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Abstract
Malaria remains a global health problem despite the many attempts to control and
eradicate it. There is an urgent need to understand the current transmission dynamics
of malaria and to determine the interventions necessary to control malaria. In this
paper, we seek to develop a fit-for-purpose mathematical model to assess the interven-
tions needed to control malaria in an endemic setting. To achieve this, we formulate a
malaria transmission model to analyse the spread of malaria in the presence of inter-
ventions. A sensitivity analysis of the model is performed to determine the relative
impact of the model parameters on disease transmission. We explore how existing
variations in the recruitment and management of intervention strategies affect malaria
transmission.Results obtained from the study imply that the discontinuation of existing
interventions has a significant effect on malaria prevalence. Thus, the maintenance of
interventions is imperative for malaria elimination and eradication. In a scenario study
aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual
spraying (IRS), and localized individual measures, our findings indicate that increased
LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a
more pronounced reduction in symptomatic malaria prevalence compared to a reduced
LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the
impact of localized preventive measures in mitigating the spread of malaria when
compared to the absence of interventions.
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1 Introduction

Malaria remains a global health concern that threatens the lives of many children and
adults each year. It has proven to be a persistent problem due to the highly adaptive
nature of the Plasmodium spp. parasites and the female Anopheles mosquito vector
(Haldar et al. 2018; Rono et al. 2018). Over the past two decades, substantial headway
has been made in reducing the global burden of malaria (WHO 2019; World 2021).
These reductions are the result of political commitment, increased funding, and the
wide-scale deployment of effective malaria control interventions targeting both the
human host and the mosquito vector. However, in recent years progress has stalled and
has even reversed in regions with moderate to high transmission. This rebound is par-
ticularly concerning for the most prevalent malaria parasite, Plasmodium falciparum,
which is responsible for the majority of malaria-related deaths globally (Perkins et al.
2011; Ahmad et al. 2023). To make matters worse, the COVID-19 pandemic demon-
strated how even short-term disruptions in routine malaria interventions can impede
progress in achieving elimination in malaria-endemic countries (Hakizimana et al.
2022; Rogerson et al. 2020).
Current malaria control strategies (or measures) include interventions that target the
vector population and antimalarial therapeutic measures that target the human host
population. Vector control strategies such as insecticide treated nets (ITNs)/long-
lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) with insecticides
are key elements of current malaria control programs due to their effectiveness at inter-
rupting transmission by reducing the population size of the mosquito vector (WHO
2021). Despite their historical success, these measures have drawbacks such as limited
coverage (i.e., only target indoor transmission), being costly to implement and main-
tain, and potentially leading to the development of insecticide resistance inmosquitoes
(Ojuka et al. 2015; WHO 2018; Gari and Lindtjørn 2018). Therapeutic strategies,
including the treatment of symptomatic infections with artemisinin-based combina-
tion therapy (ACTs) and targeted chemotherapy programs (e.g., intermittent preventive
treatment (IPT) and seasonal malaria chemoprevention (SMC)) seek to reduce the
number of infected human hosts, thereby reducing malaria morbidity and mortality, as
well as onward transmission (WHO 2021). Unfortunately, these therapeutic measures
have drawbacks like drug resistance and side effects, limiting long-term reliability
(Plowe 2022; Lin et al. 2014). Given the limited budget available for malaria control,
it becomes essential to optimize the allocation of resources and select interventions
that provide the most significant impact. Thus, if malaria is to be eliminated in an
endemic area, there is a need to adopt several strategic interventions simultaneously to
avert both outdoor and indoor malaria transmission, and to curtail transmissions from
the infectious human reservoir (Gari and Lindtjørn 2018). Mathematical modeling
can help determine effective malaria interventions by providing valuable insights into
complex disease dynamics and guiding decision-makers in the selection and imple-
mentation of the most cost-effective intervention strategies.
Mathematical modelling is effective in helping to tackle many epidemiological prob-
lems such as identifying disease determinants and controlling disease spread (Grassly
and Fraser 2008; Li 2018). Additionally, mathematical modelling has proven useful in
the evaluation of malaria control programs and in assessing the transmission dynam-
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ics of infectious diseases amidst interventions (Yang et al. 2017; Korsah 2021; Griffin
et al. 2010). In the study of malaria transmission, the SH EH IH RH − SM EM IM model
has been used widely as a simple yet practical approach to understanding the trans-
mission patterns of malaria (and other vector-host infections), adding significantly
to our knowledge of malaria (Yang and Ferreira 2000; Ngwa and Shu 2000; Chitnis
et al. 2006; Turner et al. 2015; Shah and Gupta 2013; Mojeeb et al. 2017; Baihaqi
and Adi-Kusumo 2020). For instance, Chitnis et al. and Osman et al. employed the
SH EH IH RH − SM EM IM model to examine the transmission dynamics of malaria
in a human population (Chitnis et al. 2006; Mojeeb et al. 2017; Chitnis et al. 2008).
They found that the rate of infection parameters in both humans and mosquitoes are
the most influential parameters on the basic reproduction number, R0 (Mojeeb et al.
2017; Chitnis et al. 2008). Following the results obtained, the authors recommended
reducing malaria prevalence with antimalarial treatment and reducing contact rates
with IRS and ITNs/LLINs. Osman et al. also emphasised the importance of future
research focusing on assessing the impact of interventions and conducting disease
control analysis with the SH EH IH RH − SM EM IM model and to date, a notable
research gap remains in this space (Mojeeb et al. 2017).
In this paper, we employ an extension of the SH EH IH RH − SM EM IM model to con-
sider the impact of interventions targeting the vector, such as IRS and ITNs/LLINs on
the spread of malaria, specifically focusing on the transmission of P. falciparum, while
factoring into the model the transmission characteristics of partial immune individu-
als. These are individuals who have acquired some level of protection after repeated
exposure to malaria parasites but have not developed full immunity that would com-
pletely prevent infection. We assume that when these partially immune individuals
become infected, they remain asymptomatic but can still transmit the malaria parasite,
thus contributing to the continued transmission of malaria. This paper is structured
as follows; in Sect. 2, a deterministic transmission model with separate transmission
routes for non-immune and partially immune individuals is constructed. We formulate
the basic reproduction number of the model and conduct a sensitivity analysis on the
model parameters in Sects. 3.1 and 3.2. In Sect. 4, we assess the impact of intervention
strategies or measures on malaria transmission. Finally, we provide recommendations
for improving malaria control programs, based on our results and discuss the impli-
cations of our findings in Sect. 5.

