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Plasma proteomics identify biomarkers
predicting Parkinson’s disease up to 7 years
before symptom onset
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Sebastian Schade 5, Paolo Garagnani 6, Maria-Giulia Bacalini7,
Chiara Pirazzini6, Kailash Bhatia 8, Sebastian Schreglmann 8, Mary Xylaki 3,
Sandrina Weber3, Marielle Ernst9, Maria-Lucia Muntean5,
Friederike Sixel-Döring5,10, Claudio Franceschi 6, Ivan Doykov1,
Justyna Śpiewak1, Héloїse Vinette 1,11, Claudia Trenkwalder5,12,
Wendy E. Heywood 1, Kevin Mills2,14 & Brit Mollenhauer 3,5,14

Parkinson’s disease is increasingly prevalent. It progresses from the pre-motor
stage (characterised by non-motor symptoms like REM sleep behaviour dis-
order), to the disabling motor stage. We need objective biomarkers for early/
pre-motor disease stages to be able to intervene and slow the underlying
neurodegenerative process. Here, we validate a targeted multiplexed mass
spectrometry assay for blood samples from recently diagnosed motor Par-
kinson’s patients (n = 99), pre-motor individuals with isolated REM sleep
behaviour disorder (two cohorts: n = 18 and n = 54 longitudinally), and healthy
controls (n = 36). Our machine-learning model accurately identifies all Par-
kinson patients and classifies 79% of the pre-motor individuals up to 7 years
before motor onset by analysing the expression of eight proteins—Granulin
precursor, Mannan-binding-lectin-serine-peptidase-2, Endoplasmatic-reticu-
lum-chaperone-BiP, Prostaglaindin-H2-D-isomaerase, Interceullular-adhesion-
molecule-1, Complement C3, Dickkopf-WNT-signalling pathway-inhibitor-3,
and Plasma-protease-C1-inhibitor. Many of these biomarkers correlate with
symptomseverity. This specific bloodpanel indicatesmolecular events in early
stages and could help identify at-risk participants for clinical trials aimed at
slowing/preventing motor Parkinson’s disease.

Parkinson’s disease (PD) is a complex and increasingly prevalent neu-
rodegenerative disease of the central nervous system (CNS). It is
clinically characterised by progressive motor and non-motor symp-
toms that are caused by α-synuclein aggregation predominantly in
dopaminergic cells, which leads to Lewy body (LB) formation1. The
failure of neuroprotective strategies in preventing disease progression
is due, in part, to the clinical heterogeneity of the disease—it has sev-
eral phenotypes—and to the lack of objective biomarker readouts2. To
facilitate the approval of neuroprotective strategies, governing

agencies and pharmaceutical companies need regulatory pathways
that use objectively measurable markers—potential therapeutical tar-
gets as well as state and rate biomarkers—directly associated with PD
pathophysiology and clinical phenotypes3.

The recently emergedα-synuclein seed amplification assays (SAA)
can identify α-synuclein pathology in vivo and support stratification
purposes but still rely on cerebrospinal fluid (CSF) obtained through
relatively invasive lumbar punctures4. Therefore, this test remains
specialised and not readily suitable for large-scale clinical use. As
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peripheral fluid biomarkers are less invasive and easier to obtain, they
could be used in repeated and long-term monitoring, which is neces-
sary for population-based screenings for upcoming neuroprotective
trials. While the only emerged serum biomarker in the last years,
axonalmarker neurofilament light chain (NfL), increases longitudinally
and correlates with motor and cognitive PD progression5, it is non-
specific to the disease process.

Growing data support evidence of PD pathology in the peripheral
system, which increases the likelihood of finding a source of matrices
for less invasive biomarkers.Weknowα-synuclein aggregation induces
neurodegeneration, which is propagated throughout the CNS. Evi-
dence indicates that additional inflammatory events are an early and
potentially initial step in a pathophysiological cascade leading to
downstream α-synuclein aggregation that activates the immune
system6. Inflammatory risk factors in circulating blood (i.e. C-reactive-
protein and Interleukin-6 and α-synuclein-specific T-cells) are asso-
ciated with motor deterioration and cognitive decline in PD7,8. These
inflammatory blood markers can even be identified in plasma/serum
samples of individuals with isolated REM sleep behaviour disorder
(iRBD), the early stage of a neuronal synuclein disease (NSD), and the
most specific predictor for PD and dementia with Lewy bodies (DLB)6.
NSD was recently proposed as a biologically defined term, for a
spectrum of clinical syndromes, including iRBD, PD and DLB, that
follow an integrated clinical staging system of progressing neuronalα-
synuclein pathology (NSD-ISS)9.

In this study, we used mass spectrometry-based proteomic phe-
notyping to identify a panel of blood biomarkers in early PD. In the
initial discovery stage, we analysed samples from a well-characterised
cohort of de novo PDpatients and healthy controls (HC) who hadbeen
subjected to rigorous collection protocols10. Using unbiased state-of-
the-art mass spectrometry, we identified putatively involved proteins,
suggesting an early inflammatory profile in plasma. We thereafter
moved on to the validation phase by creating a high-throughput and
targeted proteomic assay that was applied to samples from an inde-
pendent replication cohort, consisting of de novo PD, HC and iRBD
patients. Finally, after refining the targeted proteomic panel to include
a multiplex of only the biomarkers which were reliably measured, an
independent analysis was performed on a larger and independent
cohort of longitudinal, high-risk subjects who had been confirmed as
iRBD by state-of-the-art video-recorded polysomnography (vPSG),
including follow-up sampling of up to 7 years.

In summary, using a panel of eight blood biomarkers identified in
a machine-learning approach, we were able to differentiate between
PD and HC with a specificity of 100%, and to identify 79% of the iRBD
subjects, up to 7 years before the development of either DLB ormotor
PD (NSD stage 3). Our identified panel of biomarkers significantly
advancesNSD researchbyproviding potential screening anddetection
markers for use in the earliest stages of NSD for subject identification/
stratification for the upcoming prevention trials.

Results
Proteomic discovery phase 0
We performed a bottom-up proteomics analysis of plasma, which
had been depleted of the major blood proteins, using two-
dimensional in-line liquid chromatography fractionation into ten
fractions and label-free mass spectrometric analysis by QTOF MSE.
The discovery cohort consisted of ten randomly selected drug-naïve
patients with PD and ten matched HC from the de novo Parkinson’s
disease (DeNoPa10) cohort (details can be found in Supplementary
Table 1). This analysis identified 1238 proteins when restricting
identification to originate from at least one peptide per protein and
at least two fragments per peptide. After excluding proteins with less
than two unique peptides or with an identification score below a set
threshold (see method section below), 895 distinct proteins
remained. Of these proteins, 47 were differentially expressed

between the de novo PD and control groups on a nominal sig-
nificance level of 95%. Pathway analysis suggested enrichment in
several inflammatory pathways. Workflow and Results are shown in
Fig. 1, and 2 Supplementary Figs. 1, 2.

Selection of proteins for the targeted proteomic assay
We next developed a validatory, high-throughput and multiplexed,
mass spectrometric targeted proteomic assay based on the potential
biomarkers identified in the discovery phase. Additional proteins were
also included in the assay, several of which had been identified in
previous discovery studies of PD, Alzheimer’s disease (AD), and
ageing11. In addition, we also included several known pro- and anti-
inflammatory proteins identified in the literature12–15, which had been
previously developed into an in-house targeted proteomic neuroin-
flammatory panel. Using this approach, we created a targeted pro-
teomic panel, including biomarkers from current scientific
developments and preliminary findings from our own work16,17. This
targeted proteomic and multiplexed assay included 121 proteins and
aimed to validate biomarkers and probe the pathways identified as
being perturbed in the discovery phase. Details can be found in Sup-
plementary Table 2 and Fig. 3.

Demographics-targeted proteomic validation phase (phase I)
For the targeted proteomics analysis, we used plasma samples,
independent from the proteomic discovery step, from 99 indivi-
duals recently diagnosed with de novo PD (48 men, 50%, mean age
67 years) and 36 healthy controls (HC; 20 men, 57%, mean age 64
years). This was themain cohort, to which we added further samples
for validation that consisted of a heterogeneous group of 41
patients with other neurological diseases (OND) (29men, 71%, mean
age 70 years) and 18 patients with vPSG-confirmed iRBD (10 men,
56%, mean age 67 years). Further details can be found in Table 1
and Fig. 3.

The identification of biomarkers that were significantly and
differentially expressed biomarkers between patients with de
novo Parkinson’s disease and healthy controls- Targeted pro-
teomic validation phase (phase I)
Our targeted proteomic assay was developed for 121 proteins, 32 of
which we consistently and reliably detected in plasma. Of these 32
markers, 23 were confirmed as being significantly and differentially
expressed between PD and HC. We identified six differentially
expressed proteins in the comparison between iRBD patients and HC
and between OND and HC (Fig. 3). Both the de novo PD and iRBD
groups demonstrated an upregulated expression of the serine pro-
tease inhibitors SERPINA3, SERPINF2 and SERPING1, and of the central
complement protein C3. Granulin precursor protein was shown to be
downregulated in all three patient groups (PD, iRBD and OND) com-
pared to HC. The OND and PD groups had a shared and upregulated
expression of the proteins PTGDS, CST3, VCAM1 and PLD3. Detailed
information about the diagnoses of the OND group can be found in
Table 1, and detailed information about the proteins can be found in
Supplementary Table 2. Figure 4 shows the significantly different
proteins as Box-scatter plots.

