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Abstract
Early diagnosis of dementia diseases, such as Alzheimer’s disease, is difficult
because of the time and resources needed to perform neuropsychological and
pathological assessments. Given the increasing use of machine learning
methods to evaluate neuropathology features in the brains of dementia
patients, it is important to investigate how the selection of features may be
impacted and which features are most important for the classification of
dementia. We objectively assessed neuropathology features using machine
learning techniques for filtering features in two independent ageing cohorts,
the Cognitive Function and Aging Studies (CFAS) and Alzheimer’s Disease
Neuroimaging Initiative (ADNI). The reliefF and least loss methods were
most consistent with their rankings between ADNI and CFAS; however,
reliefF was most biassed by feature–feature correlations. Braak stage was con-
sistently the highest ranked feature and its ranking was not correlated with
other features, highlighting its unique importance. Using a smaller set of
highly ranked features, rather than all features, can achieve a similar or better
dementia classification performance in CFAS (60%–70% accuracy with Naïve
Bayes). This study showed that specific neuropathology features can be priori-
tised by feature filtering methods, but they are impacted by feature–feature
correlations and their results can vary between cohort studies. By understand-
ing these biases, we can reduce discrepancies in feature ranking and identify a
minimal set of features needed for accurate classification of dementia.
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1 | INTRODUCTION

Dementia poses a significant global challenge, affecting
the lives of individuals, their families, and caregivers [1].
The economic burden of dementia was estimated to
exceed $818 billion in 2015, and the number of people
living with dementia is expected to surpass 75 million by

2030 [2]. Early diagnosis and intervention are crucial in
mitigating the negative impact of dementia [3]. How-
ever, identifying the determinants of dementia can be
difficult because of its complex spectrum of characteris-
tics, encompassing various disorders with distinct
pathologies. Alzheimer’s disease (AD) is the most com-
mon form of dementia, characterised by the presence of
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amyloid plaques and neurofibrillary tangles in the
brain [4].

Feature selection methods play a vital role in bio-
medical data analysis, helping to identify the most rele-
vant features contributing to a health outcome while
eliminating noise, redundancy, and irrelevant factors
[5–7]. Biomedical datasets collected from human bio-
samples often contain many features, some of which
may be irrelevant to the outcome of interest. Analysing
all features can lead to overfitting, reduced accuracy,
and a less concise understanding of the underlying bio-
logical processes [5, 8, 9]. Filter methods measure the
relevance of features based on their correlation with the
outcome. While commonly used to select features for
downstream analysis or machine learning of biomedical
datasets, there lacks a systematic comparison of filter
methods when used to study complex human disorders,
such as dementia.

Previous studies have employed filter methods to
identify features related to AD [10–12]. G�omez-Ramírez
et al. focused on self-reported data, investigating demo-
graphics and other relevant factors associated with the
development of dementia from mild cognitive impair-
ment (MCI). Permutation-based methods were employed
as a filter to identify important cognitive decline features.
Subsequently, the random forest (RF) algorithm was
applied to identify features strongly correlated with cog-
nitive impairment [13]. Thabtah et al. conducted a com-
prehensive analysis of feature selection methods using
continuous features derived from MRI images to detect
dementia. The study compared popular methods such as
mutual information gain [14], Pearson correlation [15],
and symmetric uncertainty [16]. Univariate feature selec-
tion and recursive feature elimination techniques were
also employed to identify the most informative features
correlating with AD using the functional activities ques-
tionnaire (FAQ), a common neuropsychological assess-
ment [17, 18]. The authors further investigated the
relationships between cognitive and functional features
across different levels of dementia progression.

While the relationship between cognitive function and
neuropathology features has been extensively explored,
less attention has been given to how feature correlation
might impact machine learning of dementia. Given the
diversity of filter methods and features, it is essential to
identify the methods that are less sensitive to similarities
or differences between neuropathological features in
order to minimise discrepancies in feature rankings.
To address these issues, we focused on data from two
large dementia studies in the United Kingdom and
United States, and hypothesised that there would be asso-
ciations between feature–feature correlations and the
ranking scores computed by filter methods. Several ques-
tions arise regarding the ranking of neuropathology fea-
tures: (1) Which filter methods are less sensitive to
feature–feature correlations? (2) Are there differences in
feature–feature correlations and rankings between the

separate dementia cohorts? (3) How do variations in fea-
ture rankings between the cohorts impact dementia
prediction models? To investigate these questions, we
applied seven filter methods to the two cohort
datasets [19–21] to generate feature rankings and
observed how they varied depending on the degree of
similarity between features. We are able to identify the
best performing feature selection techniques for neuropa-
thology data and assess the level of reproducibility in the
associations with dementia found in the two studies.

2 | MATERIALS AND METHODS

2.1 | Overview of feature ranking analysis

We examined the correlation structure of neuropathology
and its relationship with dementia (as depicted in
Figure 1). Following a comprehensive review and subse-
quent ethics approval from the management committees,
we downloaded the pathological assessments from the
Cognitive Function and Ageing Studies (CFAS) [21] and
the Alzheimer’s Disease Neuroimaging Initiative (ADNI;
https://adni.loni.usc.edu/) [22]. After conducting pre-
processing on both datasets, we pinpointed features that
were present in both, ensuring their compatibility in
terms of features and data types whenever possible.
In both datasets, neuropathological features were evalu-
ated and ranked by utilising a range of feature selection
techniques centred around various filter methods. We
then gauged the ranking disparities between the neuro-
pathological features of CFAS and ADNI, in addition to
the consistency between both datasets for each filter
method applied. To discover the relationship between a
given feature and the remaining ones, we delved into
feature–feature correlations using the R2 metric, which is
based on multiple regression analyses. We took into
account both the correlation among the features and their
rankings, which was achieved by implementing classifica-
tion algorithms and noting accuracy, sensitivity, and
specificity values. From these insights, we inferred that
certain feature subsets can be classified as dementia.

