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Wearable sensor technologies arebecoming increasingly relevant in health research, particularly in the
context of chronic disease management. They generate real-time health data that can be translated
intodigital biomarkers,which canprovide insights intoour health andwell-being.Scientificmethods to
collect, interpret, analyze, and translate health data from wearables to digital biomarkers vary, and
systematic approaches to guide these processes are currently lacking. This paper is based on an
observational, longitudinal cohort study, BarKA-MS, which collected wearable sensor data on the
physical rehabilitation of people living with multiple sclerosis (MS). Based on our experience with
BarKA-MS, we provide and discuss ten lessons we learned in relation to digital biomarker
development across key study phases. We then summarize these lessons into a guiding framework
(DACIA) that aims to informs the use of wearable sensor data for digital biomarker development and
chronic disease management for future research and teaching.

The increasing popularity of ubiquitous mobile technologies, such as
wearables, has the potential to transform chronic disease management1–3.
The broad adoption of wearables, particularly commercial activity trackers,
is driven by their affordability, user-friendliness, and overall high accuracy4.
The rising amount of research on chronic diseases that involves wearables
highlights this trend5–7. Wearables are equipped with sensors that generate
health-related data in real-time, creating opportunities for personalized
care8. The clinical relevance of this data ultimately depends on their trans-
lation into digital biomarkers9,10. This process generally requires the defi-
nition of normal ranges, which is either informed by external benchmarks
(e.g., 10,000 daily steps) or intra-individual norms (e.g., individual average
step counts during the week) that can be further validated with patient-
reported data (e.g., surveys)11–13. However, most wearables have fixed
measurement capabilities (e.g., physical activity and heart rate), which
currently limit their translation to digital biomarkers.

For thepotential of digital biomarkers to be achieved, aligningwearable
capabilities and study design with recommended practices for meaningful
clinicalmeasures is essential14. The Food andDrugAgency (FDA) guidance
document on the use of digital health technologies for remote data acqui-
sition in clinical investigations proposes a multi-step approach towards
digital biomarker development, in which the validation and verification

steps take central roles15. Along similar lines, the framework by the Digital
Medicine Society on best practices for evaluating monitoring technologies
for use in clinical trials emphasizes verification, analytical validation, and
clinical validation (V3) as central steps16,17. While these documents provide
useful high-level guidance, they offer limited support for the development of
digital, wearable-based biomarkers. Furthermore, in current guidance there
is an absence of study design and conduct elements that involve all stake-
holders in an iterative approach and focus on the implementation of digital
biomarkers in practice. Consequently, researchers and health professionals
often rely on limited guidance for the use ofwearable data in clinical practice
and chronic disease management18,19.

Digital biomarkers may significantly improve the management of
complex chronic conditions, such asmultiple sclerosis (MS).MS is a serious
neurodegenerative health condition that is characterized by both extensive
and highly variable physical and mental symptoms. More than 15,000
people are currently living withMS in Switzerland alone20. Optimizing and
tailoring treatment options has been limited by a still unexplained hetero-
geneity in symptompatterns and disease course. For this reason,MS is often
referred to as the ‘disease with 1000 faces’21. In this paper, we briefly
introduce the BarKA-MS study program (section “Introduction”), which
collected sensor data fromwearables on the physical rehabilitation of people
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living with MS (PwMS), and summarize ten important lessons learned
(section “The BarKA-MS study program”) across key study phases related
to methods aimed at guiding the development of digital biomarkers22. We
thenpresent theDACIA framework (section “Lessons learned fromBarKA-
MS”) as a crosscut between the ten lessons and five crucial steps of digital
biomarker development,whichhas been applied twice in the course “Digital
Health in Practice” formedical students at the University of Zurich. Finally,
we discuss the DACIA framework in the context of existing guidance and
highlight its relevance. Our work aims to inform (1) future research on the
development wearable-based digital biomarkers for chronic disease man-
agement, as well as (2) teaching curricula, through the application of our
framework10,11.