The biological significance of the differentially expressed pro-
teins- Targeted proteomic validation phase (phase I)
The involvement of the differentially expressed proteins and their
impact on biological processes were evaluated using pathway analysis
(Ingenuity Pathway Analysis [IPA], Qiagen). The significantly differen-
tially expressedproteins between PDandHCwere used as input, with a
fold-change set as the expression observation. We considered path-
ways as significant if they had anenrichmentp value <0.05.At least two
of the input proteins were included. Three major pathway clusters
were identified and consisted of (i) the expression of serine protease
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inhibitors or serpins and complement and coagulation components,
(ii) endoplasmic reticulum (ER) stress/heat shock-related proteins and
(iii) the expression of VCAM1, SELE and PPP3CB. The highest enrich-
ment scores were identified in the pathways acute phase response
signalling (p = 7.8 E−10), coagulation system (p = 7.4 E−6), complement
system (p = 8.1 E−6), LXR/RXR activation (p = 9.1 E−6), FXR/RXR activa-
tion (p = 9.8 E−6) and glucocorticoid receptor signalling (p = 2.0 E−5).
These are all pathways involved in inflammatory responses. We also
identified pathways related to the unfolded protein response
(p = 0.004) and neuroinflammation (p = 0.04), although with lower
enrichment scores. For details, see Supplementary Fig. 1.

Inflammation-related pathways (including both the complement
system and the acute phase response) demonstrated the highest sig-
nificance levels, followed by pathways regulating protein folding, ER
stress, and heat shock proteins. A network representation of proteins
and pathways showed clusters consisting of inflammation/coagula-
tion/lipid metabolism (FXR/RXR and LXR/RXR), heat shock proteins/
protein misfolding, and more heterogenous pathway clusters related
to Wnt-signalling and extracellular matrix proteins. Figure 5 illustrates
the potential detrimental and protective mechanisms suggested to
be taking place based on the protein expressions observed in this
study, leading to oligomerisation and accumulation of α-synuclein in
neuronal Lewy body inclusions and, finally, dopaminergic neuronal
cell loss.

Multivariate analysis shows differences between the proteomes
of Parkinson’s disease and controls- Targeted proteomic vali-
dation phase (phase I)
Principal component analysis (PCA) demonstrated that the HC and PD
groups formed twoclusters separate fromeachother over thefirst and
second principal components (PC), attributed with 23.5% and 13.9% of
the model’s total variance, respectively. The iRBD group was situated
in the middle of HC and PD, and the OND group varied considerably
with no evident clustering, as expected due to the heterogeneity of
diseases. The corresponding loadings of PC1 and PC2 demonstrated
that those with PD correlated with lower levels of PPP3CB, DKK3, SELE
and GRN, and higher levels of most of the other proteins. The loadings
plot had a high level of covariation in the expression of the PPP3CB,
DKK3 and SELE proteins, which were all downregulated in PD. These
proteins correlated negatively with the expression of SERPINs, com-
plement C3 and HPX, which all showed a high degree of covariation,
and were upregulated in the PD group. Data are displayed in Supple-
mentary Fig. 2.

The use ofmultiplexed protein panels of protein biomarkers for
the prediction of de novo Parkinson’s disease- Targeted pro-
teomic validation phase (phase I)
We next applied machine learning to construct a discriminant OPLS-
DAmodel using the PD andHC samples from the validation phase. The

Fig. 1 | All-over workflow of the study. The study included three phases. Phase 0
consisted of discovery proteomics by untargeted mass spectrometry to identify
putative biomarkers, followed by phase I inwhich targets from the discovery phase
were transferred to a targeted, mass spectrometric MRMmethod and applied to a

new and larger cohort of samples, and finally phase II in which the targeted MRM
method was refined and a larger number of samples were analysed to evaluate the
clinical feasibility of the targeted protein panel.
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samples clustered into two distinct and well-separated classes, and
evaluation of the model showed that it was highly significant
(p = 2.3E−27 permutations p = <0.001). The proteins with the greatest
influence on the class separations were GRN, DKK3, C3, SERPINA3,
HPX, SERPINF2, CAPN2, SERPING1 and SELE. We predicted the iRBD
samples in the model, which resulted in 13 subjects classified as PD
(72%) andfive notbelonging to either group. Noneof the iRBDsamples
were classified as controls. We additionally predicted the OND sam-
ples, out of which nine were classified as HC, 12 as PD and 19 were not
classified as belonging to either group. The 12 samples predicted as PD
did not demonstrate enrichment according to the OND groups. The
randomdistribution of theOND samples between PD andHC indicates
that the heterogenous group of OND individuals does not share a
distinct protein expression with either the HC or PD groups. The iRBD
samples that were classified as PD, and not as HC, strongly suggest a
shared proteomic profile between iRBD and the protein expression
observed in the newly diagnosed PD patients.

We subsequently explored if the observed protein expressions
could be used to build a regression model capable of predicting
whether individuals belonged to the PD or HC groups. We identified
a panel of proteins that discriminated between PD and HC with
100% accuracy and then constructed a linear support vector clas-
sification model and applied recursive feature elimination to pin-
point the most discriminating variables. The data were divided into
two parts: one consisting of 70% for model training and one con-
taining 30% for testing. The proportion of PD and control samples
wasmaintained in each part. The number of features included in the
model was determined by feature ranking with cross-validated
recursive feature elimination in the training dataset. The feature
selection resulted in a model with eight predictors: GRN, MASP2,
HSPA5, PTGDS, ICAM1, C3, DKK3 and SERPING1. The training data

were predicted in the model and resulted in all samples being
classified in the correct class. We further constructed receiver
operating characteristic (ROC) and precision-recall (PR) curves to
illustrate the ability of each protein to distinguish between PD and
HC and compared this with the ability of the combined multiplexed
protein panel. The combined panel achieved an AUC of 1.0 on both
ROC and PR curves. The AUC of the individual predictors ranged
from 0.53 to 0.92 in the ROC curve, and from 0.79 to 0.96 in the PR
curve (Fig. 6). We further evaluated the whole dataset by perform-
ing repeated cross-validation with six splits of the data and 40
repetitions. The resulting classification metrics (Supplementary
Fig. 3) demonstrated average and standard deviation for precision,
recall, F1 score, and balanced accuracy score of 0.87 ± 0.09,
0.87 ± 0.08, 0.86 ± 0.09 and 0.82 ± 0.12, respectively, thereby indi-
cating a highly robust classification model. Testing the model’s
specificity for PD, we predicted the heterogenous group of OND,
resulting in 26 of the 42 samples being classified as PD-like. Pre-
diction of the prodromal iRBD group resulted in 17 of 18 samples
being classified as PD-like. We compared the prediction of the OND
and iRBD samples between the OPLS-DA and SVM models, finding
that most of the samples were classified in the same group in both
models (out of the samples with a classification in the OPLS-DA
model: 82% in OND and 100% in iRBD). The proportion of iRBD
samples classified as PD in our models (72% in the OPLS-DA model
and 94% in the SVMmodel) is in line with clinical evidence based on
longitudinal cohort studies, reporting that over 80% of iRBD sub-
jects will develop an advanced NSD with motor impairment and/or
cognitive decline18. We evaluated the influence of age and sex on the
proteins included in the support vector model and found that nei-
ther influenced the model’s classification ability (see Supplemen-
tary Methods 2 for details).

Fig. 2 | Discovery phase in plasma samples of de novo PD (n = 10) and healthy
controls (n = 10) representedby aVolcanoplot showing theproteinexpression
differences between PD and controls (phase 0). The circle radii in the Volcano
plot represent the identification certainty, where large radii represent proteins
identified by at least two unique peptides and an identification score >15, smaller
radii are given for proteins identified by two or more unique peptides or a con-
fidencescore>15.Thehorizontal axis shows log2 of the average fold-changeand the

vertical axis shows −log10 of the p values. The significantly different proteins are
annotated by gene name and coloured in pink, while the non-significant proteins
are coloured in grey. GO annotations for the significant proteins are shown, the
dashed line represents p =0.05. Disease and function annotations from IPA are
shown, divided into annotationswith a positive or negative activation score. Source
data are provided as a Source Data file.
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Table 1 | Demographics of the samples analysed in the targeted assay (phase I)

De novo PD Healthy controls Other neurological dis-
orders (OND)

REM sleep behaviour dis-
order (iRBD)

pvalue (compared tohealthy
controls)

De
novo PD

iRBD OND

Number of subjects 99 36 41 18

Sex (M/F) 49/50 20/15 29/12 10/8

M/F% 49/51 57/43 71/29 56/44

Age (mean ± SD) 67.1 ± 10.6 63.7 ± 6.5 70 ± 8.9 67.3 ± 8.3 8.3E-2 8.9E-2 8.4E-4

Range 41−87 52−77 49−82 51−77

UPDRS I (mean ± SD) 1.8 ± 1.8 0.5 ± 0.9 N/A 2.9 ± 2.5 6.1E-5 4.6E-6 N/A

Range 0−8 0−4 N/A 0−9

UPDRS II (mean ± SD) 8.7 ± 6.6 0.03 ±0.2 N/A 3.1 ± 3.7 1.9E-12 1.4E-5 N/A

Range 0−29 0 − 1 N/A 0−11

UPDRS III (mean ± SD) 24.8 ± 13.9 0.3 ± 0.7 21.2 ± 13.3 2.6 ± 2.7 7.1E-19 1.6E-5 1.7E-13

Range 5−69 0−3 3−51 0−10

UPDRS total score
(mean ± SD)

35.2 ± 18.3 0.7 ± 1.3 N/A 8.5 ± 7.2 1.4E-20 8.9E-8 N/A

Range 6−86 0−6 N/A 1−26

MMSE total score
(mean ± SD)

28 ± 2.2 28.9 ± 1.4 26.6 ± 2.6 28.5 ± 1.8 2.8E-2 3.6E-1 2.5E-5

Range 25−30 26–30 19−30 25−30

OND consists of subjects with vascular parkinsonism (n = 10), essential tremor (n = 7), progressive supranuclear palsy; PSP (n = 7), multiple system atrophy; MSA (n = 3), corticobasal syndrome; CBS
(n = 2), dementia with Lewy bodies; DLB (n = 2), drug-induced tremor (n = 2), dystonic tremor (n = 2), restless legs syndrome (n = 1), hemifacial spasm (n = 1), motoneuron disease (n = 1), amyotrophic
shoulder neuralgia (n = 1), Alzheimer’s disease (n = 1). The significance between controls and the disease groups was tested by applying Student’s two-tailed t-test.
MMSEmini-mental state examination, UPDRS unified Parkinson’s disease rating scale.