2.2 | CFAS cohort

This study considered the donated brains of 186 partici-
pants, and 13 neuropathological features were assessed
(Table S1). These features constituted fundamental neu-
ropathological assessments for each participant, includ-
ing Braak neurofibrillary tangle (NFT) stage, Thal
phase, and cerebral amyloid angiopathy (CAA). Of the
total participants, 107 (equivalent to 58%) had been diag-
nosed with dementia. The participant pool consisted of
72 women and 35 men, with respective median ages
of 89 and 88. Among those participants who passed away
without a dementia diagnosis (with median ages of 85 for
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females and 79 for males), the gender distribution was
evenly balanced with 37 females and 33 males [23].

2.3 | ADNI cohort

The data utilised for the creation of this article were
acquired from the ADNI database (adni.loni.usc.edu),
which was established in 2003 as a collaboration between
public and private entities. The neuropathology data
version utilised in the ADNI database was NEURO-
PATH_07_06_21. The ADNI cohort consisted of 1736
individuals, including 85 clinical features across ADNI-1,
ADNI-GO, and ADNI-2. For this study, we specifically
focused on 80 post-mortem brains, which exhibited
13 neuropathological features, as detailed in Table S1.
These features involved fundamental measures of neuro-
pathology for each subject, such as NFT stage, Thal
phase, and CAA. Within the cohort, 77.5% of partici-
pants (62 out of 80) were diagnosed with dementia,
while 12.5% had MCI, and 10% were cognitively normal
(CN). Among the 62 dementia cases, 16 were women
and 46 were men, with median ages of 79 and 81.5,
respectively. The MCI participants exhibited a gender

ratio of 1 female to 9 males (with a median age of 85 for
both genders), while those who passed away without a
dementia diagnosis had a gender ratio of 5 females to
3 males (with median age of 84 for females and 79 for
males). To ensure consistency with the CFAS dataset
comparisons, we excluded the 10 participants diagnosed
with MCI, leaving us with 70 participants diagnosed with
dementia or CN for this study [24–26].

2.4 | Feature pre-processing

In the ADNI dataset, certain features were represented
as individual columns, whereas in CFAS, multiple col-
umns were employed to capture related attributes such
as ‘infarcts and lacunae’ and ‘diffuse plaques’. Fur-
thermore, CFAS distinguished between infarcts and
lacunae separately, whereas ADNI combined them. To
address this disparity, our study unified infarcts and
lacunae into a single category, treating them as binary
indicators of pathology within CFAS. We encountered
a similar challenge with the diffuse plaques feature in
CFAS, where columns were grouped based on their
presence or absence. We refrained from encoding

F I GURE 1 Methodology for dementia classification using CFAS and ADNI datasets. The dementia classification methodology was developed
and executed in three key stages: design, implementation, and evaluation. After acquiring neuropathology data, we carried out pre-processing and
determined the correlation between different features. Utilising seven filter methods, we ranked all neuropathological features. Subsequently, we
explored the connection between feature–feature correlation and feature ranking across all applied filter methods. Thereafter, classifiers were
evaluated using various feature subsets, depending on their interrelations.
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feature measures in both datasets to ensure unbiased
feature ranking and analysis. For instance, CFAS uti-
lised a binary representation for cortical atrophy, while
ADNI employed an ordinal scale consisting of four
categories: no atrophy, mild, moderate, or severe.
Upon encoding cortical atrophy as a binary feature, we
discovered a 100% correlation between this attribute
and certain other features. A similar issue was encoun-
tered with ADNI’s diffuse plaques feature. Following
the pre-processing stage, we analysed a total of
177 post-mortems from CFAS and 70 post-mortems
from ADNI, examining 13 neuropathology features for
feature ranking.

2.5 | Ranking neuropathology features

To gain preliminary insight and highlight influential neu-
ropathological features of dementia, we used a variety of
feature selection filter methods to measure each feature’s
relevance. Chi-square (CHI) [27], gain ratio [28], informa-
tion gain (IG) [14], reliefF [29, 30], symmetric uncer-
tainty [16], least loss (L2) [31], and variable analysis Va

[32, 33] were included in the analysis. Scores varied
according to the mathematical criteria and type of filter
method used. Because of the different models, there may
be discrepancies in the ranking of features based on such
scores [33, 34]. Details of the mathematical formulation
of the considered filter methods described in the
Supplementary Materials (specifically Supplementary
Equations 1–10).

The experiment-related filter-based feature selection
was conducted using Waikato Environment for Knowl-
edge Analysis (WEKA version 3.9.1) [35]. The percent-
age contribution of each feature was calculated by
averaging the total weights assigned by all filter
methods to each feature after normalising the weight
scores.

2.6 | Measuring filter methods consistency

Kendall’s tau, a measure of correlation between two
ranking lists, provides insights into the level of agreement
or disagreement between them. Values closer to 1 indicate
a stronger agreement, while values closer to �1 indicate a
stronger disagreement. A value of tau = 0 suggests no
association between the ranking lists. To compare the
feature rankings between CFAS and ADNI datasets for
each filter method, we utilised the kendalltau() function
from the Python3 machine learning package (scipy.stats
version 1.7.3). Specifically, we employed this function,
available in version v1.9.3, to assess the correlation
between the CFAS and ADNI cohorts. The function in
SciPy returns p-values based on a two-tailed test by
default. The comparison involved seven filter methods
and 13 distinct features.

