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Abstract

The development and application of functional feed ingredients represents a great opportu-

nity to advance fish growth and health, boost the immune system, and induce physiological

benefits beyond those provided by traditional feeds. In the present study, we looked at the

feasibility of in vitro methods for screening the qualities of functional feed ingredients using

the fish cell line RTgill-W1, which has never been used in fish nutrition, and the culture of

Paramoeba perurans. Five functional feed ingredients (arginine, β-glucan, vitamin C, and

two phytogenic feed additives) were selected to investigate their effects on cell viability and

reactive oxygen species production. Three of the selected ingredients (arginine and two

phytogenic feed additives) were additionally tested to assess their potential amoebicidal

activity. As these functional ingredients are the core of a commercially available feed (Protec

Gill, Skretting AS), their beneficial effects were further assessed in a field trial in fish affected

by complex gill disease. Here, the analyzed parameters included the evaluation of macro-

scopic and histopathological gill conditions, pathogen detections, and analyses of plasma

parameters. RTgill-W1 cell line assays were a good tool for screening functional ingredients

and provided information about the optimal ingredient concentration ranges, which can be

helpful for adjusting the concentrations in future feed diets. Through the culture of P. perur-

ans, the tested ingredients showed a clear amoebicidal activity, suggesting that their inclu-

sions in dietary supplements could be a viable way to prevent microbial infections. A three-

week period of feeding Protec Gill slowed the disease progression, by reducing the patho-

gen load and significantly improving gill tissue conditions, as revealed by histological evalua-

tion. The use of diets containing selected functional ingredients may be a feasible strategy

for preventing or mitigating the increasingly common gill diseases, particularly in cases of

complex gill disease, as documented in this study.
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Introduction

In the last decades the expansion of the aquaculture industry has been accompanied by a sig-

nificant rise in fish feed production, which has led increased pressure on marine supplies such

as fish meal and fish oil, resulted in low availability and high prices [1]. Reducing reliance on

marine commodities by extending the use of alternative ingredients will improve the future

sustainability of the aquaculture practice. The application of functional feed ingredients repre-

sents a great opportunity to advance fish growth and health, boost the immune system, and

induce physiological benefits beyond those provided by traditional feed [2]. Numerous dietary

supplements with immunomodulatory properties can be used to stimulate the immune system

of fish [3, 4], such as single amino acids like arginine [5, 6], vitamins [7, 8], β-glucans [9–11],

and phytogenic feed additives (PFAs) [12–15], which use has been recently introduced in

aquaculture. Functional feed ingredients may also play an important role in lowering disease

susceptibility [16, 17].

In European salmon-producing countries like Norway, Scotland and Ireland, gill dis-

eases have become one of the most significant health challenges for the aquaculture industry

[18–20]. They can be classified as either simple or complex/multifactorial gill disease, based

on a presumption of single or multiple causes and infectious agents involved in the patho-

genesis [21, 22]. Typically, the term multifactorial gill disease or complex gill disease (CGD)

is used to describe the type of gill illness in which multiple causes can be observed simulta-

neously and there are no obvious primary causal agents [21, 23–26]. CGD encompasses syn-

dromes referred to as proliferative gill inflammation (PGI) and proliferative gill disease

(PGD) [26]. PGI is a pathology-based diagnosis first described in Norway, in which gills

mainly present a combination of lamellar vascular changes, inflammation, cell death, epi-

thelial and mucous hyperplasia [27]. PGD has been used as a non-specific term for the

examination of gross lesions in the salmon gills [26], and as a general descriptive term for

proliferative changes in the gill epithelium [28].

The aim of the present study was to evaluate the feasibility of in vitro methods for screening

qualities of functional feed ingredients, using the fish cell line RTgill-W1, which has never

been used in fish nutrition, and the culture of Paramoeba perurans. As the selected functional

ingredients are the core of a commercially available feed (Protec Gill, Skretting AS), their bene-

ficial effects were further assessed in a field trial in fish affected by CGD.

Materials and methods

Functional feed ingredients

Five functional feed ingredients were used in this study: arginine, β-glucan, vitamin C, and

two PFAs. β-glucan and PFAs are proprietary composition of Skretting ARC and encompass-

ing confidential information. All stock solutions were freshly prepared and used immediately

for the assays (see Table 1 in S1 File).