Fig. 3 | Workflow and overview of results of the targeted proteomic analysis.
Workflowandoverviewof the results of the targetedproteomicanalysis ofdenovo
Parkinson’s disease (PD) subjects, healthy controls (HC), and the validation cohorts
of other neurological disorders (OND) and isolated REM sleep behaviour disorder
(iRBD). A A targeted mass spectrometric proteomic assay was developed and
optimised. The assaywas then applied to plasma samples fromcohorts comprising
denovoPD (n = 99) andHC(n = 36), and validated inpatientswithOND (n = 41) and
prodromal subjects with iRBD (n = 18). The protein expression difference between

the groups was compared using Mann–Whitney’s two-sided U-test with
Benjamini–Hochberg FDR adjustment at 5%. The lollipop charts show the log10 p
values, signed according to fold-changes. Pink icons represent a protein upregu-
lated in an affected group and grey represents a protein upregulated in controls.
B Significantly differentially expressed proteins in the comparison between de
novo PD and healthy controls. C Significantly differentially expressed proteins
between iRBD, OND and HC. Source data are provided as a Source Data file.
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Development of a rapid and refined LC-MS/MS method and
evaluation of an independent and longitudinal iRBD cohort
(Independent replication cohort-phase II)
To evaluate the results from the initial prediction models focusing on
at-risk subjects, we developed and refined our targeted and multi-
plexed proteomic test to quantitate only those proteins that were
readily and reliably detectable from the initial targeted proteomic
assay (n = 32). Next, we analysed an additional set of 146 longitudinal
samples from an independent cohort of 54 individuals with iRBD. This
cohort was available from continuing recruitment at the same centre
and consisted of longitudinally followed iRBD subjects. Deep pheno-
typing revealed 100% (54/54) had RBD on PSG, 88.9% (48/54) had
hyposmia as identified with the Sniffin’ Stick Identification Test, and
91.7 % (22/24) had neuronal α-synuclein positivity as shown by α-
synucleinSeedAmplificationAssay (SAA) in cerebrospinalfluid (CSF)19.
Longitudinal follow-up was available for up to 10 years, during which
16 subjects (20%) phenoconverted to either PD (n = 11) or dementia
with Lewy bodies (DLB; n = 5). Since only serum samples were available
from the independent replication cohort (further details can be found
in Supplementary Table 3), we investigated how the proteins in our
assay correlated between plasma, serum, and CSF and found good
correlations between plasma and serum, but poor correlations
between these blood matrices and CSF. The limited correlations
between blood and CSF proteins correspond to those of other studies
comparing the protein expression between plasma/serum and CSF20,21

and underscore that our test does not necessarily reflect a prodromal
and PD-specific proteomic signature of the protein expression in the
CSF in proximity to the brain, but rather shows an earlier change in the
blood protein expression between healthy status and very early PD

patients (Details from this comparison can be found in Supplementary
Methods 1 and Supplementary Fig. 4).

We applied all available longitudinal iRBD samples (n = 146) from
phase II to the two machine-learning models (OPLS-DA and support
vector machine) constructed in phase I (PD vs. HC). The OPLS-DA
model, based on all 32 detected proteins, identified 70% of the iRBD
samples as PD, while the SVM model, which was based on a panel of
eight proteins, identified 79% of the samples as PD. As mentioned
above, at the time of analysis, 16 of the 54 subjects in our longitudinal
iRBD validation cohort had developed PD/DLB. The earliest correct
classificationwas 7.3 years prior to phenoconversionand the latestwas
0.9 years prior to diagnosis (average 3.5 ± 2.4 years). Detailed infor-
mation can be found in Fig. 7 and Supplementary Methods 3.

The correlation between differentially expressed protein bio-
markers and patients’ clinical data in the targeted proteomic
validation phase (phase I)
We next evaluated the relationship between proteins and clinical data
by correlating the protein expression in PD andHC (from phase I) with
clinical scores (Mini-Mental State Examination [MMSE], Hoehn & Yahr
stage [H&Y] andUPDRS [Unified Parkinson’s Disease Rating Scale; I–III,
and total score]). We found negative correlations for GRN, DKK3,
PPP3CB, and SELE with H&Y and UPDRS parts II, III, and total score,
possibly indicating a connection between a more severe clinical
(especially motor) impairment and lower expression of markers in the
Wnt-signalling pathways (DKK3 and PPP3CB). Higher Cystatin C
plasma levels correlated with higher numbers in UPDRS part III (motor
performance) and UPDRS total score. The same was found for PTGDS
plasma levels, which were also negatively correlated with MMSE. The

Fig. 4 | Significantly different proteins between controls and the different
disease groups de novo PD (DNP), iRBD and OND (phase II). The data are dis-
played as Box and Whisker plots overlaid with scatter plots of the individual
measurements. The whiskers show the minimum and maximum, and the boxes
show the 25th percentile, the median and the 75th percentile. The protein

expression difference between the groups was compared using Mann–Whitney’s
two-sided U-test with Benjamini–Hochberg multiple testing correction (FDR
adjustment at 5%). ns not significant, *p <0.05, **p <0.01, ***p <0.001 and
****p <0.0001. The proteins are represented by gene names. Source data are pro-
vided as a Source Data file.
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Fig. 6 | Linear support vector classification of PD and control subjects.
(phase I). The model was trained on 70% of the samples to establish the most
discriminating features. Applying cross-validated recursive feature elimination, the
toppredictorswere determined as a granulin precursor,mannan-binding lectin-serine
peptidase 2, endoplasmic reticulum chaperone-BiP, prostaglandin-H2 D-isomerase,
intercellular adhesionmolecule-1, complementC3, dickkopf-3 andplasmaproteaseC1

inhibitor. The remaining 30% of samples were predicted in the model and resulted in
100% prediction accuracy. Receiver operating characteristics (ROC) and precision-
recall (PR) curves of the individual and combined proteins in the test set demon-
strated that the individual proteins achieved ROC area under the curve (AUC) values
0.53–0.92 and PR values 0.79–0.96, while the combined predictors reached an area
under the curve= 1.0. Source data are provided as a Source Data file.

Fig. 5 | Suggested involvement of the differentially expressed proteins in
neuronal synuclein disease. Oligomerisation and accumulation of α-synuclein in
Lewy body inclusions is a key process in the pathophysiology of neuronal synuclein
disease, i.e. Parkinson’s disease and dementia with Lewy bodies from aggregation
and accumulation, the pathological pathway includes different steps finally leading

to the loss of dopaminergic neurons. Protective and detrimental mechanisms
influence these processes, based on the differently expressed protein profiles,
assessed by targeted mass spectrometry in our study. Detailed information about
the proteins can be found in Supplementary Table 2.
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central complement cascade protein, C3, negatively correlated with
MMSE, and positively correlated with H&Y, UPDRS part III, and total
score. The UPR-regulating protein BiP (HSPA5) correlated negatively
with MMSE, and positively with H&Y and UPDRS parts II, III, and total
score. The ERAD-associated proteins, HSPAIL and adiponectin, were
positively correlated with H&Y, and UPDRS parts II, III, and total score.
SERPINs (SERPINA3, SERPINF2 and SERPING1) and hemopexin (HPX)
correlated negatively with MMSE and positively with H&Y and UPDRS
parts II, III, and total score. In general, the MMSE score was inversely
correlated with H&Y stage and UPDRS scores. For detailed informa-
tion, see Fig. 8 and Table 2.

Comparison of clinical outcomes and measurements in the
longitudinal iRBD cohort-Independent replication cohort-
phase II
The longitudinal expression in the iRBD samples was evaluated using
linear mixed-effects models. Conditional growth models with random
slopes and random intercepts between the individuals were con-
structed. After adjusting the p values for multiple testing by applying
the Benjamini–Hochberg (BH) procedure with alpha = 0.05, we found
that Butyrylcholinesterase (BCHE)was significantly decreased over the
timepoints in the iRBD individuals (p =0.01). We next focused only on
the iRBD samples with at least two timepoints and for which PD had
consistently been predicted in the SVMmodel (n = 90). This produced
comparable results to the initial model with BCHE significantly related
with time since baseline (p = 0.01), but also TUBA4A was nominally
significantly increased (p =0.04) although not passing the BH FDR
threshold. The modelling also demonstrated that the clinical mea-
surements H&Y (p =0.02), UPDRS I–III (p =0.02), and UPDRS I and III
(p = 0.03 and 0.03, respectively), were significantly related to the time
since baseline in the iRBD group post multiple testing correction. PD
non-motor symptoms, as measured on the PD NMS sum score, were
strongly correlated with longitudinal motor progression (p = 5E−8).
Similarly, the questionnaire for quality of life PDQ-39’s mean values
also correlated with longitudinal motor progression (p =0.005). From
available routine blood values, cholesterol was associated with long-
itudinal timepoints (p =0.02). Details can be found in Supplementary
Table 4. Correlating the clinical measurements with the targeted pro-
teomic data, we applied Spearman’s correlation and found that cho-
lesterol was positively correlated with six of the identified proteins
(Supplementary Table 5), including HSPA8, APOE andMASP2 (p = 5E−9,

0.0003 and 0.003, respectively). Also significantly correlated, but to a
lesser degree and not passing the BH FDR threshold, were the PD NMS
sum which correlated negatively with TUBA4A (p unadjusted =0.01)
and the PDQ-39 mean values, which correlated negatively with CST3
and PTGDS (p unadjusted =0.03 and 0.05, respectively).