2.7 | Imputing missing values

Because of the limitations of the considered cohorts
(ADNI = 70 samples, CFAS = 177 samples) and the ten-
dency of machine learning models to encounter errors
when encountering NaN values, addressing missing
values became necessary. To handle this, we adopted an
iterative imputer approach utilising the Scikit-learn ver-
sion 0.22.2.post1 [36] library in Python3. This approach
allowed us to impute missing values for both numerical
and categorical features. For numerical and categorical
values, we employed the IterativeImputer from the
sklearn.impute package to perform the imputation trans-
formation. To replace missing numeric values, we utilised
the RandomForestRegressor from the sklearn.ensem-
ble [37] package as an estimator. The missing values
were initially initialised with the mean and underwent a
maximum of five iterations. Similarly, for categorical
values, we constructed a model employing the Random-
ForestClassifier from the sklearn.ensemble package. The
missing values were initialised with the mean, and the
imputation process followed a maximum of five itera-
tions. All the machine learning models and feature selec-
tion libraries utilised in this study were developed using
Python 3.7.3, ensuring consistency across the analysis.

2.8 | Measuring feature–feature correlation

In our analysis of CFAS, a total of 177 subjects were
included. However, nine subjects had to be excluded from
the analysis because of missing values in the class label.
Regarding the ADNI dataset, individuals with MCI were
excluded, leaving us with a cohort of 70 out of 80 partici-
pants who were classified as either CN or diagnosed with
dementia. To investigate the relationship between each
feature, treated as a dependent variable, and the remain-
ing features, considered as independent variables, we uti-
lised multiple linear regression models. These models
were implemented on both the ADNI and CFAS neuro-
pathology cohorts. The coefficients R2 obtained from the
models (specifically Supplementary Equations 11–13)
were used to describe the relationships between the fea-
tures. To ensure consistency in the analysis, we applied
feature normalisation to the numerical features. This was
achieved using the minmaxScaler package from scikit-
learn version 0.22.2.post1 [36]. For the linear regression
models, we employed the ordinary least squares method
with the statsmodels.formula.api package version 0.13.2.

2.9 | Evaluation of feature ranks against
feature–feature correlation

To normalise the scores of the CFAS and ADNI fea-
tures, we utilised the minmaxScaler package from scikit-
learn version 0.22.2.post1 [36]. This scaling process
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ensured that the feature scores were within the range of
[0, 1]. Consequently, we performed linear regression ana-
lyses to examine the relationship between the feature
scores and their corresponding R2 values for each filter
method. For data visualisation and fitting linear regres-
sion models, we employed the regplot() function from the
Seaborn package version 0.11.0 [38]. The function creates
a scatterplot with a linear regression model fit. It employs
the Least Squares method to estimate the linear regres-
sion coefficients, minimising the sum of the squares of
the differences between the observed and predicted
values. The function also computes and plots a 95% con-
fidence interval for the regression line, which estimates
the uncertainty around the line of best fit. This interval is
calculated using bootstrapping with 1000 iterations by
default, a resampling method that generates an empirical
representation of the sampling distribution and quantifies
the uncertainty of the estimate. This allowed us to plot
the data and visualise the linear relationship. To calculate
the correlation coefficients and corresponding two-tailed
p-values, we utilised the pearsonr() function from the
SciPy.stats package version 1.7.3 [39]. This statistical
analysis provided valuable insights into the strength and
significance of the correlations between the variables.

2.10 | Dementia classification

In the CFAS dataset, a total of 177 subjects were initially
included. However, nine subjects had to be excluded
because of missing values in the class label. For the ADNI
dataset, individuals with MCI were removed, and the
remaining participants with cognitive impairment or
dementia were retained. Given the imbalance in the class
label of the ADNI dataset, where there were 62 instances
of ‘Dementia’ and only 8 of ‘No Dementia’, we utilised
the Synthetic Minority Oversampling Techniques for
Numerical and Categorical Features (SMOTE-NC)
[40, 41]. This method was applied using the imbalanced-
learn toolbox, version 0.9.1 [42]. This technique involved
generating synthetic data instances for the minority class
label using the k-Nearest Neighbours classification algo-
rithm with k = 5. After balancing the ADNI dataset, we
were left with 124 samples and 13 features. To train and
evaluate the classifiers, we utilised scikit-learn version
0.22.2.post1 in Python3. The evaluation was performed
using the ‘leave-one-out’ cross-validation approach, ensur-
ing robustness in the analysis. We also trained classifiers
on CFAS samples using ranked features from CFAS and
trained classifiers on ADNI samples using ranked features
from ADNI. Then we used the trained classifiers to predict
dementia status in the other dataset that was held out.

For further assessment of the neuropathological fea-
tures, we employed various supervised learning tech-
niques, primarily RF [13] and Gaussian Naive Bayes
(GNB) [43]. The default parameter settings were used for
both RF and GNB. Specifically, RF was configured with
100 estimators (the number of trees in the forest), and the

quality of the split was measured using the Gini impurity
function. The minimum number of samples required to
split a node (min_samples_split) and the minimum num-
ber of samples required to be a leaf node (min_sample-
s_leaf) were both set to 1.