RTgill-W1 cell culture

RTgill-W1 cells (American Type Culture Collection No. CRL-2523, commercially available),

obtained from gill explants of adult rainbow trout (Oncorhynchus mykiss), were cultured using

75 cm2 tissue culture flasks (19˚C, w/o CO2, in the dark), in Leibovitz’s (L-15) media, contain-

ing 10% (v/v) of fetal bovine serum (Biowest, Nuaillé, France), 100 U/mL penicillin and

100 μg/mL streptomycin (Gibco, NY, USA) [29]. Confluent cells were exposed in 96-well

plates (3 x 104 cells per well) to a range of concentrations of the selected functional feed ingre-

dients (S1A Table in S1 File). For each concentration seven replicates were tested (n = 7).
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Cell viability assay. Cell viability was assessed using a fluorometric assay as described by

[30], with small adjustments. Confluent cells were exposed for 24 h to each ingredient. Control

(cells with only L-15), blank (only L-15) and positive control (hydrogen peroxide, H2O2,

100 μM, diluted in L-15) were also tested. After incubation, the exposure solution was removed

and the resazurin dye (484 μM, AlamarBlueTM, ThermoFisher Scientific) was added (1:10

ratio with L-15). The ratio of viable cells was quantified using a microplate reader (SpectraMax

Paradigm Multi-Mode), which measured the fluorescence of resorufin at excitation and emis-

sion wavelengths of 530 and 590 nm, respectively. Relative fluorescence units (RFUs) were

normalized to the control.

Reactive oxygen species production assay. Reactive oxygen species (ROS) production

was measured by applying a modified version of the protocol described by [31]. Once the cell

monolayer was formed, the media was carefully removed, followed by a wash with phosphate

buffer saline (PBS). The 2’,7’- dichorodihydrofluorescein diacetate (H2DCF-DA) probe was

used as ROS production indicator. It was freshly prepared and 100 μL of 10 mM solution were

added in each well (except for the blank), following an incubation time of 30 min. Afterwards,

the probe was removed and two additional washes with PBS were done. Then, RTgill-W1 cells

were exposed for 60 min to each ingredient. Control (cells with only PBS), blank (only PBS)

and positive control (H2O2, 100 μM, diluted in PBS) were also tested. The fluorescence emitted

due to the oxidation of H2DCF-DA was read using the microplate reader at excitation and

emission wavelengths of 485 and 528 nm, respectively. RFUs were normalized to the control.

Amoebae survival in vitro testing

The culture of Paramoeba perurans was obtained from ILAB in cell culture flasks containing

malt yeast broth (MYB; malt and yeast extract in 75% seawater). The amoebae were kept in an

incubator at 15˚C and sub-cultured in MYB weekly or biweekly, depending on the density of

the amoebae and the density of co-occurring bacteria in the cultures, which the amoebae

depend upon [32]. Prior to the test, amoebae attached to the flask or floating were concen-

trated by a centrifugation step at 1000g for 15 min before being resuspended in 5 mL aseptic

seawater (ASW). Pelleted amoebae were then mixed with an ingredient (S1B Table in S1 File)

in a 24 cell-well plate. Amoebae culture (1 x 105 per well) were exposed for 24 h to each ingre-

dient in seawater, in addition to the control of seawater only. Then amoebae were pelleted at 1

x 104 cells and resuspended in 200 μL of seawater containing 10 μg/mL fluorescein diacetate

(ThermoFisher Scientific, Prague, Czech Republic; life stain) and with 1 μg/mL propidium

iodine (ThermoFisher Scientific, Prague, Czech Republic; dead cells) in the dark, at room tem-

perature, for 10 min. Live and dead cells were quantified using a flow cytometer (BD FACS-

Canto II, BD Biosciences).

Field trial

The field feeding trial was conducted in a commercial farming site on the west coast of Norway

(Bremnes, Norway), where the functional diet Protec Gill (Skretting AS) was tested in compar-

ison with a standard high performance commercial feed (Express 2500, Skretting AS). The

trial started at the end of September 2020 and was conducted over a period of three weeks.

