased ternary complex formation as the free antibody concentration

declines demonstrates the impact of avidity in bivalent antibody binding–in the single-recep-

tor-positive cell lines where only one domain is capable of binding, there is no increase in

bound receptor after the washout phase (Fig 4). This “washout” simulates the effects of

decreasing antibody concentration, as might be seen physiologically in the window between

therapeutic doses as antibody is cleared, internalized, and degraded. When ternary complexes

first dissociate, the antibody remains tethered to the cell surface through its remaining receptor

bond, promoting rebinding of the antibody and increasing antibody residence time [31,37].

We also demonstrated that the combined effects of antibody concentration and receptor

expression level determine the relative balance of binary and ternary complex formation (Fig

5), creating different “zones” wherein different complex types dominate. As ternary complexes

are thought to be the key pharmacologically relevant species [21,26,32], elucidating the mecha-

nisms underlying complex type distribution is important for successful bispecific targeting.

Our simulations show that when antibody (either monospecific or bispecific) is present in

excess of the receptor concentration, the less-stable binary complex form is favored; whereas

the ternary complex form is dominant in the window of intermediate antibody concentrations

and higher receptor expression levels (Fig 5E). This result suggests an optimal therapeutic win-

dow for the bispecific antibody therapeutic where maximal binding can be achieved.

Intriguingly, our results also revealed that as surface receptor expression levels increased for

a given antibody concentration (monospecific or bispecific), the fractional occupancy of the

receptor also increased (Figs 5B, 5D, and S9). At first, this behavior seems counterintuitive,

since the system is gaining more binding sites for the same number of antibody molecules. To

clarify why this pattern appears, we simulated BS1 binding compared to the binding of a theo-

retical “monovalent” antibody that was restricted to forming only binary complexes (Fig 6).

Over the majority of the receptor concentration range tested, the monovalent-restricted anti-

body binding is independent of the varying receptor level (Fig 6B), indicating that it is specifi-

cally the formation of ternary complexes that drives the increased receptor occupancy at

higher receptor concentrations (Fig 6D).

Sensitivity analysis of model binding parameters showed that maximal formation of ternary

complexes depends on the balance of antibody concentration and the rates of initial associa-

tion to form the binary antibody-receptor complexes (Fig 8B). Ternary complex formation by

lower affinity antibodies is concentration-limited, with increasing antibody concentration

leading to more ternary complex binding. Higher affinity antibodies, however, show “auto-

inhibition”, where increasing the amount of antibody leads to the receptor getting over-

whelmed by binary complexes, with no free binding sites remaining available for the second

association. Ternary binding by these higher affinity antibodies benefits more than ternary
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binding by lower affinity antibodies from an increased rate of conversion of binary complexes

to ternary complexes, which defines the “cross-arm binding efficiency”.

Overall, our results suggest that the binding of bivalent (both monospecific and bispecific)

antibodies depends on the interplay of the antibody’s inherent affinity for the target and its

cross-linking efficiency, along with both antibody concentration and receptor expression level.

There appears to be a “Goldilocks” effect, wherein binding is maximized when affinity, cross-

linking, and concentration are all balanced, with none too high or too low. This “affinity and

avidity window” has been hypothesized to drive the in vivo selectivity of antibodies for target

tissues [23,33,63]. Antibodies with intermediate affinity rely on bivalent interactions for stable

binding, as opposed to high affinity antibodies that show a greater predilection for monovalent

interactions. The requirement for intermediate-affinity antibodies to utilize bivalent interac-

tions may drive selective binding to tissues with greater expression of the target antigen, lead-

ing to fewer off-target toxic side effects [63,64]. This is particularly important in cancer, as

many of the treatment targets are molecules that are up-regulated in cancerous cells but are

still expressed on healthy tissues. These results also suggest a benefit for developing “affinity-

modulated” bispecific antibodies, with lower inherent affinities, in order to maximize treat-

ment selectivity. Computational bivalent binding models based on the framework presented

here can be applied to specific therapeutic targets to predict optimal affinities (including rela-

tive affinities between different binding arms) and cross-linking capacities for maximal bind-

ing. Although our model parameters are specific for tocilizumab, 10H2, and BS1, this

framework can be applied with parameters optimized to other antibodies to make predictions

for additional systems. Additionally, for antibodies with previously determined affinities,

model simulations can project the binding behavior to therapeutic targets to provide guidance

on how system conditions will impact treatment efficacy.