2 Model Formulation

Building on the disease transmission models of Yang et al. and Osman et al., we
develop a malaria transmission model that takes into account transmission from both
partial and non-immune infectious humans (Yang et al. 2017; Mojeeb et al. 2017). We
extend the SH EH IH RH − SM EM IM model by splitting the susceptible and exposed
human classes into two sub-classes each as similarly done by ul Rehman et al. (2022),
to capture the transmission properties of both non-immune and partially immune
individuals. The human population therefore has six compartments, see Fig.1;

• SH1: non-immune, uninfected individuals susceptible to symptomatic infection,

123



91 Page 4 of 27 M. A. Korsah et al.

• SH2: partially immune, uninfected individuals, susceptible to re-infection (asymp-
tomatic),

• EH1: non-immune individuals in latent phase of symptomatic infection,
• EH2: partially immune individuals in latent phase of asymptomatic infection,
• IH : symptomatic infectious individuals,
• AH : asymptomatic infectious individuals.

We divide the mosquito population into (SM ) susceptible, (EM ) exposed and (IM )

infected mosquitoes.
We consider the impact of intervention strategies to provide valuable insights and
evidence that can guide decision-making in reducing malaria transmission (Yang et al.
2017; Korsah 2021). We define intervention programs or strategies as measures that
aim to lower the prevalence of malaria in an endemic region. To optimize the level of
intervention programs needed for the elimination of malaria, we explore the effect of
intervention programs (P) on the transmission of malaria. See Fig. 1 for a schematic
of the model structure. In the model formulation, we incorporate a constant influx of
interventions with rate η. The influx of interventions is also influenced by the number
of symptomatic infectious cases (IH ) at a rate of ξ and the interventions decrease at
rate κ . Thus the influx rate parameter η can be interpreted as the total uptake rate of
intervention measures that decrease the mosquito bite rate without considering the
impact of changes in malaria prevalence, whereas the parameter ξ accounts for the
influence of symptomatic infectious cases on the influx rate of intervention measures.
We assume that the availability and usage of intervention programs, P , affect disease
trends by modulating the transmission rate.
The model in Fig. 1, governed by the system of ODEs in Equation (1), can be used
to assess the intervention programs necessary for the elimination of malaria in a geo-
graphic setting:

dSH1

dt
= �H − βH (P)SH1 IM − μH SH1 + σ1SH2, (1a)

dSH2

dt
= τ IH + σ2AH − βH (P)SH2 IM − (μH + σ1)SH2, (1b)

dEH1

dt
= βH (P)SH1 IM − (μH + θI )EH1, (1c)

dEH2

dt
= βH (P)SH2 IM − (μH + θA)EH2, (1d)

d IH
dt

= θI EH1 − (τ + ν + μH + γ )IH , (1e)

d AH

dt
= γ IH + θAEH2 − (μH + σ2)AH , (1f)

dSM
dt

= �M − βM (P)SM (IH + χ AH ) − μMSM , (1g)

dEM

dt
= βM (P)SM (IH + χ AH ) − (μM + ω)EM , (1h)

d IM
dt

= ωEM − μM IM , (1i)
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Fig. 1 A compartmental diagram of the host-vector model. The red dash-dotted lines represent transmis-
sion from infectious humans to susceptible mosquitoes, the red dashed lines represent transmission from
infectious mosquitoes to susceptible humans and the blue dotted lines symbolise the effect of intervention
strategies on the transmission of malaria in both host and vector populations. Birth and death rates are not
presented in this figure, though they are accounted for in the model. Refer to Table 1 for the definitions of
the parameters of the model (Color figure online)

dP

dt
= η + ξ IH − κP. (1j)

The model formulated in Equation (1) describes how susceptible individuals in SH1
have a population influx rate of �H and are exposed to P. falciparum parasites by
an infectious adult female mosquito during blood meals with a frequency-dependent
transmission rate of βH (P), moving individuals from SH1 into EH1. After a latent
phase in EH1, individuals move into the symptomatic infectious class (IH ) where they
either self-recover at rate γ and move into the asymptomatic class (AH ) or they are
medically treated at rate τ with prescribed drugs such as ACTs (WHO 2021; Trampuz
et al. 2003), andmove into the SH2 compartment. The partially immune yet susceptible
individuals in the SH2 compartment consist of treated individuals from the IH class
with noninfectious levels of the Plasmodium parasites due to treatments received, and
asymptomatic persons with infection-induced immunity who transition into this class
from the AH class at rate σ2. Individuals here can either move back into SH1 by the
loss of immunity at rate σ1 or move into EH2 by being re-exposed to P. falciparum
parasites. From EH2 individuals become infectious with asymptomatic malaria (AH )
at rate θA. The model takes into account the human natural death rate in each class as
μH as well as mortality due to clinical infection at rate ν.
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In themosquito population, susceptiblemosquitoes are exposed to themalaria parasites
at a frequency-dependent transmission rate of βM (P) via transmission from both
symptomatic and asymptomatic infectious humans and exposed mosquitoes become
infectious at rate ω. Transmissions from asymptomatic infectious humans are scaled
by a factor, χ , such that χ ∈ [0, 1) since asymptomatic humans infect mosquitoes at a
lower rate than symptomatic infectious humans (Jiram et al. 2019; Alves et al. 2005;
Waltmann et al. 2015).
The intervention class of the model, P , affects the transmission rate functions of the
model. Thus, interventions considered here can capture the impact of vector con-
trol strategies (IRS and ITNs/LLINs), intermittent preventive treatment (IPTs) with
antimalarials, individual measures (environmental preventive measures) such as clear-
ing mosquito breeding sites and/or reducing exposure to mosquitoes (e.g., personal
repellents, insect coils and room sprays), and other approaches that can interfere with
malaria transmission (Castro et al. 2009; Agyemang-Badu et al. 2023). The interven-
tion class modelled here does not consider other malaria therapeutic measures like
ACTs as they affect other aspects of the model.
We further assume that:

(H1) All parameters are non-negative.
(H2) The frequency-dependent transmission rate functions are defined as decreasing

functions of the intervention programs P;

βH (P) = δ

NH

ψH

bP + 1
, βM (P) = δ

NH

ψM

cP + 1
,

where b and c are positive-valued constants, NH is the total human population,
(NH = SH1+SH2+EH1+EH2+ IH +AH ), δ is the biting rate, andψH andψM

are the infection success probabilities in humans and mosquitoes respectively.
(H3) The transmission rate functions are decreasing functions of P (i.e. β ′∗(P) < 0)

and P takes values in [0, Pmax ] where

Pmax = η + ξ �H
μH

κ
.