Fish (Atlantic salmon, Salmo salar) were initially divided into four cages (see Table 2 in S1

File). For the whole experimental period (from T0 to T3), two cages (1 and 2) were fed Protec

Gill, whereas the two other cages (3 and 4) received Express 2500. An air-pressure driven cen-

tral feeding system was used for delivering feed to each cage through polyethylene-hoses. All

feed used (9 mm diameter) were formulated and produced by extruding technology according

to standard procedures in a commercial fish factory (Skretting, Stavanger, Norway) (see
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Table 3 in S1 File). One month prior to the trial, gills from ten fish were subjected to histopath-

ological analysis by Fish Vet Group AS (Oslo, Norway), providing findings compatible with

CGD, through evidence of epithelial and mucous hyperplasia, hyperplastic multifocal gill

inflammation, necrotic/apoptotic epithelial cells, presence of epitheliocystis and amoebae. In

addition, the presence of pathogens such as Paramoeba perurans, Ca. Branchiomonas cysticola,

Paranucleospora theridion (syn. Desmozoon lepeophtherii), and salmon gill poxvirus (SGPV) in

the gill tissue were confirmed by qPCR analysis.

Field trial design and husbandry. Prior to the trial, all cages were deloused 4–6 times

using tempered seawater with Thermolicer or Optilice technology (see Table 4 in S1 File).

Only cage 2 and 3 were treated using Thermolicer during the trial period (at T2). Four-five

days before delousing, fish did not receive feed. All pens were cleaned using high pressure sea-

water according to standard procedures, approximately once a week, before and during the

trial period.

Feeding and mortality were registered in a production management system (Mercatus

Farmer, Scale Aquaculture AS, Norway). Dead fish were registered and removed from each

cage daily.

The weight of the fish was estimated using a production management system based on ini-

tial number of fish and weight, feeding and mortality. Specific growth rate (SGR) was calcu-

lated based on data from AKVA Fishtalk production management using the following

equation:

Specific growth rateðSGR; % growth per dayÞ ¼
FBW

IBW

� �1=Days

� 1

 !

� 100

This research was carried out in strict accordance with Norwegian aquaculture production

and animal welfare regulations (Forskrift om drift av akvakulturanlegg 34. Avlivning av fisk).

No approval was necessary as commercial farm samplings in the field do not need to be

approved by the Norwegian Food Safety Authority (FOTS), and no live animals were harmed

since all testing were done post-mortem. Fish were randomly caught using a large seine and

euthanized with an overdose of benzocaine (Benzoak vet., ACD Pharmaceuticals AS, Leknes,

Norway), with every effort made to reduce the pain.

Macroscopic score of gills. Amoebic gill disease (AGD) scoring was calculated according

to [33]: score 0 (clear), no sign of infection and healthy red colour; score 1 (very light), one

white spot, light scarring or undefined necrotic; score 2 (light), 2–3 spots and small mucous

patch; score 3 (moderate), established thickened mucous patch or spot grouping up to 20% of

gill area; score 4 (advanced), established lesions covering up to 50% of gill area; score 5

(heavy), extensive lesions covering most of the gill surface.

The PGD was scored according to a system developed by Mowi Scotland. Score 0: normal

gills and no pathological changes; score 1: very slight thickening or very few lamellae affected;

score 2: frequent thickening, but tips only; score 3: almost all lamellae have thickened tips, and

some have thickenings progressing to 50% of the length of the lamellae; score 4: most lamellae

have thickenings progressing to more than 50% of the length of the lamellae; score 5: almost all

lamellae are thickened along entire length.

Fish were analysed per diet group for each sampling point (T0, n = 20; T3, n = 40).

Pathogen detection. Gill tissue (2 x 2 x 5 mm) from the middle of the second arch was

placed in RNA-later and shipped on ice to Patogen AS (Ålesund, Norway) to perform qPCR

analysis of targeting P. perurans, Ca. B. cysticola, P. theridion and SGPV. The qPCR analysis

was validated to ISO17025 standards by Patogen AS. Samples were defined as positive when

having cycles to threshold (Ct) value lower than 37.0. Elongation factor 1α (EF1α) served as an
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internal reference gene for all qPCR analysis performed [34]. Results were expressed in Ct of

PCR, a relative value that represents the cycle number at which the amount of amplified DNA

reaches the threshold level. Low pathogen load was represented by high Ct value.