The BarKA-MS study program
BarKA-MS is a semi-remote observational, longitudinal cohort pilot study
program that explored the physical activity rehabilitation of PwMS, which
informed several independent analyses as part of the program18,23–26. The
methods and results of BarKA-MS are published elsewhere22,24–26. The study
wasplanned in collaborationbetween the researchers, clinical staff, aswell as
experts in human-centered and interactive visual data analytics (IVDA).
During study design, clinicians and researchers defined relevant clinical
measures forpotential future use in a rehabilitation clinic. Studynurses from
the clinical staff were consulted to identify feasible data collection methods,
drawingon their experienceswithPwMSand their understanding of patient
needs. Data collection was planned with the Fitabase activity tracker
database27 to enable the statistical analysts and IVDA experts to effectively
translate wearable sensor data to digital biomarkers.

BarKA-MS was divided in two phases. First, the physical activity of
participants was measured during their inpatient rehabilitation stay at
the Valens Rehabilitation Centre in Switzerland, which formost patients
lasted between two to three weeks. Second, their physical activity was
measured upon return to their homes. Participants were asked to wear
the Fitbit Inspire HR during the entire duration of the study28 and an
additional research-grade wearable sensor, the Actigraph GTX, during
their last week of rehabilitation and the first week back home25. Parti-
cipants were followed up for up to eight weeks i.e., two to four weeks in
the first phase and four weeks in the second phase. Technical and
motivational support was provided throughout the study. The study
protocol obtained ethical approval from the Zurich cantonal ethics
commission (BASEC-no. 2020–02350). All participants provided writ-
ten informed consent.

Participant demographics of BarKA-MS are available in Supplemen-
tary Table 1. At baseline,most participantswere female, had amedian age of
46, had MS for a median of 11 years and were either working part-time or
were unemployed. These characteristics alignwith the typical demographics
observed in MS populations with a more progressed disease state29–31. A
follow-up study23 involving participants with different characteristics and
chronic illnesses, such as cardiovascular diseases, revealed conclusions
consistent with the main BarKA-MS analyses, suggesting that the findings
discussed in this lessons learned paper may be applicable to other chronic
disease populations.

Relevant wearable sensor data was collected longitudinally and
included heart rate, step count, sleep indicators, physical activity
intensity (time spent in light, moderate, or vigorous physical activity),
and sedentary time. These measurements were available at the minute,
hourly, and daily granularity levels. To provide additional context to the
physical activity measures from the wearable sensors, we collected self-
reported data using the following instruments: (1) the 18-item Barriers
to Health Promoting Activities for Disabled Persons Scale32 to assess
perceived barriers to physical activity, (2) the 12-item MS Walking
Scale-1233 to assess the walking ability of the participants and (3) the
Fatigue Scale for Motor and Cognitive Functions34 to assess MS-related
cognitive and motor fatigue. The study achieved a weekly survey com-
pletion of 96%, as well as 99% and 97% valid Fitbit wear days at the
rehabilitation clinic and in the home setting, respectively.

Lessons learned from BarKA-MS
In the following sections, we present our insights (lessons learned) from
designing and implementing BarKA-MS, as well several independent ana-
lyses of sensor measurements and patient reported outcomes18,24–26, and a
follow-up study that was modeled after BarKA-MS23 that examined the
implementation of a physical activity post-rehabilitation program from the
perspectives of patients and healthcare professionals. We specifically
selected insights that are relevant to the use of wearable sensor data for
digital biomarker development. All our lessons learned were discussed and
co-formulated with healthcare professionals, clinical staff and researchers
involved in BarKA-MS, and categorized in four key study phases, including:
(1) early study design, (2) study execution, (3) data analysis, and (4) data
interpretation.