3 Model Analysis

3.1 Formulation of Basic Reproduction Number,Rc

Tobetter understand the proposed framework,we evaluate the basic reproduction num-
ber which quantifies new cases generated near the disease-free equilibrium (DFE). The
basic reproduction number is formulated using the next generationmethod established
by Diekmann et al., and Van den Driessche and Watmough (Tumwiine et al. 2008;
Diekmann et al. 1990; Van den Driessche and Watmough 2002). Refer to Appendix
A for the detailed derivation of the basic reproduction number of the model.
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The basic reproduction number of the model can be formulated as,

Rc = √
K1 + K2, (2)

where

K1 = βH (
η
κ
)�H

μH
βM (

η
κ
)�M

μM
θIω

μM (μM + ω)(μH + θI )(τ + ν + μH + γ )
, (3)

K2 = χβM (
η
κ
)�M

μM
βH (

η
κ
)�H

μH
θIγω

μM (μM + ω)(μH + θI )(τ + ν + μH + γ )(μH + σ2)
. (4)

From Equation (2), we identify two transmission links;

• K1, which represents transmission from individuals in IH , and
• K2, which reflects transmission from self-recovered individuals in AH .

Transmission from infectedmosquitoes is accounted for in each transmission pathway.
In the absence of intervention programs (P = 0), the basic reproduction number
becomes:

R0 =
√
K ∗
1 + K ∗

2 , (5)

where

K ∗
1 = βH (0)�H

μH
βM (0)�M

μM
θIω

μM (μM + ω)(μH + θI )(τ + ν + μH + γ )
, (6)

K ∗
2 = χβM (0)�M

μM
βH (0)�H

μH
θIγω

μM (μM + ω)(μH + θI )(τ + ν + μH + γ )(μH + σ2)
. (7)

Thus,

Rc ≤ R0, (8)

since the transmission rate functions are decreasing functions of P , reflecting the
impact of intervention programs to reduce the spread of malaria.
We note thatRc does not account for transmission from re-infections, since there are
no individuals with partial immunity at the DFE. Thus compartments relating to partial
immunity do not influence the calculation of Rc. Refer to Appendix Section A.1 for
the conditions for each compartment at the DFE.
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Table 2 Sensitivity index of the model parameters on Rc andR0

Parameters Sensitivity index onRc andR0

δ 1

ψH 0.5

ψM 0.5

�M 0.5

ω
μM

2(μM+ω)
> 0

χ
χγ

2(1+χγ )
> 0

θI
μH

2(μH+θI )
> 0

γ
γ [χ(τ+ν+μH )−1]

2(τ+ν+μH+γ )(1+χγ )
> 0

μM − 3μM+2ω
2(μM+ω)

< 0

τ − τ
2(τ+ν+μH+γ )

< 0

ν − ν
2(τ+ν+μH+γ )

< 0

σ2 − σ2
2(1+μH+σ2)

< 0

Interventional Parameters Sensitivity index on Rc

κ
η[2bcη+(b+c)κ]
2(bη+κ)(cη+κ)

> 0

b − bη
2(bη+κ)

< 0

c − cη
2(cη+κ)

< 0

η − η[2bcη+(b+c)κ]
2(bη+κ)(cη+κ)

< 0

3.2 Sensitivity Analysis onRc

We conduct a sensitivity analysis on Rc to obtain qualitative information on how the
model parameters affectRc by employing the normalized forward index, ζ ofRc for
a parameter k, (Rodrigues et al. 2013) as

ζ
Rc
k = ∂Rc

∂k
· k

Rc
.

We compare the sensitivity index of the parameters on Rc and R0 in Equations (2)
and (5), and observe that the normalised forward index, ζ of both Rc and R0 is the
same for all parameters except for b, c, η and κ , which are parameter related to the
interventions class P as R0 is formulated in the absence of intervention strategies.
The results obtained are presented in Table 2.
Based on Table 2, we deduce that parameters such as the mosquito biting rate (δ),
infection success probabilities (ψH , ψM ) and decay rate of intervention programs
(κ), which have positive indices contribute to the initial spread of malaria (in that
as the parameter increases, Rc increases). In contrast the treatment rate of infected
persons (τ ), interventions recruitment/funding rate (η), and mosquito death rate (μM )
parameters with negative indices reduceRc. Some model parameters are not included
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Fig. 2 Plots from a local sensitivity (see Equations (2) and (5)) analysis conducted on the model. In these
plots, the blue solid lines illustrate the variations in Rc , as individual parameters change, whereas the red
dashed curves illustrate the variations inR0 with respect to the specific parameter being analyzed, with all
other parameters maintained at their baseline values as detailed in Table 1 (Color figure online)

in Table 2, such as σ1, θA, and ξ , since they do not exert a direct influence on Rc,
see Equation (2). Note that we exclude the human birth and death rates from the Rc

sensitivity analysis, as these factors are not directly adjustable in the context of malaria
control strategies. The focus is on parameters that are amenable to intervention, which
is more pertinent for policy considerations.

4 Numerical Results

4.1 Local Sensitivity Analysis onRc

We substantiate the parameter sensitivity results in Table 2 by plotting Rc and R0 as
a function of individual parameters in Fig. 2. As expected, parameters with positive
indices exhibit a positive impact on both Rc and R0, while conversely, parameters
with negative indices have a negative effect. The difference in impact betweenRc and
R0 is clear from Fig. 2, and indicates that the absence of intervention programs leads
to an increase in the basic reproduction number, which supports the findings from
Equation (8).