Fish were analysed per diet group for each sampling point (T0, n = 20; T3, n = 30).

Gill histology. Gill tissue from the second gill arch was fixed in 10% neutral phosphate

buffered formalin (VWR, International AS, Oslo, Norway) for histopathological evaluation.

Samples were processed, sectioned at 2 μm and stained with hematoxylin and eosin [35]. Sec-

tions were evaluated for tissue changes using a light microscope according to a scoring system

adapted from [36] (see Table 5 in S1 File). Representative images of the scoring system are

reported in Fig 1 in S1 File. Pathogen such as amoeba and cysts such as epitheliocystis, epithe-

lial hyperplasia and lamellar fusion, epithelial and mucous hyperplasia, and necrosis were

identified (see Fig 2 in S1 File). The slides were digitized using a slide scanner (Panoramic

SCAN II, 3 Dhishtech) for images.

Fish were analysed per diet group for each sampling point (T0, n = 20; T3, n = 30).

Plasma parameters. Blood samples were taken from tail vessels (vena/arteria caudalis) by

Vacuette containers containing lithium-heparin. Samples were centrifuges immediately after

collection at 4000 g for 6 min. Then the plasma was frozen and stored at -80˚C until further

analysis. Lysozyme activity was analysed according to [37] and expressed as U/mol, whereas

C-reactive protein (CRP) analysis was carried out using a Konelab 30i (ThermoFisher Scien-

tific) and expressed as mg/L.

Fish were analysed per diet group for each sampling point (T0, n = 20; T3, n = 30).

Statistical analysis

GraphPad prism 9 (GraphPad software LLC, San Diego, USA) was used for the statistical anal-

ysis. Normality distribution of the data was assessed with Shapiro-Wilks test. Normally distrib-

uted data were analysed using one-way ANOVA. When the data were not normally

distributed, the non-parametric Kruskal-Wallis test was used. A post-hoc (Tukey’s multiple

comparisons test) was performed to identify which groups differ from each other. Asterisks

denote the level of a statistical significance (* = p< 0.05).

Results

In vitro study

Cell viability assay. A significant decrease in cell viability was observed only at high tested

concentrations (Fig 1): at 2000 μg/mL for arginine; at 500 and 1000 μg/mL for β-glucan; at

1000 and 2000 μg/mL for PFA 1, and at 100 and 1000 μg/mL for PFA 2. Only vitamin C had

values similar to the control at all tested concentrations.

Reactive oxygen species production assay. A significant decrease in ROS production was

recorded in cells exposed to vitamin C at all tested concentrations (from 0.1 to 5000 μg/mL), to

PFA 1 at the lowest concentrations (0.0001 and 0.001 μg/mL) and PFA 2 in a range of concen-

trations from 0.01 to 100 μg/mL (Fig 2). A significant increase in ROS production was

observed after exposure to arginine (1 and 100 μg/mL), PFA 1 at the highest concentrations

(1000 and 2000 μg/mL), and β-glucan at all tested concentrations (from 0.01 to 1000 μg/mL).

Amoebae survival in vitro testing. A significant decrease in the survival of P. perurans
was observed after exposure to arginine (10000 μg/mL and 1000 μg/mL), PFA 1 (10000 μg/mL,

1000 μg/mL, and 100 μg/mL) and PFA 2 (10000 μg/mL and 1000 μg/mL) (Fig 3).
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Field trial

Fish growth and survival. There were no statistical differences in the feeding rate and the

calculated SGR between groups during the study. The mean SGR percentage was higher in the

Protec Gill group (0.73%) compared to the Express group (0,61%), although without signifi-

cant differences.

Mortality was recorded for a broad period of time (from 3 weeks before the trial (T-3) until

3 weeks after the trial (T6)) and the calculated average mortality ranged from 0.1% to 0.36%

during the whole period (see Fig 3 in S1 File).

Macroscopic gill score. No statistical differences between diet groups were found either in

AGD-score or PGD-score after three weeks of administration (Fig 4). However, a progression

for both scores was observed at T3 in both groups. For AGD-score, Protec Gill group showed

scores from 0 to 2 at T0, and from 0 to 3 at T3 (Fig 4A). Whereas for PGD score, Express group

showed all the five scores at T3, and Protec Gill group had score from 0 to 4 at T3.