Discussion
PD has emerged as the world’s fastest-growing neurodegenerative
disorder and currently affects close to 10 million people worldwide.
Consequently, there is an urgent need for disease-modifying and
prevention strategies22,23. The development of such strategies is ham-
pered by two limitations: there aremajor gaps in our understanding of
the earliest events in themolecular pathophysiology of PD, andwe lack
reliable and objective biomarkers and tests in easily accessible bio-
fluids. We, therefore, need biomarkers that can identify PD earlier,
preferably a significant time before an individual develops significant
neuronal loss and disabling motor and/or cognitive disease. Such
biomarkers would advance population-based screenings to identify
individuals at risk and who could be included in upcoming prevention
trials.

In the last years, CSF SAA emerged as the most specific indicator
for NSD, in prodromal stages like iRBD, with an impressively high
sensitivity and specificity of up to 74 and 93%, respectively, across
various cohorts9,24. Despite the many questions surrounding SAA that
need to be answered, including the ultimate understanding of its
functionality, it is a truemilestone for advancing prevention trials. It is,
however, hampered by having only been shown to be robust in CSF
and by the slow development and high variability of SAA in peripheral
blood25, as well as by the lack of quantification capabilities. An easier
and more accessible biofluid test would enable screening large
population-based cohorts for at-risk status to develop an NSD.
Therefore, the identification of additional biomarkers is needed, as is
further knowledge of the biomarkers and pathways of the underlying
pathophysiology (e.g. inflammation) during the earliest stage of NSD.

Other emerging multiplex technologies are increasingly used to
identify individual proteomic biomarkers. However, these techniques
are not true proteomic or ‘eyes open’methods, as they rely on selected
large panels of specific antibodies/and other (e.g. aptamer)-based
assay technologies. These techniques, although useful, have not pro-
vided consistent results3,26. Proteomics using mass spectrometry
measures all expressed proteins in an unbiased fashion as opposed to

Fig. 7 | Prediction results from of a newly acquired set of prodromal isolated
REMsleepbehaviourdisorder (iRBD) samples (phase II). 146 new serum samples
from individuals diagnosedwith iRBD, several with longitudinal follow-up samples,
were predicted in the OPLS-DA model. 70% of the samples were predicted as Par-
kinson’s disease (PD), and 23 of 40 individuals had all their longitudinal samples

predicted as PD. In the more refined support vector machine (SVM) model, 79% of
the 146 new sampleswere predicted as PD and 27of 40 individuals consistently had
all their longitudinal samples predicted as PD. Source data are provided as a Source
Data file.
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those selectively included in a panel that also includes variability due
to cross-reactivity. Therefore, proteomic screening using mass
spectrometry-based techniques is much more likely to identify path-
ways or biomarkers and provides more meaningful insights into the
disease mechanisms involved in PD. We found a discrepancy between
the detected markers during the discovery and the targeted phases.
This is a known phenomenon in biomarker translation27 that is also
reflected in the low number of biomarkers having received FDA
approval28. We addressed this by using previously reported successful
improvement strategies in proteomic approaches, namely by refining
our panel, reducing the number of markers, and increasing the sample
size29. Furthermore, the validation of potential biomarkers was per-
formed on a second and different type of mass spectrometer (triple
quadrupole), which has the advantage of being available in all large
hospitals.

Targeted MS has been previously applied in PD, including by the
current authors, but the biological fluid used in themajority of studies
is CSF30 and not peripheral fluids such as blood. Here we demonstrate
that even with a very low required volume of plasma/serum (10 µl)
targeted proteomic is feasible.

The targeted proteomic assay presented here was developed
from proteins identified in an unbiased discovery study, from our
previous research, and from the literature. It included several inflam-
matory markers, Wnt-signalling members, and proteins indicative of
protein misfolding. When analysing PD, OND, iRBD and HC in the
targeted proteomic validation phase, we identified and confirmed 23
distinct and differentially expressed proteins between PD and HC. Our
analysis moreover demonstrated that iRBD possesses a significantly
different protein profile compared to HC, consisting of decreased
levels of GRN and MASP2 and increased levels of the complement
factor C3 and SERPINs (SERPINA3, SERPINF2 and SERPING1), thus
indicating early involvement of inflammatory pathways in the initial
pathophysiological steps of PD. Comparing these results to previous
findings by our and other groups8,31 highlights the link between these
proteins and the pathways of complement activation, coagulation
cascades, and Wnt-signalling.

By applyingmachine-learningmodels, we classified and separated
de novo PD or control samples with 100% accuracy based on the
expression of eight proteins (GRN, MASP2, HSPA5, PTGDS, ICAM1, C3,
DKK3 and SERPING1).

Fig. 8 | Correlation and clustering heatmap of proteins measured by targeted
mass spectrometry and clinical scores in controls and Parkinson’s disease
subjects. (phase I). The correlation was performed using Spearman’s procedure,
and the clusteringmethodwas set to average. The clusteringmetric was Euclidean.
The heatmap is coloured by correlation coefficient where red represents positive

and blue negative correlations. The proteins are represented by gene names.
Detailed informationabout theprotein correlations canbe found inSupplementary
Table 3. De novo Parkinson’s disease (n = 99) and healthy controls (n = 36). MMSE
mini-mental state examination, UPDRS unified Parkinson’s disease rating Scale.
Source data are provided as a Source Data file.
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With an independent validation, we added (a) a larger sample set
and (b) longitudinal samples from the most interesting subgroup with
54 iRBD subjects and a total of 146 serum samples. We were able to
validate our previous panel with a high prediction rate (79%) of these
individuals as seen in PD in the targeted approach. Interestingly, the
biomarker panel itself did not correlate with longitudinal expression
but remained robust after the initial classification of iRBD. So far, 16 of
the 54 iRBD subjects converted to PD/DLB (stage 3 NSD). Out of these
samples, the SVM model predicted ten individuals with all their time-
points classified as PD, and of the 11 iRBD subjects who converted to
PD/DLB, eight were identified as PD by the proteome analysis. Our
panel, therefore, identified a PD-specific change in blood up to 7 years
before the development of the stage 3 NSD.

The main shortcoming with many previously explored PD bio-
markers isweakor no correlationwith clinical progressiondata. So far,
outcome measures in clinical trials are primarily based on motor
progression, often by a clinical rating scale such as the UPDRS and/or
wearable technologies. More objective biomarkers correlating with or
reflecting the progression of the pathophysiology and clinical symp-
toms would be of the utmost importance. We, therefore, calculated
correlations with clinical parameters and identified an associationwith
multiple markers, including DKK3, PPP3CB and C3, indicating down-
regulation of Wnt-signalling pathways. Increased activity of the

complement cascade correlated with higher scores in symptom
severity (UPDRS part III and total score) and lower scores in cognitive
performance (MMSE).

Protein (i.e.α-synuclein)misfolding is awell-known component of
PD pathology and is believed to be the key factor behind Lewy body
formation32. The transport of excessive amounts ofmisfolded proteins
or increased folding cycles can induce ER stress. A cellular defence
mechanism to alleviate ER stress is the unfolded protein response
(UPR) reducing ER protein influx and increasing protein folding
capacity33. The UPR is mainly activated by BiP-bound misfolded
proteins34. The higher expressed markers HSPA5 (UPR-regulating
protein BiP) and HSPA1L in our plasma samples of early PD indicate ER
stress as a significant factor in the disease process and has been pre-
viously linked to PD in bothmousemodels and brain tissue studies35,36.

As mentioned by other groups and confirmed in our results,
increasing evidence suggests inflammation is a specific feature in early
PD. Complement activation has been associated with the formation of
α-synuclein and Lewy bodies in PD and deposits of the complement
factors iC3b and C9 have been found in Lewy bodies37. C3 is a central
molecule in the complement cascade and was highly upregulated in
blood in both PD and both independent iRBD sample sets analysed in
this study. This upregulation in the earliest phase of motor PD (stage 3
NSD), and even in the prodromal phase (stage 2 NSD), clearly indicates

Table 2 | p values from the Spearman correlation of proteins measured by targeted mass spectrometry and clinical PD
assessment scores in PD subjects and healthy controls (phase I)

MMSE Hoehn-Yahr UPDRS I UPDRS II UPDRS III UPDRS total score

MMSE 4.0E-2 (−0.23) 3.0E-3 (−0.31) 5.3E-3 (−0.29)

Hoehn-Yahr 1.0E-13 (−0.61) 1.3E-42 (−0.88) 8.1E-19 (−0.69) 7.1E-26 (−0.77)

UPDRS I 5.2E-14 (−0.61) 2.7E-19 (−0.7) 8.1E-7 (−0.44) 7.6E-13 (−0.59)

UPDRS II 1.3E-42 (−0.88) 8.2E-19 (−0.7) 1.3E-15 (−0.64) 9.6E-27 (−0.78)

UPDRS III 1.6E-2 (−0.31) 5.4E-19 (−0.69) 1.1E-6 (−0.44) 9.6E-16 (−0.64) 2.0E-77 (−0.97)

UPDRS total score 2.1E-2 (−0.29) 1.1E-25 (−0.77) 1.0E-12 (−0.59) 9.6E-27 (−0.78) 2.0E-77 (−0.97)

A2M 1.2E-2 (−0.32) 8.1E-7 (−0.44) 6.7E-5 (−0.37)

ADIPOQ 6.8E-5 (−0.37) 2.4E-2 (−0.25) 9.4E-6 (−0.4) 2.0E-4 (−0.34) 5.5E-5 (−0.37)

C3 9.8E-3 (−0.35) 1.7E-3 (−0.3) 3.2E-3 (−0.28) 2.0E-4 (−0.34) 2.6E-4 (−0.34)

CST3 2.6E-3 (−0.28) 5.0E-3 (−0.26)

DKK3 5.3E-4 (−0.32) 3.8E-2 (−0.24) 3.2E-5 (−0.38) 2.8E-5 (−0.38) 1.5E-5 (−0.4)