4.2 Impact of Variation in Interventions onMalaria

In Fig. 3, we present the outcomes of a sensitivity analysis to investigate the combined
effect of changes in η and κ on Rc. We observe that the intervention decay rate, κ ,
has an increasing effect onRc whereas the recruitment rate of interventions, η, has an
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Fig. 3 a. A sensitivity analysis of Rc on the intervention parameters κ and η. The colour bar represents
Rc values ranging from 0 (blue) indicating a negative growth of the disease to 2 (red) indicating a positive
initial disease growth. The subplot a. is derived from the solution to Equation (2). b. Simulation results
comparing the dynamics of infectious human cases from a steady declining situation (dark blue line), as
the recruitment rate of intervention programs is decreased at 100 days compared to having η = 0 from the
start. Four decreasing scenarios of η are considered at 100 days from η = 2.5 (dark blue line) to η = 0
(dark red line) with κ = 0.17 in all scenarios. Results in subplot b. are obtained by solving Equation
(1) and recording changes in Equations (1e) and (1f) as η varies. In generating b. the initial condition
was set at SH1(0) = 2400, SH2(0) = 1000, EH1(0) = 600, EH2(0) = 400, IH (0) = 900, AH (0) =
400, SM (0) = 1500, EM (0) = 200, IM (0) = 150, P(0) = 1 (Color figure online)

inhibitory effect on Rc which is consistent with Rc decreasing as interventions (P)

increases.
From Fig. 3a, we have identified the level of recruitment and decay of intervention
measures necessary to prevent malaria outbreaks given the dynamics of transmission
in an endemic setting (e.g. that push Rc< 1). The white region of Fig. 3a represents
the level required to control initial malaria transmission, where Rc drops to 1. The
blue region represents the region of the parameter space where malaria is suppressed
but achieves a more substantial reduction inRc than necessary to suppress outbreaks.
We also perform numerical simulations of the model to investigate how variations
in intervention strategies resulting from decreasing intervention funds and the dis-
continuation of established strategies affects the number of infectious cases in the
human population before and after disease elimination. Here we classify infectious
cases, I , as the sum of symptomatic and asymptomatic infectious humans, that is,
I = IH + AH . We consider a situation where a diminishing trend in malaria cases
results in reduced funds for antimalarial interventions (Diptyanusa and Zablon 2020;
Weiss et al. 2021). This behaviour of funding agencies is factored into the model by
reducing the recruitment rate of interventions, η. It is important to clarify that the
concept of funding in this context represents the influx into P , rather than a specific
dollar value. Figure3b presents the simulation results of the number of infectious
humans under different varying scenarios of η. We observe that as funding for malaria
elimination programs decreases, infectious cases increase. This result was generated
under the assumption that when there is a 40% decrease in infectious cases, stake-
holders will consider decreasing funding rates. The scenario where η = 0 after the
initial disease decline, leads to a higher increase in infectious cases, closer to the “no
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Fig. 4 Simulation results exploring how variations in interventions affect infectious trends. a. After-
elimination scenarios on how themanagement (decay) of intervention strategies can affect infectious human
cases in the first 500 days post-elimination. After elimination, we set η = 0 and consider four scenarios of
κ; κ = 0 (red solid line), κ = 0.1 (blue solid line), κ = 0.3 (blue dashed line) and κ = 0.5 (blue dotted
line). b. The impact of time-varying intervention strategies on malaria-infectious human cases. The solid
black line represents the ideal (baseline) scenario with a constant supply and decay rate of interventions
(η = 2.5 and κ = 0.1), the blue line represents results from variations in the recruitment rate of intervention
strategies, η, while the red lines represent simulation results from a corresponding change in the decay rate
of interventions, κ . The changes are chosen such that P , (i.e. P at the DFE) for each change in η and κ

is equal. We consider three scenarios of unsteady intervention strategies from day 100 and explore further
variations in the supply and decay rate of interventions from days 400 and 800. These days are marked by
the vertical grey dashed lines. Scenario 1 is marked by the solid red and blue lines, Scenario 2 by the dashed
lines, and Scenario 3 by the dash-dotted lines (specific details are discussed in the main text). Solution of
both subplots a. and b. are obtained by solving the model system in Equation (1) and recording the specific
changes in Equations (1e) and (1f) (Color figure online)

control" situation with η = 0 from the start. In fact, this scenario with η = 0 after the
initial decline will ultimately hit the same steady state as the “no control" situation.
However, maintaining η = 2.5 sees malaria approach elimination. Thus we can infer
from the results of Fig. 3b that in order to sustain a diminishing trend in infectious
malaria cases, it is likely necessary to either raise or maintain the funding rates for
intervention recruitment strategies.
To explore the post-elimination prospects ofmalaria in endemic regions, we conducted
numerical experiments using the baseline parameter values in Table 1, setting δ = 3,
ψH = 0.5, and ψM = 0.5, until the time point where the number of infectious
individuals, denoted as I , falls below a specified threshold ε. Using the same parameter
values and compartmental dynamics observed at that particular point in time (i.e.we set
IH (0) = IH (at elimination)+1 andmaintained the values of all other compartments),
we then introduced a single symptomatic infectious human and varied the decay rate of
the intervention strategies, κ (as per Fig. 4a). In reality,malaria elimination iswhen I =
0, however in practice we set malaria elimination status at a threshold of ε = 0.3 > 0
since we are employing a continuum model. By varying the value of κ in Fig. 4a, we
observe an increase in infectious cases as the decay rates of interventions increases.
We thus infer that the discontinuation of intervention programs after elimination could
lead to a reemergence of malaria. Setting κ = 0, however, results in an unperturbed
malaria elimination state even with the introduction of an infectious case as strategies
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to control the spread of malaria are still available. Our results suggest that maintenance
of established intervention strategies is, therefore, necessary to maintain elimination
status.
In light of the current erratic trends in malaria cases globally, we investigate the
dynamics of infectious cases resulting from a changing supply of funds for malaria
intervention programs and the temperamental utilization of interventions by exploring
variations in η (�η) and κ (�κ) such that P , the P at the DFE, for each change in
η and κ is equal (i.e. P�η = P�κ,where P = η

κ
). In each scenario, a percentage

change in P is achieved via a modification of the parameter η or κ . From Fig. 4b, we
observe three scenarios (specific details below) of trends in malaria cases resulting
from an initial decrease in P after the baseline scenario at day 100. This is followed
by a substantial increase in P from day 400, aimed at rectifying possible increasing
trends of infectious cases. Finally, P is decreased after day 800 by a percentage less
than the initial decrease at day 100. This is done to incorporate positive but deficient
human behaviour targeted towards malaria elimination into our investigation of the
unsteady trends in malaria cases. We discuss the details of variations considered in all
three scenarios below.