Pathogen detection. A significant decrease in pathogen load (higher Ct value) was

recorded for Ca. B. cysticola in the Protec Gill group at T3 compared to the Express group at

Fig 1. Cell viability. In vitro cell viability assay, results reported per ingredient: (A) arginine, (B) β-glucan, (C) vitamin

C, (D) phytogenic feed additive 1, (E) phytogenic feed additive 2. Values are expressed as μg/mL and reported as

median ± standard deviation, normalized to the control (CTRL); (n = 7), * = p< 0.05 (compared to the control).

https://doi.org/10.1371/journal.pone.0304112.g001
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the same timepoint (Fig 5). No statistical differences were recorded for P. perurans and P. ther-
idion detection when comparing the two groups. As for SGPV presence, in the Protec Gill

group at T3 there was a lower number of fish in which the virus was detected (3% prevalence,

only one fish with high Ct value), compared to the Express group at the same timepoint (13%

prevalence). Since SGPV was detected in only one fish in the Protec Gill group, no statistical

analysis was carried out.

Gill histology. There was a significant reduction in all the analysed gill lesions (epithelial

and mucous hyperplasia, lamellar fusion, necrosis, oedema, and pathogen load) in the Protec

Gill group at T3 compared to the Express group (Fig 6). For epithelial and mucous hyperplasia

and lamellar fusion, 50% of the investigated fish population had no lesions (score 0) in the Pro-

tec Gill group at T3 compared to the Express group (Fig 6A and 6B). A significantly lower

number of fish (7%) had mild necrotic changes (score 1) at T3 in the Protec Gill group com-

pared to the Express group, which had lesions of all three severities (score 1 to 3) (Fig 6C).

Interestingly, Protec Gill group showed less necrosis at T3 compared to T0, which showed

Fig 2. Reactive oxygen species production. ROS production assay, results reported per ingredient: (A) arginine, (B)

β-glucan, (C) vitamin C, (D) phytogenic feed additive 1, (E) phytogenic feed additive 2. Values are expressed as μg/mL

and reported as median ± standard deviation, normalized to the control (CTRL); (n = 7), * p< 0.05 (compared to the

control).

https://doi.org/10.1371/journal.pone.0304112.g002
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Fig 3. Amoebae survival. Amoebae (Paramoeba perurans) survival testing, results reported per ingredient: (A)

arginine, (B) phytogenic feed additive 1, (C) phytogenic feed additive 2. Values are expressed as amoebae survival

percentage (%) and reported as mean ± standard deviation, compared to the control (CTRL); (n = 3), * p< 0.05

(compared to the control).

https://doi.org/10.1371/journal.pone.0304112.g003
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Fig 4. Macroscopic gill score. Amoebic gill disease score (A) and proliferative gill disease score (B) at the beginning of

the study (T0) and at the end (T3) in Atlantic salmon gill tissue. Results are reported as prevalence percentage of fish

with a specific score; n = 20 (T0), n = 40 (T3).

https://doi.org/10.1371/journal.pone.0304112.g004
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necrosis of all three severities (score 1 to 3). Moreover, at T3 there was no evidence of oedema

or fluid accumulation in the gill tissue of fish in the Protec Gill group compared to the Express

group (Fig 6D). The pathogen load, defined as presence of bacteria (epitheliocystis) and para-

sites (amoebae) in gills, decreased significantly in the Protec Gill group at T3 compared to the

Express group at the same timepoint, and compared to the Protec Gill group at T0 (Fig 6E).

Fig 5. Pathogen detection. Detection of Paramoeba perurans (A), Paranucleospora theridion (B), Ca. Branchiomonas
cysticola (C), and salmon gill poxvirus (D), by qPCR, at the beginning of the study (T0) and at the end (T3) in Atlantic

salmon gill tissue. Results are reported as mean and individual values; n = 20 (T0), n = 30 (T3). Ct value = cycles to

threshold value, * p< 0.05.

https://doi.org/10.1371/journal.pone.0304112.g005
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Plasma parameters. A significant decrease in the lysozyme activity was observed in the

Protec Gill group at T3 compared to the Express group at the same timepoint and compared to

both groups at T0 (Fig 7). No statistical differences were recorded in the CRP values between

groups at any timepoint.