While the total level of receptor expression is a key determinant of bivalent antibody bind-

ing, the relative amount of the two different target receptors is also critical for bispecific anti-

bodies. Our simulations revealed that when IL-6R and IL-8R are present in a 1:1 ratio,

bispecific antibody binding is nearly identical to the binding of the combination of anti-IL-6R

and anti-IL-8R monospecific antibodies (Fig 7A). However, when one receptor is present in

excess of the other on the same cell, BS1 shows significantly different behavior at sub-saturat-

ing concentrations. Increasing the concentration of the receptor in excess leads to BS1 forming

more binary complexes with that receptor. This in turn tethers BS1 to the cell surface, allowing

it to rapidly cross-link with the limiting receptor to form the stable ternary complex. The bis-

pecific antibody demonstrates a heightened apparent affinity for the less expressed receptor

that increases with the excess receptor concentration (Fig 7B). The monospecific antibodies

do not have this advantage; each monospecific antibody has an independent target, and vary-

ing expression of one target does not affect binding to the other. This is a key distinction

between the monospecific and bispecific antibodies–when the receptor levels are imbalanced,

the monospecific antibodies demonstrate greater binding to the receptor in excess, while the

bispecific antibody binds more of the limited receptor (Fig 7C). However, the distinctions

between monospecific antibody combinations and bispecific antibodies disappear at saturating

antibody concentrations, where full receptor occupancy is achieved in both scenarios.

The distinction between monospecific antibody combinations and bispecific antibodies at

sub-saturating concentrations is potentially very significant for therapeutic design in the con-

text of heterogeneous expression of receptors. Tissues comprise a mix of cells expressing a sin-

gle receptor, neither, or both (in various ratios). Individual cells also show significant

heterogeneity in membrane receptor expression, particularly cancerous cells with mutations

that alter gene expression. Both IL-6R and IL-8R are known to be overexpressed in cancer

[12,28], and IL-6R has been quantified around 103 receptors per cell in different carcinoma
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cell lines [65]. IL-8R has not been directly quantified in solid tumors, but it is found on mono-

cytes and neutrophils at levels of 104 to 105 receptors per cell, and it was shown to be up-regu-

lated relative to IL-6R in primary breast cancer tumor samples [28]. If an imbalance in

receptor levels is present, it could be important to increase the apparent affinity for the less

expressed receptor to achieve sufficient inhibition of the system. BS1 demonstrated stronger

inhibition of migration and decreased metastatic burden in vivo compared to the combination

of tocilizumab and 10H2 [28], and our results suggest that avidity effects may contribute to the

underlying mechanism behind the superior performance of the bispecific antibody.

While our model provides significant insight into the mechanisms of bivalent and bispecific

antibody binding, expanding the model to include additional processes and other cell types

has the potential to give even more insight into these treatments. Physiologically, monoclonal

antibodies are ultimately eliminated from the body via receptor-mediated endocytosis and

subsequent intracellular catabolism [66], and higher affinity antibody binding leads to greater

rates of endocytosis and degradation [67]. While receptor synthesis, internalization, and deg-

radation were assumed to be negligible in modeling antibodies binding to cultured cells, given

the importance of antibody-receptor complex internalization in determining the drug concen-

tration profile and localization within tissues [67–69], it would be informative to extend the

bivalent binding model presented here to include these processes. This modeling could in turn

identify optimal bispecific design parameters to balance avidity with the rate of antibody endo-

cytosis and elimination from the system. Additionally, as the aim of BS1 treatment is to inhibit

IL-6/IL-8-driven metastasis, adding IL-6 and IL-8 secretion and binding to this system will

allow us to directly model how antibody binding leads to ligand inhibition.