• Scenario 1 (solid lines in red and blue) – After 100 days of the baseline simulation,
we decreased P by 30% (η = 1.75 in blue or κ = 0.1429 in red) and observed
similar results for the variations in both κ (red) and η (blue), that is a general
reduction in malaria cases. After day 400, we increase P by 50% (η = 2.625
in blue or κ = 0.0953 in red) and observe human infectious cases fall closer
to elimination levels. With the number of infectious cases nearing elimination, a
subsequent 20% decrease in P (η = 2.1 in blue or κ = 0.1191 in red) at day 800
results in further declines as the infectious cases present are not enough to cause
a rise in cases.

• Scenario 2 (dashed lines in red and blue) – After day 100, we decrease P by 55%
(η = 1.125 in blue or κ = 0.2222 in red) which results in a higher increase in
cases for the corresponding change in κ (red) than in η (blue) by day 400. We then
increase P by 75% (η = 1.9688 in blue or κ = 0.127 in red) and observe a similar
reduction trend in both η and κ from day 400 to 800. We finally reduce P by 35%
(η = 1.2797 in blue or κ = 0.1954 in red) after day 800 to observe an increase in
both at day 1000.

• Scenario 3 (dash-dotted lines in red and blue) – P is cut by 80% (η = 0.5 in blue or
κ = 0.5 in red) after day 100 which leads to a substantial rise in malaria cases by
day 400. We continue by increasing P by 90% (η = 0.95 in blue or κ = 0.2632
in red) and observe a sharp decline in malaria cases for the change in η (blue)
compared to κ (red) by day 800. We finally cut P by 50% (η = 0.475 in blue or
κ = 0.5264 in red) after day 800 and observe a climb in cases.

In all three scenarios presented in Fig. 4b, we show that while the inconsistent supply
of funds for intervention strategies (results for changing η in blue) has a notable impact
on infectious cases, the unsteady maintenance of interventions (results for changing
κ in red) has a more pronounced impact on infection trends.
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4.3 IRS, LLINs and Individual Interventions Scenarios

We conduct a scenario study to investigate how IRS, LLINs, and individual (pre-
ventive) measures such as clearing mosquito breeding sites and reducing mosquito
exposure (Castro et al. 2009; Agyemang-Badu et al. 2023) in the presence of high and
low levels of risk aversion in the community, affect the patterns of symptomaticmalaria
infections. To this effect, the model parameters, η, κ , ξ , b and c, which are associated
with the intervention class were adjusted to reflect the effectiveness of the selected
interventions. Drawing from existing literature, we incorporate into our scenario anal-
ysis the intervention’s implementation, durability and efficacy. Notably, LLINs exhibit
an efficacy rate of approximately 77% among individuals using it, decreasing malaria
prevalence by about 77%, and have a lifespan of three years (Wubishet et al. 2021;
Tan et al. 2016; Kilian et al. 2021; Musa et al. 2020). Based on this information, we
set b and c at 0.8 to mimic a high efficacy rate of LLINs. Note that b and c are the
constant coefficients of P in the human and vector transmission rate functions respec-
tively, modelled to capture the effect of intervention strategies on the transmission rate
functions. In the LLINs scenario, we assume a baseline daily rate of flux into P of
0.5 with its usage growing at a rate of 0.08/day/symptomatic case as stimulated by
the number of symptomatic cases (see LLINs column of Table 3). In the study, we
also examine how the extent of LLINs usage (and the duration of IRS coverage) can
influence symptomatic infections. Since the duration of LLINs exceeds the timeline
of this study (a year), we model the κ values of LLINs to majorly capture the extent of
LLINs usage. We assume a 90% usage to represent a high level of usage of bed nets
and 40% percent as low usage. This percentage difference was factored into the choice
of κ values so that the ratio of P for high usage to P for low usage is 9:4 (refer to
LLINs column of Table 3 (P = η

κ
)). IRS, on the other hand, demonstrates high vary-

ing efficacy depending on coverage levels, and a duration ranging from 5 to 8 months
contingent upon the specific chemical employed (Chitnis et al. 2010; Worrall et al.
2007; Sherrard-Smith et al. 2018; Dengela et al. 2018; Rehman et al. 2011; Fongnikin
et al. 2020). In the IRS scenario, we assume a high coverage spraying is done at the
start of the study that on average, decays in 5 months for the short duration case and
8 months for the long duration case. These durations were considered in the values
chosen for the parameter κ found in the IRS column of Table 3. The parameters b and
c we set at 0.85 to depict a high efficacy rate while η and ξ were set to 0 in line with
the assumption that IRS intervention will not be administered again for the period of
1 year considered. Conversely, we assume relatively lower efficiency and durability
for the localized individual interventions and compare the impact of the individual
interventions in the presence of high (ξ = 0.005) and low (ξ = 0.001) levels of
intervention growth rate stimulated by the number of symptomatic infectious cases,
see Individual Measures column of Table 3. However, we consider a higher usage of
these individual measures when infectious cases are on the rise, acknowledging the
adaptable nature of human behavior in response to changing disease dynamics (Castro
et al. 2009). Assuming a yearly recurrent implementation of these interventions, we
run simulations for 365 days to assess and compare the effects of these three strategies
against the baseline scenario, where no interventions are employed. In the baseline
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Fig. 5 Simulation results capturing the impact of IRS, LLINs, and individual preventive measures on
symptomatic infectious humans over a period of 365 days. a. Results comparing the impacts of individual
measures on symptomaticmalaria caseswith the baselinewhen no interventions are implemented.b.Results
comparing the impacts of IRS (long and short duration) with the baseline of no intervention measures on
symptomatic infectious cases. c. Results comparing the impacts of LLINs (high and low usage) with no
interventions on symptomatic infectious cases. d.–f. Graphical representation of the levels of interventions
considered in the simulation studies in a.–c. respectively (color figure online)