Early study design
For BarKA-MS, we chose to use the Fitbit Inspire HR commercial wearable
after an assessment against other devices due its low cost, ease of use and
ability to collect relevant data with Fitabase27, a secure third-party data
collection tool that enables remote monitoring of data quality and com-
pleteness checks. By contrast, the Actigraph accelerometer was not chosen
as the primary wearable device for data collection due to its higher costs,
lower participant preference from discomfort of wearing it around the hip,
and increased complexity due to limited storage capacity and the require-
ment to actively download data with a cable. These initial decisions were
taken during the protocol writing phase and in agreement with healthcare
professionals and clinical staff. Central to these decisions was also designing
the study to protect the privacy of the participants, by ensuring the safe
collection and use of data. In particular, only non-identifiable user accounts
were used for wearable devices and potentially sensitive features of the
devices, such as location tracking or data sharing via social media, were
disabled. These decisions led to the following lessons.

Lesson 1: Aligning study goals and technology. The choice of mea-
surement tools should be guided by the research question and the study
outcomes of interest. In our case, the primary outcome was daily-life
physical activity, a proximal outcome that was directly derived from the
Fitbit Inspire HR. To decide whether a wearable is the most suitable
option, it is key to fully understand the functions, but most importantly
the potential limitations of devices. Understanding the limitations
reduces the risk of unreliable measurements. A relevant example comes
from one of our previous unpublished sub-analyses of BarKA-MS, which
examined correlations of self-reported fatigue (using the Multiple
Sclerosis Impact Scale-29 score35) and sensor measurements, including
sleep length and daily-life physical activity. Our findings revealed weak
associations, which were likely due to the wearable’s indirect measure-
ment of distances26. Havingmissed this limitationwould have likely led to
incorrect measurements.

Lesson 2: Aligning measurement and outcome assessment time-
frames. A second lesson learned during the early design phases of
BarKA-MS is the importance of required timeframes, or the time needed
until relevant study outcomes can be fully measured. Chronic diseases,
such as MS, progress over years or decades. Recent digital health studies
on chronic diseases have reported monitoring periods of up to
12 months2. However, the optimal timeframe to detect a change of
interest depends on the study question. In the case of BarKA-MS, we
detected clinically relevant changes in self-reported measures related to
barriers to physical activity for severe fatigue scores in 8 out of the 38
participants, and a median improvement of 16.7 points in the MS
Walking Scale-12 after an 8-week follow-up24,26. By contrast, health
behaviors, such as daily-life physical activity, fluctuate on much smaller
time scales, such as days, weeks, ormonths. Nevertheless, our experiences
withBarKA-MS and a follow-up study23 suggest that even timeframes of 4
to 12 weeks require significant efforts to keep participants engaged. Being
aware of the expected efforts during the study, the availability of
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resources, and the characteristics of the study population, such as their
age, level of disability and educational level, will ultimately determine
whether (a) the use of wearables is scientifically meaningful, and (b) what
duration periods will likely be needed24. Commercial wearables are well-
geared towardsmeasuring health behavior changes onweekly ormonthly
time scales, while also supporting longer study durations due to their ease
of use and wear comfort. Not defining timeframes correctly and early
enough risks delays and waste of resources.

Lesson 3: Defining the role of wearables. Wearables can take different
roles and thus, support different goals in chronic diseasemanagement. In
our discussions with healthcare professionals involved in BarKA-MS, we
identified the need for clarity regarding the role of wearables in digital
biomarker studies. Two central questions emerged: “how can sensor data
improve patient health?”, and “who should take action to achieve health
benefits?”. These questions led to the development of our “goal pyramid”
(Fig. 1), which outlines various healthcare goals that wearable data can
support. These goals range from low-effort (bottom of the pyramid), to
high-effort, yet clinically more informative, goals (top of the pyramid).
For example, prediction studies might require longer follow-up times,
larger sample sizes, and additional data for prediction model validation.
Overall, the “goal pyramid” is a useful tool to facilitate discussions with
healthcare professionals about study designs and for clarifying technol-
ogy’s role in achieving health outcomes, along with the associated efforts.