Our simulation results showed that receptor expression is critical for bispecific antibody

binding, both in terms of total receptor levels and in the relative amounts of the individual tar-

gets. As IL-6 and IL-8 are both pleiotropic immune factors, their receptors are also expressed

on healthy white blood cells and other tissues. Modeling multiple cell types with different

receptor levels could allow us to quantify how the affinity and avidity effects presented here

impact target tissue selectivity and further clarify differences between monospecific and bispe-

cific antibodies [23,24]. Based on our current results, we hypothesize that cells that express a

high concentration of only one receptor may act as “sinks” for monospecific antibodies, while

the bispecific antibodies could preferentially bind to cells that express both receptors. Beyond

local tissue binding, target expression on healthy cells could also impact antibody distribution

and clearance from the body. Pharmacokinetic models of bispecific antibodies have previously

been described [69,70], and extending our model to include circulation of the drug and its

transport into the target tissue would enable study of the full treatment dynamics for monospe-

cific versus bispecific antibodies.

The binding of bispecific antibodies is governed by the intricate relationships between

inherent binding affinity, combined multivalent avidity, therapeutic concentration, and target

expression. Here we presented a mechanistic, computational model for antibodies targeting

IL-6R and IL-8R, comprised of a series of ordinary differential equations describing antibody

binding dynamics. We fully parameterized the model from existing data, and our simulations

closely match experimental data of monospecific and bispecific antibodies binding to cells

expressing different levels of the IL-6 and IL-8 receptors. Model results describe the system

dynamics and reveal key mechanisms underlying bispecific antibody behavior. The model also

predicts the consequent receptor occupancy due to the antibodies, as well as the distribution of

receptors into binary (antibody-receptor) and ternary (receptor-antibody-receptor) com-

plexes; ultimately, the impact on receptor complex formation, rather than the amount of

receptor binding, is critical for therapeutic performance. We observed that the bispecific anti-

body studied demonstrates strong cross-linking and avidity effects, which increase receptor
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residence time. Ternary complex formation is maximized when binding affinity is balanced

with antibody concentration (for both monospecific and bispecific antibodies) and target

expression level. When the target receptors are present in unequal amounts, monospecific and

bispecific antibodies demonstrate distinct binding patterns–monospecific antibodies bind

more strongly to the excess target, whereas bispecific antibodies show greater apparent affinity

for the limited target at sub-saturating concentrations. Overall, our quantitative model of anti-

IL-6R/anti-IL-8R antibodies provides clear mechanistic insight into the dynamics of homo-

and heterobivalent antibodies and leads to actionable predictions of optimal therapeutic design

for maximal binding. The results provided here include specific parameter values for these

antibodies for IL-6R and IL-8R, but many of the insights can be applied generally to other bis-

pecific antibodies, and the model itself can be repurposed to analyze other therapeutic systems

of interest.
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S1 File. Binding Model Equations. The ordinary differential equations (ODEs) used for

modeling tocilizumab, 10H2, and BS1 binding interactions with IL-6R and IL-8R.
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S2 File. Supplemental Methods on the Normalization Schemes. Description of the different

schemes used for normalizing the simulation output for comparison with the in vitro experi-

mental data.

(PDF)

S1 Table. Original model parameters and their relationship to the simplified parameters

after applying the model assumptions.

(PDF)

S2 Table. IL-6R and IL-8R binding affinities for the monospecific and bispecific antibodies

calculated directly from in vitro HEK 293T cell surface binding assays. Values are given as

dissociation constants (KD) in nM and were originally reported by Yang et al [28].

(PDF)

S1 Fig. Monoclonal antibody binding model kinetics. Schematic of the IL-6Rα/IL-8RB anti-

body-binding model for the two monoclonal antibodies, tocilizumab (anti-IL-6Rα) (A) and

10H2 (anti-IL-8RB) (B). As in the BS1 binding model (Fig 1B), kon,6R and kon,8R describe the

association rates for the formation of binary antibody-receptor complexes, and kon,6R* and

kon,8R* describe the association rates for the formation ternary receptor-antibody-receptor

complexes. The same koff,6R and koff,8R rate constants are used for the dissociation of both the

binary and the ternary complexes. Notably, in this study we simplify the parameter optimiza-

tion by assuming that the binding rate constants for the bispecific antibody (Fig 1B) are the

same as the equivalent reactions for the monospecific antibodies. This figure was created with

BioRender.com.