scenario, we assume that no intervention measures are active during the entire study
period, and we set all related parameters to zero (see No Interventions column of
Table 3). In Fig. 5, we present a summary of the results of this study and provide the
intervention parameter values utilised in the simulation study in Table 3.
Fig. 5 captures the impact of IRS, LLINs and individual measures on symptomatic
infectious humans. In Figs. 5a. and 5d. we observe that individual preventive mea-
sures that exhibit a relatively low impact amongst the three scenarios, can reduce
symptomatic infections during the period of heightened disease activity. We observe
a greater reduction in symptomatic infectious cases during this period with a high-
risk aversion rate (ξ) level than with a low rate. Moreover, in an extended timeframe,
beyond 365 days, we observe a declining trend in cases when using these individual
measures, which falls below the baseline scenario. In Figs. 5b. and 5e., our observa-
tions indicate that implementation of IRS leads to a significant reduction in malaria
infection cases, within its designated effective duration. After IRS efficacywanes there
is an upsurge in the number of infectious cases. Specifically, within the 365 day period
the 5-month IRS scenario has a peak prevalance lower than the peak of the baseline
scenario, while in the 8-month IRS scenario has an even lower peak. In Figs. 5c. and
5f., high usage of LLINs has greater impact on symptomatic infectious cases. Con-
versely, the scenario involving low LLINs usage initially demonstrates a decline in
the first 50 days. However, as the number of cases reduces, the utilization of bed nets
decreases further, leading to a resurgence in cases approaching the baseline scenario,
as observed in Figs. 5c. and f.
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Taking into account all the interventions considered in the scenario study, our results
suggest that the extensive utilization of LLINs and IRS within their designated effec-
tive durations has the potential to curb endemicmalaria trends effectively.Nonetheless,
when LLINs, IRS, and other highly effective interventions are unavailable, our mod-
elling reveals that implementing individual preventivemeasures is better than adopting
no interventions in the long run.

5 Discussion

In this paper, an extension of the SE I R − SE I host-vector model is employed to
study the impact of malaria intervention programs. Our work is targeted towards
understanding the current trends of malaria cases in response to malaria interventions
as well as assessing the interventions necessary for malaria control and elimination.
The extendedmodel is analysed to formulate the basic reproduction number, consistent
with previous studies (Yang et al. 2017; Yang and Ferreira 2000; Mojeeb et al. 2017;
Chitnis 2005; Olaniyi et al. 2020; Obabiyi and Olaniyi 2019). In our assessment of
the basic reproduction number of the model, we identified two transmission pathways
that can assist decision-making in the prevention of malaria outbreaks, which we
termed as K1 and K2 (Equation (2)). K1 represents transmissions from individuals
in the symptomatic infectious human class, IH , whereas K2 considers transmissions
from self-recovered individuals in the asymptomatic infectious human class, AH . It
is worth noting that both pathways, K1 and K2 do not consider re-infections in the
infectious classes. Thus K1 transmissions can be reduced by employing vector control
strategies, intermittent preventive treatments of malaria in infants, pregnant people,
and children, as well as the RTS,S/AS01 (RTS,S) vaccine recommended by the WHO
for the prevention of P. falciparum malaria in children. K2 transmissions on the other
hand, can be reduced with strategies like mass screening and treatment (MSAT), focal
screening and treatment (FSAT), and mass drug administration (MDA) that typically
focuses on asymptomatic infections aswell as through educative campaigns promoting
the clinical treatment of malaria cases with strategies like mass fever treatment (MFT)
to reduce the number of symptomatic infections that go untreated (Nguyen 2016; Kim
et al. 2021; Casares et al. 2010; WHO 2021).
A sensitivity analysis conducted on the model demonstrates that several parameters
such as themosquito biting rate (δ), infection success rates (ψH ,ψM ) and decay rate of
intervention programs (κ) are directly proportional toRc whereas parameters like the
treatment rate of infected persons (τ ), interventions recruitment rate (η), and mosquito
death rate (μM ) are inversely proportional toRc. These results are consistent with the
findings of existing literature (Mojeeb et al. 2017; Chitnis 2005; Shretta et al. 2020).
Our study on the impact of variations in preventive intervention strategies shows that
reducing funds for malaria interventions in response to a decline in the number of
malaria cases may result in the resurgence of malaria. These results reflect the current
rising trends of malaria cases after the gradual decline in malaria cases from 2017-
2019, as funding for malaria intervention programs was reduced in order to support
the control of COVID-19 outbreaks (WHO 2022; Hogan et al. 2020; Roberts 2021).
Our modeling results highlight the critical importance of maintaining and, when fea-
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sible, increasing funding for malaria intervention strategies rather than decreasing it.
We found that sustained investment in intervention programs is essential for preserv-
ing malaria elimination status. Therefore, regions that have successfully eliminated
malaria must prioritize long-term maintenance of malaria strategies, including detect-
ing and treating new infections among migrants, to prevent the re-emergence of cases
(Jun et al. 2021; Shretta et al. 2016). Our intervention scenario study demonstrates that
implementing IRS with an extended effective duration and promoting the widespread
use of LLINs are promising strategies for reducing symptomatic malaria infections.
These findings are consistent with previous literature and emphasize the need for con-
tinued support for such interventions (Sherrard-Smith et al. 2018; Pryce et al. 2022;
Pryce and Lengeler 2018; Enahoro et al. 2020; Accrombessi et al. 2024; Tiedje et al.
2017; Kateera et al. 2015; Okiring et al. 2022; Raghavendra et al. 2017; Gogue et al.
2020; Tapera 2019; Obembe et al. 2014). Additionally, the study illuminates the poten-
tial value of individual preventive measures, albeit with a relatively low impact. These
measures can complement other interventions or serve as viable options in settings
where more potent interventions are unavailable.
Moving forward, an expansion of this work is recommended to calibrate the model to
data from a malaria endemic setting while inferring parameters for the interventions
used in the setting. Factors such as age structure, seasonality, and migration, which
are major determinants of malaria trends in endemic regions, were not factored in the
model and could be considered in future extensions. Additionally, the interventions
class of the model did not explicitly consider the dynamics of strategies such as RTS,S
vaccine roll-out, the use of larvicides, MSAT, and the development of better healthcare
systems in endemic areas. A future study based on data from a endemic location where
various interventions are introduced and stopped over the course of an epidemic, could
be helpful to calibrate intervention-specific parameters. While these limitations may
affect the application of results presented in the study, the study provides an overview
of the transmission characteristics of a typical endemic area and thus can be adapted to
a specific setting by including additional characteristics of that setting into the model.
Several concerns remain unresolved in relation to the behavioural trends of the Plas-
modium parasites such as their heterogeneity and drug resistance which hinder the
elimination of malaria. However, the results of this study suggest that the continu-
ous maintenance of established intervention strategies in endemic areas can provide
progress towards malaria elimination.While variations in the implementation of inter-
ventions may occur due to economic constraints, it is crucial to foster a culture of
maintenance for malaria elimination and potential eradication. Our findings indicate
that achieving malaria elimination is associated with a high level of utilization and
consistent funding of interventions. The work presented in this paper can potentially
contribute to developing effective strategies for malaria control and elimination. By
identifying key transmission pathways and emphasizing the importance of interven-
tion maintenance, our findings can guide decision-makers and stakeholders in their
efforts to combat malaria and improve public health.
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AModel Analysis and Simulation Results