Study execution
Not all study execution challenges can be anticipated during the design
phase. For example, BarKA-MSoffered comprehensive participant support,
which resulted in high study compliance. However, we recognize that this
approach is likely not an option for studies with larger samples. Overall, our
experiences, based also on feedback from clinical staff, point to a trade-off
between collecting high-quality and near-complete data while optimizing
participant burden and maintaining high compliance. The following two
lessons reflect our experiences during study execution.

Lesson 4: Combining passive monitoring with actively collected
data. BarKA-MS taught us that the combination of wearable sensor data
with other data types (e.g., clinical, physiological, or patent-reported
data) may enhance the accuracy of digital biomarker development.
Rationales for collecting additional data types may include sensor vali-
dation, multivariable predictions of health outcomes, or stratification
through subgroup analyses. In BarKA-MS, we deliberately used

commercial wearables not specifically designed for use by PwMS. To
enhance and contextualize the rather generic wearable sensor data, we
collected patient-reported symptoms, frequency of physical activity, and
its associated barriers, along with free-text feedback on wearable use
and acceptability. In BarKA-MS, assessing this combination of passively
and actively collected data was a crucial first step in exploring possible
digital biomarkers of barriers to physical activity in the context of shifts in
fatigue and mobility26. However, previous examples have also demon-
strated that active data collection, such as through surveys, carries a risk
of drop-outs or non-compliance36 thatmay be higher than in studies with
only passive data collection (e.g., wearables). Although a recent scoping
review4 was unable to identify clear associations of participant burden
due to active data collection, this aspect should be carefully monitored
and possibly adjusted during the study.

Lesson 5: Maintaining and supporting participant compliance. Data
completeness and participant compliance are particularly relevant,
especially for studies that are conducted remotely. A key initial con-
sideration for digital health studies is ensuring that participants are
representative of the study’s target population, including relevant
underrepresented groups37. This may require targeted recruiting efforts,
as well as possible contextual and cultural adaptations of the study
design38. In BarKA-MS and a follow-up study23, efforts were taken to
enhance the diversity of the study population in terms of age and gender
by providing participant onboarding and technical support during
follow-up. Participants also provided weekly feedback about their
experience with and usability of the Fitbit. Problems were either
addressed by the clinical staff at the rehabilitation clinic or the two
involved researchers. For example, when participants encountered
technical issues with their Fitbit, researchers promptly scheduled phone
calls to resolve the problems23,24. As shown by an internal assessment of
support logs, these measures helped retain older or more impaired study
participants with higher MS symptom burden24. BarKA-MS achieved
high study compliance but also required considerable efforts to actively
monitor data collection (e.g., frequent personal reminders from the
researchers). Missing data and dropouts are also inevitable. Declining
participant motivation or health, inconvenient timing, or burdensome
data collection can all contribute to low compliance and missing data. In
BarKA-MS, declining health often demotivated participants who pre-
ferred not to receive physical activity reminders, as these highlighted their
physical limitations. This further illustrates that challenges may emerge
and even multiply over longer observation periods, underscoring the
need for continuous participant support.

Data analysis
For BarKA-MS, we focused the data analysis on: (1) time series assessments
of wearable sensor data for recurring patterns within/between PwMS, and
(2) descriptive analyses to explore physical activity barriers for PwMS. To
better visualize and assess these results, we conducted an unpublished sub-
study in collaborationwith experts in IVDA.Thesewere thendiscussedwith
IVDA experts and healthcare professionals to better understand the present
data quality and analytical challenges, and contribute to the formulation of
new hypotheses. The following lessons reflect these experiences.