(PDF)

S2 Fig. Relationship between initial guesses and optimized values for each binding reaction

rate constant, separated by normalization options used. BS1 describes simulations that were

normalized against the concentration of bound BS1 at the end time point, and Ab indicates

simulations that were normalized against the concentration of that specific antibody at the end

time point. Data depicts simulations that were normalized using the bound concentrations at

the binding saturation, as was done for the experimental data, and Max describes simulations

that were normalized using the bound concentration at the maximum initial antibody
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concentration.

(PDF)

S3 Fig. Frequency and cost of optimized binding model parameter sets, showing a limited

range of values around the lowest-cost parameter set. To better visualize the distribution of

the parameter sets, the plotted values are limited to one order of magnitude above and below

the values from the lowest cost parameter set (Table 2). A, Distribution of optimized parame-

ter values across all optimizations performed, with marked points indicating the values of the

lowest cost parameter set. B, Relationship between optimized parameter values and the cost of

the optimized parameter sets compared to experimental data, separated by parameter. Opti-

mized points with the same value are grouped into a single point, with the point size indicating

how many optimized parameter values are in the group.

(PDF)

S4 Fig. Distribution of optimized parameter values and cost compared to experimental

data, separated by parameter and normalization type. Normalization types are separated in

the same way as for the initial guesses (S2 Fig). A, Distribution of optimized parameter values

across all optimizations performed, separated by normalization options. Marked points and

corresponding labels indicate the values of the lowest cost parameter set for those specific nor-

malization options. B, Relationship between optimized parameter values and cost compared

to experimental data, separated by parameter. Optimized points with the same value are

grouped into a single point, with the point size indicating how many optimized parameters are

in the group.

(PDF)

S5 Fig. Cumulative distribution of the cost of the optimized parameter sets, separated by

normalization options used. The curves depict the fraction of optimal parameter sets that

were below a given cost value. Parameter sets where the optimization did not converge were

omitted.

(PDF)

S6 Fig. Comparison of normalized binding curves between the different antibodies. Bound

concentrations are divided among binary complexes, ternary complexes, and total bound anti-

body. Simulations were performed under the same conditions as the binding experiments: 105

cells/well, receptor expression levels from the transduced cell lines (Table 1), and with a

2-hour initial association period followed by a 15-minute free antibody washout. Model output

is normalized to the bound concentration of BS1 at the same initial antibody concentrations

used to normalize the experimental data.

(PDF)

S7 Fig. Model simulation results using each of the optimized parameter sets compared to

the experimental data used to fit the model parameters. Simulations were performed under

the same conditions as the experiment, with a 2-hour initial binding period followed by a

15-minute antibody washout and with the experimental receptor expression levels (Table 1).

The model simulation results (lines) are compared to the equivalent experimental data

(points), and each optimized parameter set is represented with a separate line. Panels are sepa-

rated by the normalization basis used, with “BS1” referring to simulations and experimental

data normalized against the bound BS1 concentration in all cell lines and “Ab” referring simu-

lations and experimental data where each antibody was normalized against itself. Each panel

depicts all optimal parameter sets obtained with that particular normalization method. Model

output and experimental data are each normalized to the output/data from the concentrations
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where binding reached saturation. The error bars depict the standard error from three experi-

mental replicates.

(PDF)

S8 Fig. Simulations quantify bivalent antibody binding to IL-6R and IL-8R over time. Cell

number = 1 × 105 for all simulations. Free antibody concentration was set to 0 nM at 2 hours

to simulate antibody washout from the system. The expressions of IL-6R and IL-8R from the

transduced experimental cell lines were used in the simulations (Table 1). A, Simulations with

an initial BS1 concentration of 10 nM, compared to the simulations with 100 nM of BS1

shown in the main text (Fig 4). B, Simulations of tocilizumab at an initial concentration of 100

nM in the IL-6R+ cell lines. C, Simulations of 10H2 at an initial concentration of 100 nM in

the IL-8R+ cell lines.