A.1 Basic Reproduction Jumber Using the Next GenerationMethod

We start by finding the new infection matrix:

f =

⎡

⎢⎢⎢⎢⎢⎢
⎣

βH (P)SH1 IM
βH (P)SH2 IM

0
0

βM (P)SM (IH + χ AH )

0

⎤

⎥⎥⎥⎥⎥⎥
⎦

⇒ F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂ f1
∂EH1

∂ f1
∂EH2

∂ f1
∂ IH

∂ f1
∂AH

∂ f1
∂EM

∂ f1
∂ IM

∂ f2
∂EH1

∂ f2
∂EH2

∂ f2
∂ IH

∂ f2
∂AH

∂ f2
∂EM

∂ f2
∂ IM

∂ f3
∂EH1

∂ f3
∂EH2

∂ f3
∂ IH

∂ f3
∂AH

∂ f3
∂EM

∂ f3
∂ IM

∂ f4
∂EH1

∂ f3
∂EH2

∂ f4
∂ IH

∂ f4
∂AH

∂ f4
∂EM

∂ f4
∂ IM

∂ f5
∂EH1

∂ f5
∂EH2

∂ f5
∂ IH

∂ f5
∂AH

∂ f5
∂EM

∂ f5
∂ IM

∂ f6
∂EH1

∂ f6
∂EH2

∂ f6
∂ IH

∂ f6
∂AH

∂ f6
∂EM

∂ f6
∂ IM

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

which gives

F =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 βH (P)SH1
0 0 0 0 0 βH (P)SH2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 βM (P)SM χβM (P)SM 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

And the transition matrix:

v =

⎡

⎢⎢⎢⎢⎢⎢
⎣

(μH + θI )EH1

(μH + θA)EH2

−θI EH1 + (τ + ν + μH + γ )IH
−γ IH − θAEH2 + (μM + σ2)AH

(μM + ω)EM

−ωEM + μM IM

⎤

⎥⎥⎥⎥⎥⎥
⎦

⇒ V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂v1
∂EH1

∂v1
∂EH2

∂v1
∂ IH

∂v1
∂AH

∂v1
∂EM

∂v1
∂ IM

∂v2
∂EH1

∂v2
∂EH2

∂v2
∂ IH

∂v2
∂AH

∂v2
∂EM

∂v2
∂ IM

∂v3
∂EH1

∂v3
∂EH2

∂v3
∂ IH

∂v3
∂AH

∂v3
∂EM

∂v3
∂ IM

∂v4
∂EH1

∂v4
∂EH2

∂v4
∂ IH

∂v4
∂AH

∂v4
∂EM

∂v4
∂ IM

∂v5
∂EH1

∂v5
∂EH2

∂v5
∂ IH

∂v5
∂AH

∂v5
∂EM

∂v5
∂ IM

∂v6
∂EH1

∂v6
∂EH2

∂v6
∂ IH

∂v6
∂AH

∂v6
∂EM

∂v6
∂ IM

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

which gives

V =

⎡

⎢⎢⎢⎢⎢⎢
⎣

(μH + θI ) 0 0 0 0 0
0 (μH + θA) 0 0 0 0

−θI 0 (τ + ν + μH + γ ) 0 0 0
0 −θA −γ (μH + σ2) 0 0
0 0 0 0 (μM + ω) 0
0 0 0 0 −ω μM

⎤

⎥⎥⎥⎥⎥⎥
⎦

.
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We computeRc by finding the spectral radius, ρ of thematrix product ofFV−1 where

FV−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 βH (P)SH1ω
μM (μM+ω)

βH (P)SH1
μM

0 0 0 0 βH (P)SH2ω
μM (μM+ω)

βH (P)SH2
μM

0 0 0 0
0 0 0 0 0 0
m χβM (P)SM θA

(μH+θA)(μH+σ2)
n χβM (P)SM

(μH+σ2)
0 0

0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

and

m = βM (P)SMθI (μH + σ2) + χβH (P)SMθIγ

(τ + ν + μH + γ )(μH + σ2)(μH + θI )
,

n = βM (P)SM (μH + σ2) + χβH (P)SMγ

(τ + ν + μH + γ )(μH + σ2)
.

We consider the model at the disease-free equilibrium (DFE), Xo = (SH1o , SH2o ,

EH1o , EH2o , IHo , AHo , SMo , EMo , IMo , Po) =
(

�H
μH

, 0, 0, 0, 0, 0, �M
μM

, 0, 0, η
κ

)
.

Note that for the DFE, Xo, SH2o = 0 since SH2 represents individuals with partial
immunity derived from an earlier infection. We therefore arrive at:

Rc = ρ(FV−1) = √
K1 + K2, (9)

where K1 and K2 are defined as;

K1 = βH (
η
κ
)�H

μH
βM (

η
κ
)�M

μM
θIω

μM (μM + ω)(μH + θI )(τ + ν + μH + γ )
, (10)

K2 = χβM (
η
κ
)�M

μM
βH (

η
κ
)�H

μH
θIγω

μM (μM + ω)(μH + θI )(τ + ν + μH + γ )(μH + σ2)
. (11)