Lesson 6: Defining appropriate data aggregation level. Wearable
sensors collect data at different time scales. For example, step count,
time spent in active physical activity, and heart rate are available at the
minute level, while resting heart rate, which is measured at nighttime, is
only available as a single daily value. Finding the most appropriate
temporal aggregation level depends on the expected timeframe needed
to observe an effect in the outcome of interest (lesson 2), as well as
mitigating redundancy and low data resolution39, or ensuring that
outcome measures comply with those relevant in clinical settings40. In
BarKA-MS, we collaborated with healthcare professionals to create
interactive visualizations from the study’s sensor data. These

Fig. 1 |Goal versus effort pyramid to inform the role of wearable sensors in achieving
research goals.
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experiences highlighted that daily aggregations were meaningful for
most parameters to develop informative composite measures, but
longer-term assessments might benefit from weekly or even monthly
data aggregations, with the option to switch between aggregation levels.
Further considerations include whether data aggregation can help with
managing high volumes of data. Data aggregation can help with redu-
cing information overload, which can help healthcare professionals and
patients understand the data and its signals more easily. In BarKA-MS,
we followed a user-centered design methodology to co-design sensor
data visualizations together with healthcare professionals, to facilitate
informed decision-making based on meaningful data signals. The
resulting data visualizations also revealed useful for guiding researchers
in analyzing BarKA-MS data.

Lesson 7: Contextualizing sensor measurements. In BarKA-MS, the
main challenge of developing digital biomarkers was the con-
textualization of our data. A common issue was distinguishing between
patterns in physical activity due to exercise or unrelated activities, such
as knitting or playing the piano. This was highlighted in a BarKA-MS
analysis that revealed weak correlations between different sensor mea-
surements in a real-world setting25, echoing similar reported difficulties
in the scientific literature41–43. Another challenge involved connecting
irregular patterns of activity or inactivity with individual or group-level
factors that influence motivation. For example, among PwMS there is a
high prevalence of fatigue (affecting over 70% of PwMS44), which may
demotivate them from exercising, as observed in a BarKA-MS analysis
revealing a positive correlation between levels of fatigue and barriers to
physical activity26. Individual-level visualization of the data with
healthcare professionals as part of BarKA-MS highlighted the need for
contextual information related or unrelated to sensor measurements to
help identify patterns of interest for individual participants45. For
example, visualizations of physical activity and sleep data from BarKA-
MS suggested cyclical within-person patterns, such as higher physical
activity on weekends. In BarKA-MS, we also used weather condition
data to assess whether deviations in activities could be contextualized to
other, external influencing factors. Knowledge about the temporal
occurrence of such factors may overall help to better interpret sensor
measurement data.

Lesson 8: Discerning signal from noise. Filtering out “noise”, or sig-
nals in the data collection that are of low value and are not indicative of
the presence of an actual signal46, within sensor data is a key, yet chal-
lenging task. Building on lesson 7, contextual data, such as weather
patterns, can help distinguish between trivial explanations for patterns,
or nuisance parameters, and the actual patterns of interest to the study47.
For example, by applying interactive visualizations to our BarKA-MS
data we observed differences in step counts or sleep patterns between
weekdays or weekends. In some individuals, healthcare professionals
also noticed distinct within-day patterns, such as reduced activity in
afternoons, which they identified as possible signs of fatigue, a common
symptom in PwMS. Another approach is to build a time series model
that includes these noise parameters to predict expected sensor mea-
surements. This de-noising approach involves gathering and analyzing
data from nuisance variables that introduce noise, such as daily routines,
weather and calendar data, alongside sensor measurements. The inclu-
sion of such nuisance variables, if they are indeed associated with the
outcome, has the potential to decrease noise. Ideally, the identification of
variables required for “de-noising” should be considered at the study
planning stage.

Data interpretation
The data interpretation phase is linked with the analysis phase, however,
focuses more on the contextual interpretation of results. For BarKA-MS,
visual data analytics and discussions with healthcare professionals played a
key role. We derived the following two lessons.