2.11 | Evaluation of classification
performance

In this study, we approached the prediction of dementia
as a binary classification problem, with the two classes
being ‘Dementia’ and ‘No dementia’. To assess the per-
formance of the feature subsets, we employed evaluation
metrics such as accuracy, sensitivity, and specificity.
These metrics provided valuable insights into the effec-
tiveness of the selected features in predicting dementia.
The following evaluation metrics were utilised for perfor-
mance assessment:

i. True positives (TP): Number of dementia cases that
were correctly classified.

ii. False positives (FP): Number of healthy subjects
incorrectly classified as dementia cases.

iii. True negatives (TN): Number of healthy subjects
correctly classified.

iv. False negatives (FN): Number of dementia cases
incorrectly classified as healthy subjects.

v. Accuracy (%): The proportion of correct classifica-
tions among total classifications:

Accuracy¼TPþTN
n

, ð1Þ

where n is the number of total classifications per test
vi. Sensitivity (%): The proportion of dementia cases

correctly classified

Sensitivity¼ TP
TPþFN

: ð2Þ

vii. Specificity (%): The proportion of healthy subjects
correctly classified

Specificity¼ TN
TNþFP

: ð3Þ

2.12 | Code availability and requirements

Links for Python script codes in GitHub for the process
and producing all results and figures (https://github.com/
mdrajab/CFAS-and-ADNI-Neuropathology.git). The
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machine was used in this study: macOS Monterey version
12.6.2, MacBook Pro (13-inch), and Processor: 2.3 GHz
Dual-Core Intel Core i5. Anaconda Navigator 1.9.12 was
used to launch Jupyter Notebook version 6.1.4.

2.13 | Availability of data and materials

Data from the CFAS study is accessible via application
to the CFAS (http://www.cfas.ac.uk/cfas-i/data/#cfasi-
data-request), under the custodianship of FM and
CB. Data from the ADNI study is accessible via applica-
tion to the ADNI (https://adni.loni.usc.edu/about/), con-
tingent on adherence to the ADNI Data Use Agreement.

3 | RESULTS

3.1 | Distribution of neuropathology feature
scores across dementia cases

Examining the distribution of neuropathology feature
scores among dementia cases was crucial for gaining dee-
per insights into these features. We conducted an analysis
to detect any dissimilarities in the feature distributions
between cohorts and to provide plausible explanations
for these variations. For this purpose, we plotted the dis-
tributions of all neuropathology features for the CFAS
and ADNI cohorts, comprising 186 and 70 individuals,
respectively (Figure 2). An interesting observation was
made regarding the ADNI dataset diffuse plaques fea-
ture, which posed a similar challenge as the infarcts and
lacunae feature in CFAS. In both cases, we had to group
the columns corresponding to diffuse plaques based on
their presence or absence. Our findings revealed notable
relative differences in the distributions of non-dementia
and dementia cases of certain features in the two cohorts.
For instance, cortical atrophy, represented as a binary
feature in CFAS and ordinally in ADNI, exhibited a
higher proportion of no cortical atrophy in non-dementia
cases. Additionally, other features such as atherosclero-
sis, neocortical neuritic plaques, neuronal loss in the sub-
stantia nigra, argyrophilic grains disease, and diffuse
plaques had different shapes of distribution in CFAS and
ADNI. These differences in feature distributions may be
influenced by a combination of factors, including the
varying number of cases in CFAS (n = 186) and ADNI
(n = 70) relative to the small sample size and local differ-
ences in diagnosis. These differences are also reflected by
the contrasting class distributions within the datasets.
Notably, the CFAS dataset displayed a relatively bal-
anced distribution, with 60.5% classified as dementia and
39.5% as non-dementia, as shown in Table S1. On the
other hand, the ADNI dataset exhibited an imbalanced
distribution, with 88.6% classified as dementia and 11.4%
as non-dementia. These findings underscore the impor-
tance of considering the dataset characteristics, including

sample sizes and class distributions when interpreting
and comparing the distributions of neuropathology fea-
tures across cohorts.

3.2 | Ranking of neuropathology features

To examine the utility of filter methods on dementia-
related features, we conducted a feature selection analysis
using two neuropathological datasets, CFAS and ADNI.
We aimed to rank the features consistently across both
datasets and derive valuable insights for improving
dementia diagnosis and treatment. To achieve unbiased
and comprehensive results, we employed multiple filter
methods to assess the sets of neuropathological features
in each dataset. By applying these methods, we calculated
feature scores based on the models generated for each fil-
ter method (Figure 3). The ranking of features in des-
cending order based on their scores provided a
comprehensive and cross-dataset comparison, aiding the
medical profession in better understanding dementia
pathology.

The consistent findings across both datasets revealed
the importance of certain features in contributing to
dementia. The Braak stage emerged as the most influen-
tial pathological feature, demonstrating strong correla-
tions, particularly in the CFAS dataset (Figure 3A). In
the ADNI dataset, other features such as neocortical neu-
ritic plaques, Thal phase, diffuse plaques, and CAA were
also highly correlated with dementia (Figure 3B). Nota-
bly, these results were consistent with those obtained
from the CFAS dataset, which identified the Braak stage,
Thal phase, and CAA as relevant factors associated with
dementia. To further investigate the consistency of fea-
ture ranking across the filter methods in both CFAS and
ADNI datasets, we conducted a detailed analysis. The
overall outcomes of our study provided crucial insights
into the neuropathological features that play a role in
dementia. Furthermore, employing multiple filter
methods ensures generalizability and reduces the risk of
biassed outcomes, emphasising the importance of consid-
ering diverse approaches in feature ranking.

3.3 | Consistency in the ranking of features
between studies

In this study, pathological feature rankings from the
CFAS and ADNI datasets were assessed using various
filter methods to identify quantitative discrepancies
between these rankings. We compared the positional dif-
ferences in feature rankings between the two cohort data-
sets, where the features are arranged based on their
rankings in CFAS by each respective filter method
(Figure 4A).

Both datasets consistently positioned the top two fea-
tures (Braak stage and Thal phase) and the ninth feature
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(atherosclerosis) identically; however, notable differences
were found in the rankings of other features. For
instance, neuronal loss in the substantia nigra and corti-
cal atrophy occupied the third and fifth positions in
CFAS, yet these were ranked four and six positions
higher in ADNI. In contrast, diffuse plaques and arterio-
lar sclerosis, ranked eighth and tenth in CFAS, were
higher in ADNI, sitting at fourth and eighth positions.