Fig 6. Gill histology. Histopathological analysis of gill lesions analysed in Atlantic salmon gill tissue at the beginning

of the study (T0) and at the end (T3): (A) epithelial and mucous hyperplasia, (B) lamellar fusion, (C) tissue

degeneration/necrosis, (D) oedema, (E) pathogen load. Results are reported as prevalence percentage of fish with a

specific score (from 0 to 3); n = 20 (T0), n = 30 (T3), * p< 0.05.

https://doi.org/10.1371/journal.pone.0304112.g006
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Discussion

In vitro cell cultures are an important part of modern research, as they represent a good alter-

native to in vivo testing [38]. Cell lines derived from fish is a promising tool for studying many

of the aquaculture challenges such as fish growth, disease assessment and reproduction [39–

41]. They also can be effectively used as model systems to investigate nutrient assimilation and

metabolism, but rarely have been used to study aspects of fish nutrition [39]. Most of the in
vitro studies on fish nutrition are using the intestinal rainbow trout epithelial cell line

(RTgutGC) [42–44], for understanding the functional immunity system of the fish gut as well

as the effects of functional feed ingredients in the gut cells [42]. However, in the case of CGD,

the use of gill cells seems to be a more appropriate tool to assess the beneficial effects of func-

tional ingredients. Since both gut and gill fish cell lines from Atlantic salmon are not well

established as in vitro system and are not commercially available, in the current study the suit-

ability of RTgill-W1 cell line was investigated.

Fig 7. Plasma parameters. Lysozyme (A) expressed U/mL, and C-reactive protein (CRP) (B) expressed in mg/L,

activity in Atlantic salmon plasma at the beginning of the study (T0) and at the end (T3). Results are reported as

median ± standard deviation; n = 20 (T0), n = 30 (T3), * p< 0.05.

https://doi.org/10.1371/journal.pone.0304112.g007
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Based on the cell viability assay, thresholds of the ingredients’ concentration were identi-

fied. When applied at high concentrations, all tested functional ingredients, except vitamin C,

significantly reduced cell viability. A clear dose-response curve was observed, where increasing

the concentration decreases the viability, probably associated with a decrease in metabolic

activity. Furthermore, these results contributed to the identification of the ideal ingredient

concentrations ranges, which might be useful in establishing the concentration to be included

in future diets.

Concerning the production of ROS, the effects differed between ingredients. Arginine and β-

glucan showed an increase in ROS production, which was significant at 1–100 μg/mL for argi-

nine and between 0.01 and 1000 μg/mL for β-glucan. According to previous study, β-glucan

enhance non-specific host defense mechanisms, stimulating leukocytes to trigger their phago-

cytic reactions, through the production of ROS [10], which can explain the present study find-

ing. Instead, no improvement was reported at cellular level when RTgill-W1 cells were exposed

to arginine, used as single ingredient. In fish, antioxidant effects of arginine have been previ-

ously evaluated [45–48], but no significant effects were found, in accordance with the current

study’s findings. However, arginine beneficial contribution might be higher when included in

diet formulation, due to positive interaction with other ingredients. Interestingly, in our study,

when amoebae were exposed to arginine, a clear amoebicidal activity at the highest concentra-

tions (10000 and 1000 μg/mL) was observed, highlighting a potential role of arginine as an

amoebicidal agent to prevent microbial infections. This feature has not yet been thoroughly

explored and further research is needed to understand the mechanism behind this aspect.

Vitamin C, as widely reported [8, 49, 50], mainly exerted antioxidant properties, showing a

significant decrease in ROS production at all tested concentrations (0.1 to 5000 μg/mL).

According to previous study, this beneficial effect is exerted at low concentration, like 0.1 μg/

mL, which could be safely used in future fish feed formulation [49].