Lesson 9: Choosing internal and external benchmarks. Digital bio-
markers should ideally be characterized by clear norm ranges. However,
it is difficult to develop universal norms, as observed with healthy
individuals occasionally having laboratory values outside the norm, or
the other way around. Data interpretation is further challenged by
possible systematic measurement inaccuracies, such as those from Light
Emission Diode-based wearable devices that may be less accurate for
people of color42,48, or datasets omitting underrepresented groups49,
which can contribute to biased benchmarks. Considering these chal-
lenges, digital biomarker studies should focus on inter-individual
changes rather than absolute benchmarks50,51. In BarKA-MS,
physical activity level digital biomarkers were informed by internal and
external benchmarks. Internal benchmarks were derived to assess if
individual PwMS exhibited certain patterns that occurred more fre-
quently than expected, considering a normal distribution. External
benchmarks were obtained directly from the wearables, using calculated
measures of e.g., physical activity intensity, such as the amount of time
spent in light, moderate, or vigorous physical activity25. These measures
served as digital biomarkers for low or high levels of physical activity. For
such metrics in chronic disease populations, such as MS, personal
contexts play an important role. This underlines the need for studies on
chronic disease populations to assess changes in intra-individual norms
and, ideally, health status assessments from clinicians to develop
meaningful digital biomarkers.

Lesson 10: Deriving clear actions. For digital biomarkers to be of
clinical value, they should be linked to an action plan. Such an action plan
may include defining the rules that confirm digital biomarker deviations
(e.g., outside-norm signals in two subsequent weeks), monitoring fre-
quently, and adjusting intervention delivery (e.g.,motivational phone call
to participant). Building on lesson 3, such action plans should be aligned
with the overall goal of the study and the role of wearables, as illustrated
by the “goal pyramid” (Fig. 1). For BarKA-MS, the interactive data
visualizations and discussions with healthcare professionals revealed
important preconditions for reacting to digital biomarker changes. For
example, healthcare professionals stated that such processes should be
compatible with existing workflows to avoid additional burden to clinical
staff and healthcare professionals themselves, or that technical support
for both patients and clinical staff should bemade available23. A follow-up
study explored these topics using the normalization process theory fra-
mework, focusing on how healthcare professionals and patients can
collaborate effectively in remote activity tracking for rehabilitation
aftercare23.

The DACIA framework to inform planning of wearable
sensor data use in healthcare research, management
and teaching
Drawing on identified patterns and themes from the ten lessons from
BarKA-MS, observations from a follow-up study23, and feedback received
when used in the course “Digital Health in Practice” for medical students at
the University of Zurich, we developed the DACIA framework. This fra-
mework is based on the notion that digital biomarker development is
informed by: (1) data, (2) aggregation, (3) contextualization, (4) inter-
pretation, and (5) actions (Fig. 2). These constructs aim to guide future
early-stage research on wearable sensor-based digital biomarker develop-
ment andare scalable to larger studies.TheDACIA framework also servesas
an interactive teaching tool for medical students to plan and execute a
hands-on wearable sensor data collection and analysis for a mock digital
health intervention.

In this section, we present the five DACIA constructs along with
examples for guiding questions to inform study planning (Table 1),
which can also be used to support teaching. We then present data loops
among the DACIA constructs, depicted by the orange box, to illustrate
the iterative and flexible aspects of digital biomarker development. To
provide further context on DACIA’s applicability to a study, we apply
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the constructs of the framework to BarKA-MS (Supplementary
Table 2).

Feedback loops in the DACIA framework (orange box, informed
by lessons 4, 7, 8, and 10)
During BarKA-MS, we regularly collected user feedback on the study and
device acceptability in free-text fields. User studies were also conducted to
identify healthcare professionals’ needs for data visualizations and con-
siderations for appropriate data interpretation. This feedback was useful for
study improvements. Therefore, since critical aspects for the study’s success
may only surface during study conduct (e.g., through interim analyses or
user feedback), we recommend that wearable sensor studies be adaptable to
such feedback and evolving data requirements. This is visualized by the
orange box in Fig. 2.

Regularly engaging participants through user feedback, e.g., as part of a
weekly surveyor after a data collection task has been completed,may also be
beneficial for overall study compliance. In response to the feedback,
researchers can promptly respond and provide motivational or technical
support. The involved researchers can also keep support logs to record

technical and non-technical issues that require further communicationwith
participants. Considering participant burden, researchers should also assess
the usefulness of individual data items during data collection, discarding
those irrelevant to the study’s goals to reduce unnecessary burden.
Researchers can also reduce burden by collecting data less frequently or re-
using existing information, for example through linkage with clinical data.