FABP5 1.2E-2 (−0.32) 1.9E-2 (−0.22) 4.0E-2 (−0.19)

GRN 4.8E-7 (−0.45) 3.8E-7 (−0.45) 2.8E-8 (−0.49) 3.3E-8 (−0.48)

HPX 4.6E-2 (−0.25) 5.3E-4 (−0.32) 2.2E-4 (−0.34) 2.1E-4 (−0.34) 9.2E-5 (−0.36)

HSPA1L 4.5E-2 (−0.19) 4.6E-2 (−0.2) 2.3E-3 (−0.28) 2.7E-3 (−0.28)

HSPA5 3.0E-2 (−0.21) 4.6E-2 (−0.2) 1.2E-3 (−0.3) 2.2E-3 (−0.29)

ITIH2 3.2E-2 (−0.21)

MASP2 3.0E-2 (−0.21) 1.1E-2 (−0.25) 1.9E-2 (−0.22) 3.1E-2 (−0.2)

PGK1 5.6E-3 (−0.25) 1.0E-2 (−0.24)

PPP3CB 3.4E-4 (−0.34) 3.1E-6 (−0.42) 2.6E-3 (−0.28) 5.3E-4 (−0.32)

PRG4 3.1E-2 (−0.27)

PTGDS 3.2E-2 (−0.26) 4.0E-2 (−0.2) 2.6E-3 (−0.28) 8.3E-3 (−0.24)

SELE 1.3E-2 (−0.24) 4.7E-2 (−0.23) 1.3E-4 (−0.35) 1.4E-3 (−0.3) 5.1E-4 (−0.32)

SERPINA3 3.2E-2 (−0.26) 3.8E-4 (−0.33) 7.9E-4 (−0.31) 1.5E-4 (−0.35) 1.4E-4 (−0.35)

SERPINF2 3.1E-2 (−0.27) 3.4E-4 (−0.34) 3.8E-4 (−0.33) 1.2E-3 (−0.3) 1.1E-3 (−0.3)

SERPING1 7.5E-03 (−0.26) 4.6E-02 (−0.2) 2.0E-3 (−0.29) 4.6E-3 (−0.26)

SPP2 3.0E-2 (−0.21) 3.7E-2 (−0.19) 4.7E-2 (−0.19)

TUBA4A 4.6E-2 (−0.2) 1.7E-2 (−0.22) 1.6E-2 (−0.22)

VCAM1 8.0E-4 (−0.31) 3.0E-3 (−0.28)

The correlation significancewas determined by theStudent’s two-tailed t-test. Thep valueswere adjusted formultiple comparisons using the Benjamini–Hochbergprocedurewith alpha = 0.05. The
p values are followed by correlation coefficients in parenthesis.
MMSEmini-mental state examination, UPDRS unified Parkinson’s disease rating scale.
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inflammation as an early, if not the initial, event in PD neurodegen-
eration. Complement C3 levels correlated positively with indicators of
motor dysfunction (H&Y stage and UPDRS)—indicating a direct con-
nection between high plasma levels of inflammatory proteins and
motor symptoms—and negatively with cognitive decline, here with
the MMSE.

The protein Mannan-binding serine peptidase 2 (MASP2), an
initiator of the lectin part of the complement cascade, was significantly
downregulated in PD and iRBD. MASP1 and MASP2 proteins are
inhibited by plasma protease C1 inhibitor SERPING1 in the lectin
pathway, with SERPING1 modulating the complement cascade as it
belongs to the SERPIN family of acute phase proteins38. In experi-
mental PDmicemodels, increased SERPING1 levels are associatedwith
dopaminergic cell death39. Acting as a serine/cysteine proteinase
inhibitor, SERPING1 can increase serine levels, which could also affect
αSyn phosphorylation. This can play a crucial role in PD pathology, as
almost 90%ofαSyn in Lewybodies is phosphorylated on Serine12940,41.
We identified increased SERPING1 plasma levels in both PD and iRBD in
our analysis (compared to HC), thus contributing to conditions with
increased αSyn phosphorylation, consecutive aggregation, Lewy body
formation, and finally degeneration of dopaminergic neurons. Fur-
thermore, we observed a strong correlation of SERPING1 plasma levels
with UPDRS II, III and total score, as a direct measure of dopaminergic
cell loss39.

Alpha-2-antiplasmin (SERPINF2) was also significantly upregu-
lated in PD and iRBD. SERPINF2 is a major regulator of the clotting
pathway, acting as an inhibitor of plasmin, a serine protease formed
upon the proteolytic cleavage of its precursor, plasminogen, by tissue-
type plasminogen activator (t-PA) or by the urokinase-type plasmino-
gen activator (u-PA). Plasmin has been reported to cleave and degrade
extracellular and aggregated αSyn42. Recently, we showed that acti-
vation of the plasminogen/plasmin system is decreased in PD, indi-
cated by decreased plasma levels of uPA and its corresponding
receptor uPAR, while t-PA was associated with faster disease
progression8. The upregulation of SERPINF2 observed here is another
indicator of decreased plasmin activity. Alpha-1-antichymotrypsin
(SERPINA3), a third member of the SERPIN family, was also upregu-
lated in the PD subjects. In the CNS, the primary source of SERPINA3 is
astrocytes, where its expression is upregulated by various inflamma-
tory receptor complexes38.

Overall, independent upregulation of these three members of the
SERPIN (SERPING1, SERPINF2, SERPINA3) family is also indicative of
increased inflammatory activity, combined with less activation of the
plasmin system, and correlation with motor and non-motor symptom
severity. In addition, a strong downregulation of progranulin (GRN)
was detected, indicating a potential loss of neuroprotection and
increased susceptibility to neuroinflammation. GRN may act as a neu-
rotrophic factor, promoting neuronal survival and modulating lyso-
somal function. Loss-of-function mutations in the GRN gene are a
cause of frontotemporal dementia and familial DLB.GRN gene variants
are also known to increase the risk of developing Alzheimer’s disease
(AD) and PD43. The main characteristics of neurodegeneration related
to GRN are TDP43(-Transactive response DNA binding protein 43)
inclusions, but Lewy body pathology is also very common. Loss of
progranulin has further been linked to increased production of pro-
inflammatory species such as tumour necrosis factor (TNF) and IL-6 in
microglia15. A study inmice showed thatGrn-/-mice hadelevated levels
of complement proteins, including C3, even before the onset of
neurodegeneration44. Additionally, previous studies have found GRN
downregulated in serum samples of advanced PD compared to AD and
healthy individuals45.

As a possible compensatory reaction to the described increased
inflammatory markers, the levels of Prostaglandin-H2 D-isomerase
(PTGDS)/Prostaglandin-D2 synthase (PGDS2), better known as β-trace
protein, were upregulated. PDGDS is an important brain enzyme

producing prostaglandin D2 (PGD2), which has a neuroprotective and
anti-inflammatory function. The upregulation reported here could be a
reaction to the amount of neuronal cell loss, which is also seen in the
significant correlation with the clinicalmotor and cognitive scales (see
below). Furthermore, β-trace protein is amarker for CSF and is used to
identify the fluid in clinical routine diagnostics, thus helping detect
CSF leakage46. Increased plasma levels could be indicative of a dis-
rupted blood–brain barrier (BBB), often discussed in PD pathology47

and demonstrated in our cohorts.
Our study shows that the Wnt-related proteins DKK3 and PPP3CB

are strongly downregulated in de novo PD. DKK3 is an activator of the
canonical Wnt/β-catenin branch and PPP3CB is a component of the
non-canonical Wnt/Ca2+ signalling pathway. Wnts are secreted,
cysteine-rich glycoproteins that act as ligands to locally stimulate
receptor-mediated signal transduction of the Wnt-pathway48. Wnt-
signalling is crucial for the development and maintenance of dopa-
minergic neurons49, shows protective effects on midbrain dopami-
nergic neurons50, and seems to be involved in the maintenance of the
BBB48,51. Wnt-ligands and agonists trigger a “Wnt-On” stage, char-
acterised by neuronal plasticity and protection, while the opposite
“Wnt-Off” stage, potentially leading to neurodegeneration, triggered
by the phosphorylation activity of glycogen synthetase kinase-3β
(GSK-3beta)50,52. Wnt-inhibitors are separated into secreted Frizzled-
related proteins (sFRP) and Dickkopf proteins (DKK). DKK1, DKK2 and
DKK4act as antagonists,whileDKK3 is an agonist and activator53. Adult
neurogenesis is primarily governed by canonical Wnt/β-catenin
signaling54 and downregulation of Wnt-signalling promotes dysfunc-
tion and/or death of dopaminergic neurons. Restoration of dopami-
nergic neurons was shown in mice where β-catenin was activated
in situ52 and neural stem cells transplanted to the substantia nigra of
medically PD-induced mice induced re-expression of Wnt1 and repair
dopaminergic neurons55. DKK3 and PPP3CB were strongly down-
regulated in de novo PD, removing an important line of defence
against the detrimental loss of dopaminergic neurons. The down-
regulation of the Wnt-signalling pathways was further correlated with
higher motor scores (UDPRS and H&Y stages).

Wnt-signalling in PD is not only promising as a potential bio-
marker. In oncology, drugs can modify Wnt-pathways, which is of
interest to the PD field56. Some substances show no BBB-permeability.
As a disrupted BBB seems to be apparent in PD, these drugs may be
effective. Furthermore, these substances are also relevant for PD
treatment: research points towards a peripheral starting point of PD
and future therapies should be administered as early as possible57.
Thesepromising substances includeDKK- aswell asGSK inhibitors, but
to date, no drugs targeting the Wnt-signalling pathways have been
effectively tested in clinical trials, including in those with neurode-
generative diseases. Progress and clinical trials are urgently
needed here.