Two PFAs were tested for assessing their potential as antioxidant and as amoebicidal agents

to prevent microbial infections. The PFA 1 showed a significant increase in ROS production at

concentrations higher than 1000 μg/mL, highlighting a potential cytotoxic effect if provided at

high dosage. At low concentrations (0.0001 and 0.001 μg/mL) showed instead a significant

decrease in ROS production and might be therefore used for its antioxidant properties. In a

concentration range of 0.01 to 100 μg/mL, the second phytogenic, PFA 2, significantly reduced

the production of ROS, recommending its usage in this range for exerting antioxidant proper-

ties. According to a previous study, increasing the level of PFAs is not associated with improve-

ments of growth performance and feed utilization efficiency [51], which can explain the

present study finding, where both PFAs exerted antioxidant properties at low dosages. Regard-

ing their potential amoebicidal activity, a significant decrease in the survival of amoebae was

observed for both tested PFAs, especially for PFA 2 which also showed a significant decrease at

the lowest tested concentration (100 μg/mL). According to previous studies [3, 13], PFAs are

recognized to have antibacterial, antiviral, antifungal properties and, sometime, immune stim-

ulatory and antimicrobial effects in fish, in accordance with our findings. Overall, the inclusion

of PFAs with antimicrobial activity in dietary supplement appears to be a promising alternative

for preventing microbial infections [14, 15].

Currently available methods for preventing and treating fish diseases are expensive and

shown limited efficacy [52, 53]. Moreover, as no vaccines nor specific treatments are licensed

to treat CGD, the optimization of diet formulation might be a successful strategy to improve

fish health and decrease disease susceptibility [17]. Herein, the beneficial effects of a commer-

cially available functional feed, Protec Gill, were investigated in fish affected by CGD.

The most effective, non-invasive, and commonly used means for the assessment of gill dis-

eases on a commercial scale is carried out through the gross pathological evaluation of gill
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arches to identify focal/multifocal lesions [54, 55], and through the evaluation of growth and

mortality rates. Although, these methods might not be sensitive enough to show fish health

improvements during feeding experiments, as in the current study. Herein, fish affected by

CGD fed with two different diets had similar AGD and PGD scores after three weeks, and nei-

ther mortality nor growth showed significant differences between diet groups. However, a

clear improvement in gill tissue was observed through the histopathological assessment. The

selected histological parameters, epithelial and mucous hyperplasia, lamellar fusion, tissue

degeneration/necrosis, oedema, and pathogen load, are known to be the most representative

lesions during gill disease outbreaks [55]. A significant improvement in gill tissue after three

weeks of Protec Gill feeding was demonstrated, with a significant reduction of all the analysed

gill lesions. Interestingly, in the Protec Gill group after three weeks there was a significant

reduction of epithelial and mucous hyperplasia (50% of fish had score 0), which is reported to

be one of the predominant characteristics in fish affected by CGD [25], and a significant reduc-

tion of pathogen load, in particular the presence of epitheliocystis, which is associate with the

presence of Ca. B. cysticola [56], one of the major contributors of CGD [23]. The analysis of

plasma parameters, especially the lysozyme activity, also confirmed a reduction in the infection

of fish after three weeks of Protec Gill feeding. CRP levels were not able to distinguish group

conditions after three weeks, probably due to the fact that is more responsive during acute

inflammatory episodes [57].

In literature, most of the studies are focused on describing the mechanisms behind the

development of CGD, the role of each pathogen involved, and the use of histopathological gill

assessment as a more in-depth investigation [23–26, 58, 59]. However, one aspect that has not

been yet deeply explored is the investigation of alternative strategies to improve gill tissue con-

ditions and fish health during CGD outbreaks, especially in absence of vaccines or specific

treatments. Our study findings suggests that the use of functional diets is a feasible strategy for

preventing or mitigating the increasingly common gill diseases, particularly in cases of CGD,

and further research could focus on evaluating the use of such functional diets for preventing

disease outbreaks.

Conclusion

In fish, knowledge about basic mode of action of functional ingredients and their interactions

when included in a diet is weak and fragmentary. The in vitro model, which may be imple-

mented with additional assays and cell line types, appears to be a suitable alternative for

screening ingredients, reducing the number of in vivo trials for a more sustainable aquaculture

practice.

The use of a diet containing selected functional feed ingredients in a field trial was a suc-

cessful strategy for mitigating the CGD, by slowing disease progression, reducing pathogen

load, and significantly improving gill tissue condition.
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