Regular communication with study participants and healthcare pro-
fessionals may also be useful for the interpretation of detected digital bio-
marker signals. Studies can explore implementing automated feedback
loops to share deviating digital biomarker signals with study participants
and healthcare professionals, gathering valuable data for process improve-
ment or supervised machine learning models. These models should be
critically assessed to ensure algorithmic fairness based on a diverse study
population, to ensure that they are externally valid in other clinical settings
and do not exclude underrepresented groups. Reviewing model results and
predictions directly with involved stakeholders and diverse patient groups
can help identify potential issues. Importantly, algorithms and digital bio-
markers should also undergo external validation with independent patient
populations before use in healthcare and clinical practice.

Fig. 2 | DACIA framework constructs and
feedback loops.

Table 1 | Description of DACIA framework constructs and relevant guiding questions

Construct (related lessons) Guiding questions

Data collection (lessons 1–5):
The data collection step consists of selecting the most suitable wearable sensor
measurements and time frameworks for digital biomarker development. Additional
relevant clinical or patient-reported data should be considered for validation purposes.

Which wearable sensor data are best suited to monitor relevant health and
behavior change outcomes?
What time frame will be required?
Which other data types can meaningfully complement the wearable sensor
data for higher digital biomarker accuracy?
What could contribute to missing data?

Aggregation (lessons 3–6):
The aggregation step includes the selection of the most suitable temporal analysis level,
combination ofmeasurements, as well as further feature extractions and transformations
(e.g., by using multivariable methods).

Which temporal granularity (e.g., second, minute, hour, day) is most suitable?
Does the wearable provide this aggregation level?
For higher-level granularity: what is the minimal wearable wear-time?

Contextualization (lessons 2, 6, and 7):
The contextualization step involves combining wearable sensor data with details such as
measurement timing (e.g., seasonality), patient traits, population norms, andnormal intra-
individual ranges (e.g., average weekday step counts, sleep duration).

Do the main signals depend on measurement timing (weekday, season) or
specific participant characteristics (gender, age, body mass index (BMI))?

Interpretation (lessons 7–9):
The interpretation step includes the development of rules to discern signals from noise.
This step is aided by contextual and intra-individual baseline data, as well as feedback
from healthcare professionals and the wearable users themselves. For example,
presenting patients with their data can validate signal detection rules and algorithms.

What level of signal changes from the outcome of interest would be
considered significant and of clinical relevance?

Action (lessons 3 and 10):
The action step describes the pre-specified interventions (actions) to be triggered in case
of digital biomarker abnormalities by healthcare professionals or individuals.

What are meaningful interventions in case of significant digital biomarker
deviations?
Who is responsible for reacting to these deviations and in what timeframe?
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Discussion
Our paper provides key lessons learned from the BarKA-MS study program
for the use ofwearable sensor data for digital biomarker development.Based
on these, we propose the DACIA framework, which aims to guide and
inform future research and support teaching curricula on digital health
interventions. The framework is easily applicable to studies across various
chronic conditions, in both observational as well as interventional study
designs.

The DACIA framework in the context of current guidance
In light of current guidelines, the DACIA framework provides inter-
disciplinary guidance on how to use wearable sensor data for digital bio-
marker development. Our work can be seen as complementary to other
frameworks. TheFramework forMeaningfulMeasurementbyManta et al.52,
for example, provides a sequential list of data collection-related considera-
tions to evaluate the meaningfulness of sensor signals. The Digital Bio-
marker Discovery Pipeline from Bent et al.53, goes a step further and focuses
more specifically on aligning study goals with the collected data and dif-
ferent types of analyses. Guidance fromCoravos et al.9 rather focuses on the
variability in types of sensor technologies, digital biomarkers and their
clinical relevance. Combined with high-level guidance from the FDA15 and
Digital Medicine Society16,17, the DACIA framework provides a more
comprehensive approach for planning and conducting research with
wearable sensors to develop digital biomarkers that places focus on invol-
ving relevant stakeholders in eachkey stepofDACIA inan iterativemanner.
This is especially of relevance in theaction constructof the framework, going
beyond digital biomarker development guidelines into meaningfully
applying and assessing them along with relevant stakeholders in clinical
practice. Furthermore, the DACIA framework places a more participant-
centric approach that focuseson reducing their burden through support and
continuous feedback.Overall, theDACIA frameworkcomplements existing
guidance by focusing on participant needs as a crucial factor for study
success, making it relevant for both short and long-duration studies.