Evaluation of the filter methods, including information
gain, reliefF, symmetric uncertainty, and least loss, revealed
considerable variations in feature ranking. Of note, the
most prominent discrepancies were identified using the least
loss filter method, with the top two features in CFAS and
ADNI descending six and nine positions, respectively.

To summarise, there is considerable variability in
pathological feature rankings in CFAS and ADNI

Non-Dementia Dementia

F I GURE 2 Distribution of
neuropathology features in CFAS
and ADNI datasets. The
distribution of individuals with
(orange) and without (blue)
dementia was examined in both
the CFAS and ADNI
neuropathology datasets. The
features presented in the table were
arranged based on their ranking in
the features list, moving from left
to right. It is important to note
that all features, except for
cerebral amyloid angiopathy, were
categorical in nature. In CFAS,
cerebral amyloid angiopathy was
the only feature that had numeric
values.
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datasets across the examined filter methods. However,
certain features, like the Braak stage, demonstrated
consistent patterns irrespective of the filter method
employed. The discrepancy in ranking positions might
result from differing models used by the filter methods
to compute feature-to-class correlations. Despite nor-
malising average scores to a unified scale to mitigate
deviations, some features displayed diverse rankings.

The study used Figure 4B to compare different filter
methods, aiming to showcase the consistency of each
method when applied to two datasets, CFAS and ADNI.
Kendall’s tau measure was used to evaluate the level of

consistent feature ranking within each dataset by each fil-
ter method. Kendall’s tau measures the correlation
between two ranking lists, with values near 1 signalling
agreement, and values near �1 indicating disagreement.
Filter methods were assessed based on their statistical
relationships between the ranked features in both
datasets.

We show in Figure 4B that the reliefF, chi-square,
and least loss filter methods exhibited positive correla-
tions in feature rankings for both ADNI and CFAS data-
sets. These results were in line with the earlier feature
ranking for these filter methods. For instance, the reliefF,

(A)

(B)

F I GURE 3 Ranking of
neuropathology features in order of
association to dementia status as estimated
by filter methods in (A) CFAS and
(B) ADNI. The cumulative contributions
of 13 neuropathology features to dementia
status in the CFAS and ADNI datasets are
estimated by seven filter methods. The
weight scores of each feature were
normalised, and the percentage
contribution of each feature was calculated
by averaging the total weights assigned to
it by the filter methods.
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chi-square, and least loss methods showed similar rank-
ings for features such as Thal phase, Braak stage, neuro-
nal loss in substantia nigra, neocortical neuritic plaque,
and cortical atrophy, with minor variations, indicating
their reproducibility in feature ranking. Three methods
maintained some consistency in feature rankings for the
ADNI dataset, including the Braak stage, Thal phase,
and neocortical neuritic plaque. Conversely, negative
correlations were observed for variable analysis and

information gain filter methods with (r = �0.36,
p-value = 0.10) and (r = �0.18, p-value = 0.44), respec-
tively, when applied to ADNI and CFAS datasets. Addi-
tionally, the gain ratio and symmetric uncertainty filter
methods showed only slight consistency in feature rank-
ing between the ADNI and CFAS datasets, with Kendall
correlation coefficients (r = �0.03, p-value = 0.95) and
(r = �0.053, p-value = 0.86), respectively, close to zero.
Of all methods, reliefF displayed the highest agreement

(A)

(B)

F I GURE 4 Comparison of feature rankings in CFAS and ADNI. (A) Relative difference in the ranking of each neuropathology feature as
estimated by each filter method. (B) Kendall’s tau measure of correlation between CFAS and ADNI feature rankings from each filter method.
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between CFAS and ADNI feature rankings with Kendall
correlation coefficients of r = 0.21 and p-value = 0.37,
while variable analysis exhibited the most significant dis-
agreement with Kendall correlation coefficients of
r = �0.36 and p-value = 0.10. Overall, reliefF, chi-
square, and least loss filter methods showed some degree
of consistency with Kendall correlation coefficients
(r = 0.21, p-value = 0.37), (r = 0.18, p-value = 0.44),
and (r = 0.18, p-value = 0.44), respectively, whereas the
remaining methods resulted in inconsistent feature rank-
ing between the two datasets.

3.4 | High correlation between AD
pathological features

Our study conducted a thorough analysis of the CFAS
and ADNI datasets, which included 13 shared features.

The analysis involved plotting the feature–feature corre-
lation to identify highly correlated features. For instance,
in neocortical neuritic plaques, we observed correlation
coefficients of 0.55, 0.52, 0.63, and 0.73 for diffuse pla-
ques, CAA stage, Braak phase, and Thal phase, respec-
tively. Figure 5A shows a positive correlation of Thal
phase with diffuse plaques, CAA, and Braak stage with
values of 0.49, 0.63, and 0.63, respectively. Additionally,
The CAA was positively correlated with diffuse plaques
with a value of 0.65, as reflected in Figure 5B. Further-
more, atherosclerosis demonstrated positive correlations
with diffuse plaques, CAA, and arteriolar sclerosis of
0.80, 0.64, and 0.61, respectively. CAA also exhibited
positive correlations with neuronal loss at substantia
nigra and Braak stages of 0.53 and 0.47, respectively.
These correlations suggest a possible cluster of features
that include the Thal phase, Braak stage, CAA, neocorti-
cal neuritic plaques, and diffuse plaques.