(PDF)

S9 Fig. Simulated Binary (Ab-R), Ternary (R-Ab-R), and Total Bound (Binary + Ternary)

concentrations of Antibody-Receptor complexes using the combination of tocilizumab

and 10H2. IL-6R and IL-8R are present in a 1:1 ratio, as are tocilizumab and 10H2. Simula-

tions were performed for 24 hours after antibody dosing. The color indicates the fraction of

the total receptor (IL-6R + IL-8R) that is bound in each antibody-receptor complex type.

(PDF)

S10 Fig. Simulations of monovalent BS1 binding. Fraction of total BS1 and receptor concen-

trations free and bound over varying initial BS1 concentration. The first panel shows the frac-

tion of total BS1 concentration that is unbound, and the other panels show the fraction of total

receptor concentration (IL-6R + IL-8R) that is unbound and bound. The association rate con-

stants for the formation of ternary complexes (kon,6R* and kon,8R*) were set to 0 to restrict BS1

to monovalent binding only. IL-6R and IL-8R are present in a 1:1 ratio, and simulations were

performed for 24 hours after antibody dosing.

(PDF)

S11 Fig. Simulations of the combination of tocilizumab and 10H2 restricted to monovalent

binding only. Simulations were performed for over varying initial antibody and receptor con-

centrations. The association rate constants for the formation of ternary complexes (kon,6R* and

kon,8R*) were set to 0 to restrict both antibodies to monovalent binding only. IL-6R and IL-8R

are present in a 1:1 ratio, as were tocilizumab and 10H2, and simulations were performed for

24 hours after antibody dosing. The simulation conditions are the same as those shown for

BS1 in the main text (Fig 6). A, Fraction of total antibody concentration (tocilizumab + 10H2)

that is free (unbound) for different levels of receptor expression and initial antibody concen-

tration. B, Fraction of total receptor concentration (IL-6R + IL-8R) that is unbound (free) or

bound (in binary antibody-receptor complexes) for different levels of receptor expression and

initial total antibody (tocilizumab + 10H2) concentration. C, Heat map of bound receptor

fraction over varying antibody and receptor concentrations. The color indicates the fraction of

the total receptor (IL-6R + IL-8R) that is bound to antibody. D, Comparison of monovalent

and bivalent binding. The lines indicate the fraction of total receptor (IL-6R + IL-8R) that is

bound in different complex types in the original simulations and the simulations restricted to

monovalent binding only. The panels are divided by the total receptor concentration (in #

receptors/cell).

(PDF)

S12 Fig. Fraction of receptors bound in Binary and Ternary complexes and Total Bound

receptor (Binary + Ternary) across different IL-6R and IL-8R expression levels and initial
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antibody concentrations. The color indicates the fraction of total receptor (IL-6R + IL-8R)

that is bound in each antibody-receptor complex type. The antibody concentration is the total

initial concentration of antibody in the system; “mAbs” refers to tocilizumab and 10H2

together in a 1:1 concentration ratio. Simulations were performed for 24 hours after antibody

dosing. The panels for [Ab] = 10 nM were presented in the main text (Fig 7A) and are repeated

here for comparison to the other concentrations.

(PDF)

S13 Fig. The fractional occupancy of each receptor individually when one receptor (IL-6R)

is in excess. IL-8R was fixed at 103 receptors/cell for these simulations, while IL-6R ranged

from 102 to 107 receptors/cell. The fractional occupancy indicates the fraction of the specific

receptor concentration (either IL-6R or IL-8R) that is bound to antibody (either BS1 or the

combination of tocilizumab and 10H2). The fractional occupancy when IL-6R was fixed and

IL-8R was in excess was shown in the main text (Fig 7).

(PDF)

S14 Fig. Relative binding of BS1 and the combination of monoclonal antibodies across dif-

ferent IL-6R and IL-8R expression levels and initial total antibody concentrations. The

color indicates the relative bound receptor, where relative binding is the ratio of fractional

bound receptor (the fraction of total IL-6R + IL-8R bound to antibody) when BS1 is used com-

pared to when the combination of mAbs is used. The antibody concentration is the total initial

concentration of antibody in the system; “mAbs” refers to tocilizumab and 10H2 together in a

1:1 concentration ratio. Simulations were performed for 24 hours after antibody dosing. The

panels for [Ab] = 10 nM were presented in the main text (Fig 7C) and are repeated here for

comparison to the other concentrations.

(PDF)
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