The transfer of multi-omics analysis to clinically meaningful
results that directly impact future drug trial planning and biomarker
validation, depends fundamentally on correlating these results and
altered pathway regulations with established clinical scores. The
markers we analysed in our targeted mass spectrometry panel did not
only show different expression patterns between HC, PD, and in both
of our independent iRBD sample sets, but most of the markers also
robustly correlated with important clinical scores (UPDRS and MMSE,
see Table 1). Cognitive decline correlated negatively with the SERPINs
and complement factor C3. The burden of motor and non-motor
symptoms and overall symptom severity rated by UPDRS and its
subscores correlatedpositivelywith the SERPINs,ComplementC3, and
negatively with DKK3, GRN, and SELE. So, increased inflammatory
activity and downregulation of Wnt-signalling seem to strongly affect
the clinical picture of PD subjects.

The iRBD subjects showed decreased levels of BCHE over time
compared to controls. BCHE has been reported as decreased in serum
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samples of PD with cognitive impairment58. Validation of this easily
assessable marker in serum is needed to evaluate its predictive
potential.

While we did not find significant differences when we compared
paired serum and plasma samples; the analysis of paired samples of
plasma/serum and CSF only correlated weakly with the marker con-
centrations in these peripheral and central compartments. This dis-
crepancy has been reported by several groups20,21. One reason is that
mass spectrometry-based proteome analysis is always biased towards
quantification and detection of the most abundant proteins in each
sample matrix, and the total protein concentrations in human plasma/
serum aremore than two orders of magnitude higher than that in CSF.
Further, the regulatory function of the blood–brain barrier seems to
play a different role for different proteins, as some, like c-reactive
protein, show a strong correlation between CSF and plasma, but most
of the proteins do not. CSF and blood proteome show complex
dynamics influenced bymultiple and still mostly unknown factors. The
protein shift in samples with a known BBB dysfunction (determined by
the CSF/serum albumin index or the CSF/plasma ratio) can not be
determined for individual proteins nor the dysfunction be localised by
mass spectrometry20.

Our model could not correctly predict phenoconversion in all
cases. The reasons for this can be varied: The proteome pattern
changes over time and the period between sampling and phencon-
version may play a role. The three PD phenoconverters that were not
predicted as PD neither differ clinically or demographically from the
phenoconverters, nor from the non-phenoconverters. iRBD diagnosis
in our study was confirmed by vPSG, supported by a high percentage
of additional measurements including hyposmia and CSF SAA posi-
tivity. Therefore, even those iRBD cases that do not show the PD-
proteome pattern still have a high-risk constellation of converting to
PD/DLB on three different levels (PSG, olfaction, and SAA). Continuing
further longitudinal follow-up of these subjects will elucidate our
understanding of when and potentially why conversion occurs/does
not occur. It is known that around 80% of iRBD subjects develop NSD,
i.e. PD/DLB, with a rate of 6%per year, as shown in amulticenter cohort
including ours59. To a lesser extent, iRBD subjects develop the intra-
cytoplasmic glial α-synuclein aggregation disorder Multiple Systems
Atrophy (MSA)59,60. Although RBD is common in MSA (summary pre-
valence of 73%61), none of our iRBD subjects have, as yet converted to
MSA. Recruiting and following large longitudinal at-risk cohorts is,
therefore, very important and future studies will not only identify
biomarkers for phenoconversion fromstage 1 or 2 to eventually stage 3
NSD or MSA, but also identify the many possible factors of resilience
(including genetics, etc.) of NON-conversion which will be as, if not
more important than identifying indicators for phenoconversion. Both
direction progression biomarkers from stage 1 and 2 cohorts will have
tremendous implications for future neuroprevention trials as pheno-
conversion itself is (due to the low annual rate) unlikely to be an out-
come measure.

A significant strength of our biomarker discovery to translation
pipeline is that it allows for the developed test to be easily validated
and translated to any clinical laboratory equipped with a tandem LC-
MS instrument. One advantage of using triple quadrupole platforms is
that additional andbetter biomarkers can easily be augmented into the
test described in this manuscript. Thus, any test could be refined and
optimised over time with very little modification to the assay as addi-
tional biomarkers are discovered. Clinical testing for neurological
disorders is limited to the use of a selected few well-characterised
individual markers and translating biomarkers to eventual clinical
application is notoriously challenging. The power of usingmultiplexed
biomarker technologies with machine learning enables biomarkers to
be evaluated in context with other markers of pathological events,
thereby creating a ‘disease profile’ as opposed to individual markers.
This approach opens the biomarker discovery field formany disorders

and increases the specificity and sensitivity of testing, as demonstrated
in this study. The combination of multiplexed analysis of biomarker
panels analysed on triple quadrupole platforms can advance bio-
marker translation to clinical application; this mass spectral technol-
ogy is already embedded in many clinical diagnostics labs for routine
small molecule analyses.

Our peripheral blood protein pattern for PD helps not only to
classify but also to predict the earliest stage of the disease. We find
differently expressed proteins in pre-motor iRBD and early motor
stages of the disease compared to HC. Multiple markers also corre-
lated with the progression of motor and non-motors symptoms. Thus,
our blood panel can also identify subjects at risk (stage 2) to develop
PD up to 7 years before advancing to motor stage 3. Next steps will be
the independent validation in other (and even earlier) non-motor
cohorts, e.g. in subjects with hyposmia also at-risk for PD 62 and in our
population-based Healthy Brain Ageing cohort in Kassel63. It would
further be interesting to evaluate the predictive potential of these
identifiedmarkerswith continuing clinical follow-up and togetherwith
other established PD progression markers like serum neurofilament
light chain5 and dopamine transporter imaging in a longitudinal
analysis.

Our work was predominantly focused on the similarities between
PD and iRBD. The authors are unaware of any study that has analysed
longitudinally collected samples and prodromal cohorts, including
iRBDand phenoconverters. Futureworkwould include (i) validation of
our findings in independent cohorts consisting of iRBD and other at-
risk subjects for the synuclein aggregation disorders in neurons (PD,
DLB) and oligodendrocytes (MSA), (ii) refinement of the panels of
biomarkers developed in this study including sensitivity and technical
performance, (iii) and using the pipeline described in this manuscript,
the identification and validation of additional biomarkers that could
distinguish between the different clinical syndromes with the ultimate
goal of identifying progression biomarkers as outcome measures for
prevention trials.

In summary, instead of single biomarkers, in a univariate
approach, we have created a pipeline using a targeted proteomic test
of a multiplexed panel of proteins, together with machine learning.
This powerful combination of multiple well-selected biomarkers with
state-of-the-art machine-learning bioinformatics, allowed us to use a
panel of eight biomarkers that coulddistinguishearlyPD fromHC. This
biomarker panel provided a distinct signature of protective and det-
rimental mechanisms, finally triggering oxidative stress and neuroin-
flammation, leading to α-synuclein aggregation and LB formation.
Moreover, this signature was already present in the prodromal non-
motor (stage 2 NSD), up to 7 years before the development of motor/
cognitive symptoms (stage 3), supporting the high specificity of iRBD
and its high conversion rate to PD/DLB18. Most importantly, this blood
panel can, in the future, upon further validation help identify subjects
at risk of developing PD/DLB and stratify them for upcoming preven-
tion trials.

Methods
Patient cohorts and sample collection and processing
Our research complies with all relevant ethical regulations. Institu-
tional review board statements were obtained from the University
Medical Centre in Goettingen, Germany, Approval No. 9/7/04 and 36/
7/02. The study was conducted according to the Declaration of Hel-
sinki, and all participants gave written informed consent. All plasma,
serum and CSF samples from subjects were selected from known
cohorts using identical sample processing protocols designed by the
Movement Disorder Center Paracelsus-Elena-Clinic.

Patients with de novo PD were diagnosed according to the UK
Brain Bank Criteria, without PD-specific medication. Diagnosis in all
subjects was supported by (1) a positive (i.e. >30% improvement of
UPDRS III after 250mgof levodopa) acute levodopa challenge testing64
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in all PD subjects, (2) hyposmia by smell identification test (Sniffin
Sticks65) in all PD subjects and (3) 1.5-tesla Magnetic Resonance Ima-
ging (MRI) without significant abnormalities or evidence for other
diseases in all but three subjects whowere excluded (due to significant
vascular lesions or evidence for hydrocephalus) from the analysis.
Participants not fulfilling the above criteria and meeting criteria for
other neurological disorders were named as other neurological dis-
orders (OND). OND consists of subjects with vascular parkinsonism
(n = 10), essential tremor (n = 7), progressive supranuclear palsy; PSP
(n = 7), multiple system atrophy; MSA (n = 3), corticobasal syndrome;
CBS (n = 2), DLB (n = 2), drug-induced tremor (n = 2), dystonic tremor
(n = 2), restless legs syndrome (n = 1), hemifacial spasm (n = 1), moto-
neuron disease (n = 1), amyotrophic shoulder neuralgia (n = 1), and
Alzheimer’s disease (n = 1). The initial exploratory cohort consisted of
ten PD subjects (8 men, mean age 67.1 ± 10.6) and ten healthy controls
(5 men, mean age 65,7, SD ± 8,6.). For details, see Supplementary
Table 3). The validation cohort included 99 PD subjects (49men,mean
age 66,1, SD ± 10,8), 36 healthy controls (20 men, mean age 63.7,
SD ± 6,5.) and the described (see above) 41 OND subjects (29 men,
mean age 70, SD ± 8.9. For details, see Supplementary Table 1. The
prodromal validation cohort consisted of 54 patients with iRBD (27
men, mean age 67.5, SD ± 8.1, for details, see Supplementary Table 4).
RBD was diagnosed with two nights of state-of-the-art vPSG. Samples
fromHCwere selected from the DeNoPa cohort10 andmatched for age
and sex with the PD patients, had to be between 40 and 85 years old,
without any active known/treated CNS condition, and with a negative
family history of idiopathic PD. Antipsychotic drugs were an exclusion
criterion. The provided data for sex are based on self-report.