(A)

(B)

F I GURE 5 Spearman correlations
and R 2 of pathological features from the
ADNI and CFAS datasets. (A) A heat map
of Spearman correlation for the CFAS
neuropathological dataset. (B) Spearman
correlation for the ADNI
neuropathological dataset. A correlation
coefficient close to 1 (red) indicates a very
strong positive correlation between the two
variables, while a correlation coefficient
closer to �1 (blue) indicates a strong
negative correlation. Generally, the lighter
the colour, the closer it is to white (zero),
and the weaker the correlation. On the
right-hand side of panels, A and B, the R 2

values range from 0 to 1.

10 of 16 RAJAB ET AL.



Our study aimed to investigate whether the feature–
feature correlations substantially influence the feature
ranking determined by filter methods and which filter
methods were most sensitive to these associations. To
achieve this, we excluded the diagnostic class and consid-
ered each feature as a dependent variable, and the rest of
the features as independent variables. We then utilised
multiple regression models to determine the coefficient
(R2), which measures the similarity of the available fea-
ture to the rest of the dataset by identifying how the
remaining features can explain the feature’s variability.
In both CFAS and ADNI, the Thal phase, neocortical
neuritic plaque, and Braak stage showed the highest R2

scores, indicating their potential significance in these
datasets, with scores of 65%, 63%, and 61% for CFAS
and 87%, 83%, and 82% for ADNI, respectively. There-
fore, to investigate the impact of feature–feature correla-
tions on feature ranking using filter methods, it is
necessary to analyse the association between feature cor-
relations and feature ranking scores.

3.5 | Impact of feature–feature correlations
on feature ranking

This study further investigated discrepancies and incon-
sistencies in feature rankings obtained by filter methods
in the two neuropathology datasets. In particular, we
considered the impact of feature–feature correlations on
feature ranking scores. The aim was to identify filter
methods that were less sensitive to potential collinearity
between the neuropathological features and observe
whether their rankings were more consistent between
CFAS and ADNI.

For each dataset, we regressed each feature against
all other feature and reported the R2 of the fit. We also
ranked the features using the different filter methods and
applied a Min-Max normalisation technique on the rank-
ing scores to ensure that all values were on the same
scale. For the CFAS dataset, the results indicated a weak
positive relationship between feature ranking scores and
R2 for most filter methods (Figure 6), lowest with Least
Loss (r = 0.23, p = 0.0446) and highest with ReliefF
(Pearson r = 0.61, p = 0.0281). Gain ratio was also
demonstrated a weak relationship (CFAS: r = 0.28,
p-value = 3.46e�01). There was a greater positive corre-
lation between feature ranking scores and R2 values in
ADNI across all filter methods, with lowest again being
Least Loss (r = 0.79, p-value = 1.34e�03) and highest
with ReliefF (r = 0.92, p-value = 8.85e�06).

By illustrating a line of best fit between the rank
scores and R2, we highlight several features whose rank-
ing are not explained by their feature–feature correlation.
In particular, Braak stage achieved a higher rank than
expected by its R2 when using six of the filter methods in
CFAS and three of the methods in ADNI (Figure 6).
Cortical atrophy was also higher ranked than expected in

all the methods in CFAS, but interestingly in ADNI it
was lower than expected. These features may contain less
redundant information on dementia status and could be
prioritised for neuropathology assessment.

3.6 | Classification using highly ranked
neuropathology features

The study employed classification models, specifically the
RF and Naive Bayes classifiers [13], to evaluate the effi-
cacy of selected neuropathological features. We assessed
the performance of dementia classification on specific
subsets of data from both ADNI and CFAS datasets.
The features selected for evaluation in the CFAS and
ADNI datasets were presented in Table S2.

Accuracy, sensitivity, and specificity rates of the RF
and Naive Bayes classifiers on distinct subsets of neuro-
pathological features in the CFAS and ADNI datasets
were investigated and compared. Figure 7A shows that
the dementia classifications obtained from the RF algo-
rithm using ADNI in all group subsets were superior to
those derived from CFAS, except for the sensitivity rate
calculated by the RF algorithm on the CFAS dataset.
The same pattern was observed with the Naive Bayes
algorithm based on the same group subsets Figure 7B.

The classification algorithms derived from distinct
sets of neuropathological features demonstrate higher
sensitivity rates. Higher sensitivity rates are desirable to
minimise false negatives and ensure that individuals with
dementia are accurately identified. Notably, CFAS
exhibits remarkable sensitivity rates for features ranking
higher than expected (RHE) based on feature–feature
correlation. These features are denoted as those falling
below the confidence intervals in Figure 6. For instance,
the RF classifiers derived from such features in CFAS
have a sensitivity rate of 81.3%. A similar trend was
observed with Naive Bayes classifiers derived from RHE
subset in CFAS with a sensitivity rate of 81.3%.

However, the specificity rate of the CFAS features
RHE was low 54.3%. This subset’s low specificity implies
that the classifiers cannot distinguish patients without
dementia from those with the condition. Overall, the clas-
sification algorithms and all neuropathological subsets
generated low specificity rates, at least for the CFAS
dataset.

Conversely, the classification algorithms performed
exceptionally well for distinct subsets of the neuropatho-
logical features in ADNI. According to the ADNI
results, a RF algorithm produced the best classifier for
features RHE, with a 94.40% accuracy, 90.0% sensitivity,
and 98.4% specificity, demonstrating high predictive
power. While in CFAS, Naive Bayes performed best for
a subset of ranking higher than expected at 70.6% accu-
racy, 81.3% sensitivity, and 54.3% specificity. When we
trained the classifiers on ADNI, the classification perfor-
mance for RF dipped only slightly to 67.0% accuracy
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F I GURE 6 The relationship between feature–feature correlation and feature ranking obtained from filter methods using ADNI-pathology and
CFAS datasets. Best fit linear models with confidence intervals (shading) describe the relationship. Pearson’s correlation coefficients (r) and p-values
(p) are reported.
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and for Naïve Bayes to 67.2% accuracy using the highly
ranked features (Figure 7C).