A.2 Example Simulation Results of theModel

We provide numerical simulations of the model framework utilizing parameter esti-
mates from previous literature (Trampuz et al. 2003; Wu and Hu 2021; Woldegerima
et al. 2021; Center 2020) presented in Table 1 to generate graphical representations
of the model dynamics towards the disease-free (DFE) and endemic equilibria (EE).
In exploring the model system at the two equilibria, the basic reproduction number,
Rc was set at Rc < 1 and Rc> 1 to depict the DFE and EE behavioural trends. We
present the trends of the system in both the host and vector populations.
From our example simulation in Fig. 6a, showing the disease-free equilibrium, it is
noticed that the second class of susceptible individuals, SH2, approaches zero like the
diseased classes of the human population asRc< 1. This behaviour is contrary to the
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Fig. 6 Example model simulation results, showing human and mosquito population dynamics. a. Example
simulation result of the model at Rc= 0.35. b. Simulation result of the model at Rc= 2.26. The base-
line values given in Table 1 are employed as parameter values for the Rc< 1 simulation result, while
setting δ = 3, ψH = 0.5 and ψM = 0.5 for the Rc> 1 simulation. The initial conditions was set at
SH1(0) = 3000, SH2(0) = 2000, EH1(0) = 150, EH2(0) = 50, IH (0) = 10, AH (0) = 10, SM (0) =
1000, EM (0) = 50, IM (0) = 10, P(0) = 1

SH1 class that approaches the total human population size �H
μH

. When one reconciles
the behaviour with the description of the sub-classes, the disparity in the behaviours of
the two susceptible sub-classes becomes clear; uninfected, non-immune humansmake
up the first susceptible class, whereas individuals in the second class are uninfected
but partially immune, having acquired this immunity from a prior infection. Thus by
inferring from the model diagram, Fig. 1, as IH decreases towards the DFE, SH2 will
decrease as well.
In Fig. 6b, whereRc> 1, we observe a rise in the diseased classes of the model which
shows that an increase in the number of infectedmosquitoes has a corresponding effect
on the number of infected humans and vice versa. In the susceptible curves however,
there is sharp decline resulting from the dynamics in the infected compartment, and
later an increase as individuals recover and as the model solution progresses towards
equilibrium. The ripple effect of infection is supported here by the graphical results
of the diseased and susceptible classes in Fig. 6b where an increase or decrease in the
diseased classes of mosquitoes has a corresponding effect on the diseased classes of
humans and vice versa.

A.3 Impact of Interventions During an Endemic Situation

We proceed to investigate the impact of the presence of interventions on an endemic
situation. To do this, we run numerical simulations employing the baseline values
given in Table 1 setting δ = 2, ψH = 0.5 and ψM = 0.5. The endemic equilib-
rium was observed from time (years) 87 with approximately 272 infectious cases
in the absence of interventions with R0 = 9.05, and 21 infectious cases in the
presence of interventions with Rc = 2.08 (Fig. 7a. and b.), and 0 cases in the pres-
ence of interventions with Rc = 0.74 (Fig. 7c. and d.). Note that the dynamics in
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Fig. 7 Example simulation results exploring the impact of interventions on the human infectious population
during an endemic situation. a. Simulation result of the infectious human population capturing the impact
of the absence and presence of interventions from years 41 – 219 with R0 = 9.05 and Rc = 2.08. b.
A zoomed-in view of Fig. 7a. considering the dynamics in the infectious human population from time
(years) 109 – 125 marked in the gray area and bounded by the gray dashed lines. c. A simulation result
capturing the trajectory of the infectious human population during an endemic situation and demonstrating
the impact of interventions in reducing the effective reproduction number (Rc) below the threshold of 1,
withR0 = 9.05 andRc = 0.74. d.A zoomed-in view of Fig. 7c. considering the dynamics in the infectious
human population from time (years) 109 – 125 marked in the gray area and bounded by the gray dashed
lines. The red solid line represents results in the infectious population in the absence of intervention and
corresponds toR0 = 9.05, whereas the black solid line represents dynamics in the presence of interventions
introduced at the start of the simulation at time 0 corresponding toRc = 2.08 in a. and b., andRc = 0.74
in c. and d.. The blue solid line considers the dynamics after the introduction of interventions during an
endemic situation with Rc = 2.08 in a. and b., and Rc = 0.74 in c. and d.. These results were generated
assuming initial conditions at SH1(0) = 3000, SH2(0) = 2000, EH1(0) = 150, EH2(0) = 50, IH (0) =
10, AH (0) = 10, SM (0) = 1000, EM (0) = 50, IM (0) = 10, P(0) = 0 (Color figure online)

the absence of interventions were obtained by setting the intervention class to zero,
as done in the baseline scenario of Sect. 4.3, see Table 3. At year 109, we intro-
duced two classes of interventions to the endemic situation without interventions.
The first class of interventions were assumed to reduce the number of cases during
the endemic situation while still maintaining the effective reproduction number (Rc)
above the critical threshold of 1, (Fig. 7a.and b.). These interventions were introduced

123



Mathematical Assessment of the Role of Intervention... Page 23 of 27 91

in the model by setting the intervention-related parameters to the baseline values
provided in Table 1,(η = 0.3, κ = 0.04, ξ = 0.0025, b = 0.5, c = 0.4). The sec-
ond class of interventions were aimed to bring the Rc threshold below 1 by setting
η = 0.5, κ = 0.02, ξ = 0.0025, b = 0.5 and c = 0.4 (see Fig. 7c. and d.). In Fig. 7
we present a summary of our results from this study.
From Fig. 7a. and b., it is evident that the implementation of interventions during a
period of heightened disease (endemic) prevalence led to a decrease in the number
of infectious human cases, from approximately 272 cases to 21 cases at equilibrium.
In Fig. 7 b. we provide a focused view of the dynamics of the infectious human class
during years 109 – 125 and observe a decline in infectious cases in the first 6 years
after the introduction of interventions. Infectious cases reduce from about 272 in year
109 to I < ε = 0.3 in year 113. This reduced transmission is sustained for about 16
years, that is until year 129. Following year 129, there is a resurgence in infectious
cases, accompanied by fluctuations, as the dynamics (depicted by the blue solid line,
Fig. 7a. and b.) converge towards the endemic situation (depicted by the black solid
line, Fig. 7a. and b.) with interventions implemented from the outset.

In Fig. 7 c. and d., we explore the potential of interventions in lowering the Rc

threshold below 1. Our analysis reveals that the introduction of these interventions
leads to amore rapid decline in the number of infectious cases, reaching I < ε = 0.3by
year 111. This level of infectious cases ismaintained as the system reaches equilibrium,
withRc = 0.74. The potential for malaria elimination during the period where I < ε

could have been explored and predicted using a stochastic model. However, due to
the limitation of employing a continuous model, we are unable to predict malaria
elimination accurately during this period.
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