The paired sample analysis of CSF, plasma and serumwas applied
in samples from subjects with OND 7 men, mean age 74 years, SD ± 7;
diagnosis: four Alzheimer’s disease, three vascular Parkinsonism, one
essential tremor, one multiple system atrophy one progressive
supranuclear palsy).

Clinical assessments included the UPDRS subscores (parts I–III),
the sum (UPDRS total score), and cognitive screening using the
MMSE10.

Plasma and serum samples for both cohorts were collected in the
morning under fasting conditions using Monovette tubes (Sarstedt,
Nümbrecht, Germany) for EDTA plasma and serum collection by
venipuncture. Tubes were centrifuged at 2500×g at room temperature
(20 °C) for 10 min and aliquoted and frozen within 30min of collec-
tion at −80 °C until analysis10,66. Single- use aliquots were used for all
analyses presented here. For further details, we refer to the following
publication67.

CSF was collected in polypropylene tubes (Sarstedt, Nümbrecht,
Germany) directly after the plasma collection by lumbar puncture in
the sitting position. Tubes were centrifuged at 2500×g at room tem-
perature (20 °C) for 10min and aliquoted and frozen within 30min
after collection at −80 °C until analysis. Before centrifugation, white
and red blood cell counts in CSF were determinedmanually10,66. CSF β-
amyloid 1–42, total tau protein (t-tau), phosphorylated tau protein (p-
tau181) and neurofilament light chains (NFL) concentrations were
measured by board-certified laboratory technicians, whowere blinded
to clinical data, using commercially available INNOTEST ELISA kits for
the tau and Aβ markers (Fujirebio Europe, Ghent, Belgium) and the
UmanDiagnostics NF-light® assay (UmanDiagnostics, Umeå, Sweden)
for NFL. Total protein and albumin levels were measured by nephe-
lometry (Dade Behring/Siemens Healthcare Diagnostics)66.

For theα-synuclein seeding aggregation assay (αSyn-SAA) theCSF
samples were blindly analyzed in triplicate (40μL/well) in a reaction
mixture (0.3mg/mL recombinant α-Syn (Amprion [California, USA];
catalogue number S2020), 100mM piperazine-N,N′-bis(2-ethane-
sulfonic acid) (PIPES) pH 6.50, 500mM sodium chloride, 10μM thio-
flavin T, and one bovine serum albumin (BSA)–blocked 2.4-mm silicon
nitride G3 bead (Tsubaki-Nakashima [Georgia, USA]). Beads were

blocked in 1% BSA 100mM PIPES pH 6.50 and washed with 100mM
PIPES pH6.50. The assaywas performed in 96-well plates (Costar [New
York, USA], catalogue number 3916) using a FLUOstar Omega fluo-
rometer (BMG [Ortenberg, Germany]). Plates were orbitally shaken
(800 rpm for 1min every 29min at 37 °C). Results from the triplicates
were considered input for a three-output probabilistic algorithm with
sample labelling as “positive,” “negative,” or “inconclusive”, based on
the parameters: Maximum fluorescence (Fmax), time to reach 50%
Fmax (T50), slope, and the coefficient of determination for the fitting
were calculated for each replicate using a sigmoidal equation available
in Mars data analysis software (BMG). The time to reach the 5000
relative fluorescence units (RFU) threshold (TTT) was calculatedwith a
user-defined equation in Mars19.

Discovery plasma proteomics (phase 0)
In the mass spectrometry-based proteomic discovery analysis of
plasma, we depleted the control and de novo PD samples from the
twelve most abundant plasma proteins using Pierce Top12 columns
(Thermo Fisher Scientific, Waltham, MA, USA) according to the man-
ufacturer’s instructions. The depleted samples were freeze-dried
before the addition of 20 µL of lysis buffer (100mM Tris pH 7.8, 6M
urea, 2M thiourea, and 2% ASB-14). The samples were shaken on an
orbital shaker for 60min at 1500 rpm. To break disulphide bonds,
45 µg DTE was added, and the samples were incubated for 60min. To
prevent disulphide bonds from reforming, 108 µg IAA was added, and
the samples were incubated for 45min covered in light. About 165 µL
MilliQ water was added to dilute the concentration of urea and 1 µg
trypsin gold (Promega,Mannheim, Germany) was added before 16 h of
incubation at +37 °C to digest the proteins into peptides. To purify the
peptides, solid phase extraction was performed using 100mg C18
cartridges (Biotage, Uppsala, Sweden). The cartridges were washed
with two 1mL aliquots of 60% ACN, and 0.1% TFA before equilibration
by two 1mL aliquots of 0.1% TFA. The concentration of TFA in the
samples was adjusted to 0.1%. The samples were loaded, and the flow-
throughwascaptured and re-applied. Saltswerewashed away from the
bound peptides by two 1mL aliquots of 0.1% TFA. The peptides were
eluted by two 250 µL aliquots of 60%ACN, and0.1% TFA. Solvents were
evaporated using a vacuum concentrator. The samples were re-
suspended in 50 µL 3% ACN, 0.1% FA prior to analysis. About 4 µL was
injected into a 2D-NanoAquity liquid chromatography system (Waters,
Manchester, UK). All samples were fractionated online into ten frac-
tions over 12 h. The mobile phase in the first chromatographic system
consisted of A1: 10mM ammonium hydroxide titrated to pH 9 and B1:
acetonitrile. The second chromatographic system’s mobile phase was
A2: 5% dimethylsulfoxide (DMSO) +0.1% formic acid, B2: acetonitrile
with 5% DMSO+0.1% formic acid. 2D-liquid chromatography fractio-
nation was performed by loading the sample onto a 300 µm× 50mm,
5 µmPeptide BEHC18 column (Waters). The peptideswere eluted from
the first column at a flow rate of 2 µL/min. The initial condition of the
gradient elution was 3% B, held over 0.5minutes before linearly
increasing the proportion of organic solvent B, fraction per fraction
over 0.5min. The conditions thereafter remained static for 4min
before returning to the initial conditions over 0.5min and equilibra-
tion prior to the next elution for 10min. The eluted peptides from the
first-dimensional column were loaded into a 180 µm×20mm, 5 µm
Symmetry C18 trap column (Waters) before entering the analytical
column, a 75 µm× 150mm, 1.7 µm Peptide BEH C18 (Waters). The col-
umn temperature was +45 °C. The gradient elution applied to the
analytical column started at 3% B and was linearly increased to 40% B
over 40min after which it was increased to 85% B over 2min and
washed for 2min before returning to initial conditions over 2min
followed by equilibration for 15min before the subsequent injection.
The eluted peptides were detected using a Synapt-G2-Si (Waters)
equipped with a nano-electrospray ion source. Data were acquired in
positive MSE mode from 0 to 60min within the m/z range 50−2000.
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The capillary voltage was set to 3 kV and the source temperature to
+100 °C. The desolvation gas consisted of nitrogen with a flow rate of
50 L/h, and the desolvation temperaturewas set to +200 °C. The purge
and desolvation gas consisted of nitrogen, operated at a flow rate of
600mL/h and 600 L/h, respectively. The gas in the IMS cell was
helium, with a flow rate of 90mL/h. The low energy acquisition was
performedbyapplying a constant collision energy of 4 Vwith a 1-s scan
time. High energy acquisition was performed by applying a collision
energy ramp, from 15 to 40V, and the scan time was 1 s. The lock mass
consisted of 500 fmol/µL [glu1]-fibrinopeptide B, continuously infused
at a flow rate of 0.3 µL/min and acquired every 30 s. The doubly
charged precursor ion, m/z 785.8426, was utilised formass correction.
After acquisition, data were imported to Progenesis QI for proteomics
(Waters), and the individual fractions were processed before all results
were merged into one experiment. The Ion Accounting workflow was
utilised, with UniProt Canonical Human Proteome as a database (build
2016). The digestion enzyme was set as trypsin. Carbamidomethyl on
cysteines was set as a fixed modification; deamidation of glutamine
and asparagine, and oxidation of tryptophan and pyrrolidone car-
boxylic acid on the N-terminus were set as variable modifications. The
identification tolerance was restricted to at least two fragments per
peptide, three fragments per protein, and one peptide per protein. A
FDR of 4% or less was accepted. The resulting identifications and
intensities were exported and variables with a confidence score less
than 15 and only one unique peptide were filtered out.

Targeted plasma proteomics (phase I)
The peptides included in the targeted assaywere selected from several
proteomic screening studies in which we analysed plasma, serum,
urine, and CSF in ageing, PD and AD. The analytical method is descri-
bed by ref. 17. Furthermore, due to the suggested involvement of
inflammation in neurodegenerative diseases, several known pro- and
anti-inflammatory proteins identified from the literaturewere included
in the multiplexed assay. The final panel consisted of 121 proteins
(Supplementary Table 2), out of which a number were measured with
two peptides, leading to a total of 167 unique peptides.When possible,
the peptides were chosen to have an amino acid sequence length
between 7 and 20. The amino acid sequences were confirmed to be
unique to the proteins by using the Basic Local Alignment Search Tool
(BLAST) provided by UniProt68. Synthetic peptide standards were
purchased fromGenScript (Amsterdam, Netherlands). To establish the
most optimal transitions, repeated injections of 1 pmol peptide stan-
dard onto a Waters Acquity ultra-performance liquid chromatography
(UPLC) system coupled to a Waters Xevo-TQ-S triple quadrupole MS
were performed. The most high-abundant precursor-to-product ion
transitions and their optimal collision energies were determined
manually or using Skyline69. Detection was performed in positive ESI
mode. The capillary voltage was set to 2.8 kV, the source temperature
to 150 °C, the desolvation temperature to 600 °C, and the conegas and
desolvation gas flows to 150 and 1000 L/h, respectively. The collision
gas consisted of nitrogen and was set to 0.15mL/min. The nebuliser
operated at 7 bar. Two transitions were chosen, one quantifier for
relative concentration determination and one qualifier for identifica-
tion, totally rendering 334 analyte transitions. Cone and collision
energies varied depending on the optimal settings for each peptide.
Each peptide wasmeasured with aminimum of 12 points per peak and
a dwell timeof 10ms ormore to ensure adequate data acquisition. The
optimised transitions were distributed over two multiple reaction
monitoring (MRM) methods, always keeping the quantifier and quali-
fier for each peptide in the same MRM segment. Plasma, serum, and
CSF samples were depleted from albumin and IgG using Pierce Top2
cartridges (Thermo Fisher Scientific, Waltham,MA, USA) following the
manufacturer’s instructions. About 150 µg whole protein yeast enolase
(ENO1) was added to the cartridges as an internal standard to account
for digestion efficiency. Digestion was performed as described above.