Implication for future studies
TheDACIA frameworkfills an important gapbyplacing a stronger focus on
the interdisciplinary and iterative planning, analysis and interpretation of
wearable sensor data, to enhance the clinical relevance of future research in
wearable sensor-based digital biomarker development. In particular,
DACIA helps to assign the relevant responsibilities and clarify data
requirements for assessing study outcomes and measurement contexts. It
also underlines the importance of necessary measurement frequency to
support relevant actions, such as by collecting user feedback and adapting
the delivery of the study tasks based on this feedback in real-time, or reg-
ularly communicating with stakeholders to interpret and react to detected
digital biomarker signals. While initially designed for the development of
digital biomarkers fromwearable sensors thatmeasure physical activity, the
DACIA framework can be applied to explore digital biomarkers using
various devices or signal measurements, including for digital health inter-
ventions focused on behavior change.

An important consideration when implementing the DACIA frame-
work in research studies is its applicability to larger study samples. BarKA-
MS included 45 participants who received consistent support from the
clinical staff and researchers to ensure completion of both the in-person and
remote study components. The combination of a smaller sample size and
the continuous support enabled higher personalization. However, we
recognize that such approaches may not be directly applicable to larger
studies or studies with limited resources. In the orange feedback loop of the
DACIA framework, we propose approaches to streamline and automate
certain study steps to reduce reliance on clinical staff and researchers. We
also recommend referring to additional guidance documents9,15–17,52,53 and
implementation science theories, such as the normalization process
theory54, to further inform design actions that align smoothly with health-
care workflows, meet stakeholder needs, and utilize available resources
efficiently.

Strengths and limitations
This paper presents some limitations. The ten lessons are primarily derived
from a single study program, which includes four published outcome
analyses and a subsequent follow-up study, resulting in a relatively con-
strained experience base from a limited range of devices and data collection
methods relevant to BarKA-MS. Moreover, the participant pool in
BarKA-MS is limited to individuals with more advanced stages of MS,
potentially limiting the generalizability of the findings to those living with
other chronic diseases.

It is also important to note that the individual steps of the DACIA
framework may not hold the same significance for certain applications and
studies, particularly those that do not involve interventions. While we
believe theDACIA framework adequately addresses important studydesign
and conduct decisions relevant for digital biomarker development, we
cannot rule out the possibility that certain studies may demand additional
considerations beyond the scope of the framework. Therefore, further
refinements and real-world testing are advisable.

Nevertheless, the DACIA framework builds on substantial research,
data from wearable sensors and valid survey instruments, practical
experience in conducting various digital health studies that use sensor
measurements from wearables, and teaching experience with medical stu-
dents. As such, we consider the framework to be well-grounded and
reflective of real-world challenges in such studies, which can be informative
for future research and teaching.

Overall, this paper outlines a set of important lessons learned for
transforming wearable sensor data to digital biomarkers. The DACIA
frameworkwasdevelopedas a crosscut between the lessons learned,which
were summarized intofive key steps of digital biomarker development and
adapted based on student feedback. It highlights important elements to be
considered when using wearable sensor data as digital biomarkers and
provides practical guidance for future research and teaching.Our findings
are applicable beyond MS and aim to inform any related digital health
study for chronic disease management. As the popularity and use of
wearables continuous to grow, our work provides an important first step
towards the systematic and transparent development of meaningful
digital biomarkers.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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