The feature selection analysis results align with the
classification algorithms’ findings. Based on these results,
clinicians can leverage informative neuropathological
features during the clinical assessment of dementia,
including features RHE by feature–feature correlation
from ADNI. Furthermore, although the sensitivity
results obtained from the distinct feature subsets of
CFAS by the classification algorithm were remarkable,

the ADNI feature subset results were more convincing.
This was because the performance measures results were
balanced, making ADNI more suitable for dementia
analysis, at least when neuropathological features were
considered.

DISCUSSIONS AND CONCLUSIONS
According to the initial analysis presented in the distribu-
tion of neuropathology feature scores across dementia
cases, several findings were observed, some of which have

F I GURE 7 Classification performance
using subsets of ranked features.
(A) Performance results obtained by the
random forest algorithm on the different
subsets of features. (B) Performance results
obtained by the Naive Bayes algorithm on
the different subsets of features. For both
classification algorithms, the accuracy,
sensitivity, and specificity measures were
used for subsets of features for CFAS and
ADNI datasets. The feature names for the
subsets were shown in Table S2.
(C) Performance of the random forest and
Naïve Bayes algorithms for classifying
individuals in CFAS when trained on the
feature rankings and data from ADNI.
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been previously published. Both the CFAS and ADNI
studies showed that the percentage of individuals with
dementia increased as the Braak stage increased, with a
peak at stage IV for CFAS and stage V for ADNI
[20, 44]. Similarly, both studies observed an increase in
the Thal phase [20, 44]. The CFAS data showed higher
CAA across individuals, while ADNI revealed a
higher rate of dementia was associated with a higher
number of brain areas with CAA and its severity. Addi-
tionally, both studies observed brain atrophy in dementia
patients.

The study demonstrated consistent rankings of neuro-
pathological features across different filter methods, with
Kendall’s tau revealing correlated rank orders between
ADNI and CFAS datasets for methods generating the
same rankings. Notably, reliefF, chi-square, and least loss
methods exhibited similar rankings for specific features in
both datasets, suggesting their reproducibility. However,
some methods, such as gain ratios and symmetric uncer-
tainty, resulted in divergent rankings between ADNI and
CFAS. The observed variability in rankings may be attrib-
uted to differing models used by these methods for
feature-to-class correlations. Despite deviations, certain
features, like the Braak stage, maintained consistent pat-
terns across filter methods. Figure 4B highlighted consis-
tency in rankings from reliefF, chi-square, and least loss
methods in both datasets, underscoring their reliability.
ReliefF demonstrated the highest agreement between
CFAS and ADNI feature rankings, but its rankings were
mostly explained by feature–feature correlation. This
method calculates feature weights based on differences in
feature values between instances and their nearest neigh-
bours. When two or more features are highly correlated,
the differences in their values may not provide distinct and
meaningful information. In contrast, using least loss for
feature ranking may be less impacted by feature–feature
correlation because it selects features that contribute the
least to a classifier model’s loss or error, hence, focusing
more on the marginal information gained by the feature.
Recommendations from filter methods seemed context-
dependent, so future analyses should explore sensitivity
analyses, techniques to normalise different feature distribu-
tions, and ensemble approaches to assess the suitability of
combining different methods for specific cohorts in order
to enhance the robustness and generalizability of the
findings.

We further assessed the impact of selecting subsets of
ranked features on the classification of dementia. Classi-
fication algorithms developed from distinct sets of neuro-
pathological features had a high cross-validation
accuracy of up to 94.4%, 90.3% sensitivity, and 98.4%
specificity using the RF classifier in ADNI for ranked
features impacted by feature–feature correlation. While
in CFAS, the Naive Bayes classifier achieved the highest
cross-validation performance in classifying dementia sta-
tus with 70.6% accuracy, 81.3% sensitivity, and 54.3%
specificity for the subset of highly ranked features. The
performance on CFAS classification is similar (67.2%

accuracy) when Naive Bayes was trained on ADNI. This
classification performance is consistent with the previous
classification models using neuropathology features in
CFAS [20], and using imaging features from ADNI
in deep neural networks [45, 46].

The study’s limitation stems from differing dementia
prevalence in the cohorts, posing a potential confounder
for interpreting neuropathological feature correlations. The
observed associations may partly reflect the influence of
varying dementia rates rather than intrinsic feature rela-
tionships. Generalizability is constrained by cohort-specific
characteristics, cautioning against broad extrapolations,
especially to populations with distinct dementia neuropath-
ological feature distributions. To mitigate the impact of
imbalanced class distribution, we employed SMOTE-NC
during the resampling process. Future research should con-
sider stratified analyses based on dementia status, explore
methods to further mitigate confounding, and prioritise
larger, balanced samples for robust conclusions in
dementia-related neuropathological investigations. Addres-
sing missing data became imperative in our study because
of the limitations in cohort sizes (ADNI = 70 samples,
CFAS = 177 samples) and the potential challenges for
machine learning models in handling NaN values. To
tackle this issue, we implemented an iterative imputation
approach using the Scikit-learn library. This method facili-
tated the imputation of missing values for both numerical
and categorical features. Our meticulous imputation strat-
egy was crucial not only caused by the inherent limitations
in our cohorts but also in the context of the preceding dis-
cussion on the impact of missing value imputation on
feature–feature correlations, especially in the domain of
dementia neuropathology data.