Solid phase extraction was carried out on BondElute 100mg C18 96-
well plates (Agilent, Santa Clara, USA) using the samemethodology as
in the preparation of untargeted proteomic analyses. Quality control
samples were prepared from acetone-precipitated plasma, digested
and solid phase extracted. Calibration curves ranging from 0 to
1 pmol/μL were constructed in blank and matrix by spiking increasing
amounts of peptides into blank and QC samples. Before analysis, the
samples were reconstituted in 30 µL 3% ACN, 0.1% FA containing
0.1μM heavy isotope labelled peptides from the following proteins
(annotated by gene name): ALDOA, C3, GSTO1, RSU1 and TSP1. About
5 µL were injected. The peptides were separated and detected on an
Acquity UPLC system coupled to a Xevo-TQ-S triple quadrupole mass
spectrometer (Waters, Manchester, UK). Chromatographic separation
of the peptides was performed using a 1 × 100mm, 1.7μm ACQUITY
UPLC Peptide CSH C18 column (Waters).

The mobile phase consisted of A: 0.1% formic acid and B: 0.1%
formic acid in acetonitrile pumped at a flow rate of 0.2mL/min. The
column temperature was set to +55 °C. The initial mobile phase com-
position was 3% B, which was kept static for 0.8min before initialising
the linear gradient, running for 7.6min to 25% B, eluting most of the
peptides. B was thereafter linearly increased to 80% over 0.5min and
held for 1.9min, eluting the most apolar peptides and washing the
column before returning to the initial conditions over 0.1minutes
followed by equilibration for 6min prior to the subsequent injection.
Two subsequent injections of each sample were performed, each
paired with one of the two MRM acquisition methods.

After acquisition, peak-picking and integration were performed
using TargetLynx (version 4.1, Waters) or an in-house application
('mrmIntegrate') written in Python (version 3.8). mrmIntegrate is
publicly available to download via the GitHub repository https://
github.com/jchallqvist/mrmIntegrate. The application takes text files
as input (.raw files are transformed into text files through the appli-
cation 'MSConvert' from ProteoWizard70 and applies a LOWESS filter
over five points of the chromatogram. The integration method to
produce areas under the curve is trapezoidal integration. The appli-
cation enables retention time alignment and simultaneous integration
of the same transition for all samples. Peptide peaks were identified by
the blank and matrix calibration curves. The integrated peak areas
were exported to Microsoft Excel, where first, the ratio between
quantifier and qualifier peak areas were evaluated to ensure that the
correct peaks had been integrated. The digestion efficiency was eval-
uated by monitoring the presence of baker’s yeast ENO1 in the sam-
ples, all samples without a signal were excluded from further analysis.
After the initial quality assessment, the quantifier area was divided by
the area of one of the internal standards, ALDOA or GSTO1 to yield a
ratio used for the determination of relative concentrations. Any com-
pound that also showed an intensity signal in the blank samples had
the blank signal subtracted from the analyte peak intensity. Pooled
plasma quality control samples were additionally evaluated to assess
the robustness of the run.

Refined LC-MS/MS method (phase II)
The rapid and refined targeted proteomics LC-MS/MS method con-
tained only peptides from the 31 proteins observed in the original
targeted proteomics method (121 proteins). We utilised a Waters
Acquity (UPLC) system coupled to a Waters Xevo-TQ-XS triple quad-
rupole operating in positive ESI mode. The column was an ACQUITY
Premier Peptide BEH C18, 300Å, 1.7 µm, maintained at 40 °C. The
mobile phase was A: 0.1% formic acid in water, and B: 0.1% formic acid
in acetonitrile. The gradient elution profile was initiated with 5% B and
held for 0.25min before linearly increasing to 40% B over 9.75min to
elute and separate the peptides. The column was washed for 1.6min
with 85% B before returning to the initial conditions and equilibrating
for 0.4min. The flow rate was 0.6mL/min. The settings of the mass
spectrometer and the peak-picking method were the same as
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described in the prior section. Baker’s yeast ENO1 was utilised to
monitor digestion efficiency and as an internal standard.

Statistical methods
Most of the statistical analyses were performed in Python (version
3.8.5). The untargeted and targeted datasets were inspected for out-
liers and instrumental drift using principal component analysis (PCA)
and orthogonal projection to latent variables (OPLS) in SIMCA, version
17 (Umetrics Sartorius Stedim, Umeå, Sweden). Outliers exceeding ten
median deviations from each variable’s median were excluded.
Instrumental drift was corrected by applying a non-parametric LOW-
ESS filter from statsmodels (version 0.14.0) using 0.5 fractions of the
data to estimate the LOWESS curve71. The data were evaluated for
normal distribution using D’Agostino and Pearson’s method from
SciPy (version 1.9.3)72. The non-normally distributed variables in the
untargeted data were transformed to normality by the Box-Cox pro-
cedure using the SciPy function 'boxcox'. Significance testing between
the independent groups of HC and PD/OND/iRBD individuals was
performed by Student’s two-tailed t-test for the untargeted proteomic
data and by Mann–Whitney’s non-parametric U-test (SciPy) for the
targeted data. Due to the limited sample numbers, no multiple testing
correction was performed in the untargeted data. In the targeted data,
the Benjamini–Hochberg multiple testing correction procedure
(statsmodels) was applied with an accepted false discovery rate of 5%.
Fold-changes were calculated by dividing the means of the affected
groups by the control group. Correlation analyses in the targeted data
were performed by Spearman’s correlation (SciPy) and the correlation
p values were adjusted variable-wise by the Benjamini–Hochberg
procedure (FDR = 5%).

We implemented a support vector classifiermodel to discriminate
between PD and HC and to predict new samples. The data were first
z-scored protein-wise and any 'not a number'-values were replaced by
the median. We used the 'LinearSVC' method from SciKit Learn and
applied cross-validated recursive feature elimination to determine the
number of variables to use in the model. The most discriminating
variables for distinguishing between controls and PD were thereafter
chosen by recursive feature elimination73. Feature selection andmodel
training were performed on 70% of the data, partitioned using the
SciKit Learn function “train_test_split”, and cross-validation was per-
formed using a stratified k-fold with five splits. The remaining 30% of
the data were predicted in the model. PR and ROC curves were con-
structed from the test data and consisted of each predictor and from
the combined predictors, the packages precision_recall_curve and
roc_curve from SciKit Learn were implemented. Linear mixed models
were performed using the R-to-Python bridge software pymer4 (ver-
sion 0.8.0), where individual was set as a random effect and the cor-
relations between the MS measured proteins and clinical variables
were evaluated for significance post Benjamini–Hochberg’s procedure
for multiple testing correction. Plots of the data were constructed
using the Seaborn and Matplotlib packages (versions 0.12.2 and 3.6.0,
respectively)74.

All multivariate analyses were performed in SIMCA, version 17.
OPLS and OPLS-discriminant analysis (OPLS-DA) models were eval-
uated for significance by ANOVA p values and by permutation tests
applying 1000 permutations, where p <0.05 and p <0.001 were
deemed significant, respectively.

Data were analysed for pathway enrichment using IPA (QIAGEN
Inc. Data were analysed for pathway enrichment using IPA (QIAGEN
Inc., https://digitalinsights.qiagen.com/products-overview/discovery-
insights-portfolio/analysis-and-visualization/qiagen-ipa/.). Input vari-
ables were set to proteins demonstrating a significant difference
between PD individuals and HC, with fold-change as expression
observation. The accepted output pathwayswere restricted to p <0.05
and at least two proteins were included in the pathways. Gene Ontol-
ogy (GO) annotations were extracted using DAVID Bioinformatics

Resources (2021 build)75,76. Networkswerebuilt inCytoscape77 (version
3.8.0) by applying the “Organic layout” from yFiles77.

Obtaining biological materials
Patient samples can be provided to other researchers for certain pro-
jects after contact with the corresponding authors and upon avail-
ability approval of the team in Kassel, Germany.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The chromatograms from the targeted mass spectrometric data gen-
erated in this study have been deposited in the ProteomeXchange
database under accession code PXD041419 and in the Panorama
repository (https://panoramaweb.org/DNP_Pub.url, https://doi.org/10.
6069/p9cy-h335). The integrated targeted mass spectrometric data
generated in this study are provided in the Supplementary Informa-
tion. Source data for all data presented in graphs within the figures are
provided in a sourcedatafile. Source data are providedwith this paper.

Code availability
Peak-picking and integrations were performed in TargetLynx (part of
the MassLynx suite, version 4.1), or using an in-house application
written in Python which can be found on GitHub (https://github.com/
jchallqvist/mrmIntegrate). The data visualisation and statistical ana-
lyses were performed in Python (version 3.8.5) using the packages
SciPy (version 1.9.3), statsmodels (version0.14.0), SciKit Learn (version
1.1.2), Seaborn (version 13.0) and Matplotlib (version 3.6.0). The code
used can be found on GitHub (https://github.com/jchallqvist/DNP_
Pub/blob/main/DNP_Code, https://doi.org/10.5281/zenodo.11130369).
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