In conclusion, this research demonstrated the associ-
ation between feature–feature correlation and the fea-
ture ranking scores obtained by filter methods in
medical applications such as dementia diagnosis. The
study found that the ReliefF filter method is less sensi-
tive to feature–feature correlations and that these corre-
lations substantially impact the ranking of features and
the performance of diagnosis models developed from
the two dementia cohorts. The findings of this study
indicate that filter methods for selecting neuropathology
features associated with dementia are impacted by the
feature–feature correlation and may differ between
cohort studies. It is important to note that these results
are based on the analysis of just two datasets, and fur-
ther study may be required for broader applicability. By
investigating the potential bias in filter methods, it is
possible to minimise discrepancies in feature rankings
and determine a reliable set of important features for
the purpose of classification algorithms.

AUTHOR CONTRIBUTIONS
Data analysis: MR, DW. Writing of first draft: MR,
DW. Common Features between CFAS and ADNI:
MR, TT, DW. Data oversight and analysis results inter-
pretation: MR, DW. Contribution to interpretation and to

14 of 16 RAJAB ET AL.



the final manuscript: MR, DW. All authors read and
approved the final manuscript.

ACKNOWLEDGEMENTS
We extend our sincere appreciation and gratitude to Ste-
phen B Wharton, Fiona E Matthews, and Carol Brayne
for their invaluable contributions in preparing the data
and affording us the opportunity to utilise it in this
study. Additionally, we would like to acknowledge the
crucial role played by the liaison officers, general practi-
tioners, their staff, and the nursing and residential home
staff. We express our profound appreciation to the
respondents and their families for their remarkable gen-
erosity towards medical research, without which this
study would not have been possible. Data collection and
sharing for this project was funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health Grant U01 AG024904) and
DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). The investigators within the
ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: http://adni.
loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.

FUNDING INFORMATION
This work was supported by the Medical Research
Council (MRC/G9901400, U.1052.00.0013, G0900582).
SBW is also supported by the Alzheimer’s Society (AS-
PG-17-007 and AS-PG-14-015). Work in the individual
CFAS centres is supported by the NIHR Sheffield Bio-
medical Research Centre—awarded to Newcastle-
upon-Tyne Hospitals Foundation Trust; Cambridge
Brain Bank supported by the NIHR Cambridge Bio-
medical Research Centre; Nottingham University Hos-
pitals NHS Trust; University of Sheffield, Sheffield
Teaching Hospitals NHS Foundation Trust and NIHR
Sheffield Biomedical Research Centre; The Thomas
Willis Oxford Brain Collection, supported by the
Oxford Biomedical Research Centre; The Walton Cen-
tre NHS Foundation Trust, Liverpool. DW is supported
by the Academy of Medical Sciences Professorship
(APR7_1002) and the Engineering and Physical Sci-
ences Research Council (EP/V029045/1). MR is sup-
ported by the Saudi Arabia Ministry of Education, PhD
Scholarship. We would like to acknowledge the essential
contribution of the liaison officers, the general practi-
tioners, their staff, and nursing and residential home
staff. We are grateful to our respondents and their fami-
lies for their generous gift to medical research, which
has made this study possible.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data from the CFAS study is accessible via application
to the CFAS (http://www.cfas.ac.uk/cfas-i/data/#cfasi-
data-request), under the custodianship of FM and
CB. Data from the ADNI study is accessible via applica-
tion to the ADNI (https://adni.loni.usc.edu/about/), con-
tingent on adherence to the ADNI Data Use Agreement.

CONSENT STATEMENT
For the CFAS dataset, fully written informed consents
were obtained from all participants or their authorised
representatives, and the study was conducted in accor-
dance with the ethical standards of the Declaration of
Helsinki. The study was undertaken with ethical
approval from a UK Multicentre Research Ethics Com-
mittee (10/H0304/61).

ORCID
Dennis Wang https://orcid.org/0000-0003-0068-1005

REFERENCES
1. Tampi RR, Jeste DV. Dementia is more than memory loss: neuro-

psychiatric symptoms of dementia and their nonpharmacological
and pharmacological management. Am J Psychiatry. 2022;179(8):
528–43.

2. Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina AM, Winblad B,
et al. The worldwide costs of dementia 2015 and comparisons with
2010. Alzheimers Dement. 2017;13(1):1–7.

3. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions
to prevent cognitive impairment, dementia and Alzheimer disease.
Nat Rev Neurol. 2018;14(11):653–66.

4. Hardy J. Alzheimer’s disease: the amyloid cascade hypothesis: an
update and reappraisal. J Alzheimers Dis. 2006;9(3 Suppl):151–3.

5. Hawkins DM. The problem of overfitting. J Chem Inf Comput.
2004;44(1), 1–12.

6. Guyon I, Gunn S, Nikravesh M, Zadeh LA. Feature extraction:
foundations and applications. New York: Springer; 2008.

7. Hinrichs A, Prochno J, Ullrich M. The curse of dimensionality for
numerical integration on general domains. J Complex. 2019;50:25–42.

8. Khaire UM, Dhanalakshmi R. Stability investigation of improved
whale optimization algorithm in the process of feature selection.
IETE Tech Rev. 2022;39(2):286–300.

9. Remeseiro B, Bolon-Canedo V. A review of feature selection
methods in medical applications. Comput Biol Med. 2019;112:
103375.

10. Thabtah F, Ong S, Peebles D. Detection of dementia progression
from functional activities data using machine learning techniques.
Intell Decis Technol. 2022;16(3):615–30.

11. Ceyhan M, Okyay S, Kartal Y, Adar N. The prediction of student
grades using collaborative filtering in a course recommender sys-
tem. 2021 5th international symposium on multidisciplinary stud-
ies and innovative technologies (ISMSIT), Ankara, Turkey; 2021.
p. 177–81.
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