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Multiomic analysis identifies a high-risk signature that predicts
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Recent genetic and molecular classification of DLBCL has advanced our knowledge of disease biology, yet were not designed to
predict early events and guide anticipatory selection of novel therapies. To address this unmet need, we used an integrative
multiomic approach to identify a signature at diagnosis that will identify DLBCL at high risk of early clinical failure. Tumor biopsies
from 444 newly diagnosed DLBCL were analyzed by WES and RNAseq. A combination of weighted gene correlation network
analysis and differential gene expression analysis was used to identify a signature associated with high risk of early clinical failure
independent of IPI and COO. Further analysis revealed the signature was associated with metabolic reprogramming and identified
cases with a depleted immune microenvironment. Finally, WES data was integrated into the signature and we found that inclusion
of ARID1A mutations resulted in identification of 45% of cases with an early clinical failure which was validated in external DLBCL
cohorts. This novel and integrative approach is the first to identify a signature at diagnosis, in a real-world cohort of DLBCL, that
identifies patients at high risk for early clinical failure and may have significant implications for design of therapeutic options.
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INTRODUCTION
While the majority of DLBCL patients are potentially cured after
standard therapy, there remains a subset of patients who do not
respond to front line treatment [1]. The approximate 70% of
DLBCL patients treated with curative therapy in the frontline
setting avoid retreatment, progression, relapse, or death within 24
months of diagnosis (termed event-free survival at 24 months or
EFS24) have a good prognosis while the remaining 30% have a
very poor outcome [2]. Using clinical factors we developed and
validated the International Prognostic Index for EFS24 (IPI24) [3],
which can be used at diagnosis for personalized risk prediction.
Beyond clinical characteristics [4], molecular features associated
with DLBCL prognosis include cell-of-origin (COO) [5, 6] and MYC,
BCL2, or BCL6 translocation status, or MYC “double hits (DH)” [7–9],
with DH-DLBCL now considered as a distinct entity, High Grade B
Cell Lymphoma (HGBCL) [10]. More recent molecular classification
of DLBCL based on genomics, expression profiles, and tumor
microenvironment has further refined our understanding of
DLBCL heterogeneity and biologic underpinnings [11–18]. While
these studies have advanced our understanding of DLBCL, none
were designed to identify early failures (EFS24) after frontline

standard of care therapy, which is of great interest for patient
management and could provide biologic insight and identification
of therapeutic targets. In addition, optimal utilization of novel
treatment strategies such as chimeric-antigen receptor T cell
(CAR T) or bispecific T-cell engager (BiTE) antibody therapy could
benefit from identification of patients at high risk of early failure,
as those therapies have not been shown to be related to currently
defined molecular subtypes.
To identify a biologic signature of early clinical failure, we used

next-generation sequencing (NGS) data generated on newly
diagnosed (ndDLBCL) and relapsed/refractory DLBCL (rrDLBCL)
tumors, combined with integrative computational approaches.
Based on this signature, patients at diagnosis can be categorized
into low, intermediate, or high-risk groups for early clinical failure
(EFS24) and inferior overall event-free (EFS) and overall (OS)
survival, independent of IPI, COO, and other known factors.

METHODS
Study populations
The overall study design is shown in Fig. S1. We used clinical and NGS data
from diagnostic tumors from 444 DLBCL patients from the University of
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Iowa and Mayo Clinic Lymphoma Specialized Program of Research
Excellence (SPORE) Molecular Epidemiology Resource [19] (MER, n= 433)
or from NCT00670358 (n= 11) [20], herein referred to as MER. All studies
were performed in accordance with the Declaration of Helsinki. Patients
provided written consent for use of clinical samples at study enrollment
and this study was approved by the Mayo Clinic Institutional Review Board.
Use of human Individual patient level data is shown in Table S1, all
identifiers are coded, and full details are in Supplemental Methods. We also
used NGS data from tumor samples at the time of relapse (rrDLBCL, any
line of treatment and no overlap with ndDLBCL cohort), consented to the
MER (n= 61), banked in the Mayo Lymphoma Biobank (waiver of consent)
(n= 50), or consented to the CC-122-ST-001 clinical trial (n= 32,
NCT01421524). NdDLBCL validation cohorts include those from the BCCA
(EGAS00001002936), Duke (EGAD00001003600), and REMoDL-B
(GSE117556) [18, 21, 22].

DNA sequencing and analysis
For WES, we used paired tumor (FFPE) and germline (extracted from
peripheral blood) DNA; sequencing was conducted at Expression Analysis,
Inc (Durham, HC, USA), as described in Supplemental Methods. After
quality control, WES data on 341 ndDLBCL were included. We also used
existing WES data generated at Mayo on 19 additional ndDLBCL tumors, as
well as previously analyzed WES data on Mayo DLBCL cases from Lohr et al
(n= 16) and Hartert et al (n= 28) [23, 24]. The final analysis cohort
included data from 404 ndDLBCL. Genes included for analysis are shown in
Table S2. Mutation calls from the BCCA (n= 121) and Duke (n= 441)
cohorts were provided by Dr. Morin, mutation calls from REMoDL-B
(n= 400) were obtained from Sha et al. [22] Copy number analysis (CNA)
was carried out using the Nexus Copy Number (Biodiscovery) software,
detailed in Supplemental Methods [24–26]. Classification methods for
LymphGen [13] and HMRN [14] and tools used for analysis are in
Supplemental Methods.

RNA sequencing and analysis
RNA was extracted from FFPE tissue sections and sequencing was
performed at Expression Analysis, Inc as described in Supplemental
Methods. Sample and RNA QC is shown in Fig. S2 for a final cohort of 321
ndDLBCL and 143 rrDLBCL cases with no overlapping cases. For validation,
we used data from BCCA provided by Dr. Morin (n= 121); Duke,
downloaded from EGA and processed in the Mayo Clinic Bioinformatics
Core (n= 442); and REMoDL-B, downloaded and processed on the NCBI
GEO website (n= 928) [18, 21, 22]. Data analyses, including the weighted
gene correlation network analysis (WGCNA), Ecotyper [16] and LME [17]
classification, COO, LymphProg [27], and differential gene expression
analysis, are described in Supplemental Methods.

Statistical analysis
EFS was defined as time from diagnosis to disease relapse/progression,
retreatment, or death, and EFS24 was defined as EFS status at 24 months
after diagnosis [2]. OS was defined as the time from diagnosis to death
from any cause. EFS and OS were evaluated using Cox proportional
hazards models and Kaplan Meier curves. EFS24 survival curves were
truncated at 24 months. Differences in survival curves were evaluated
using the log-rank test. For enrichment analysis of categorical variables, the
Chi Square or Fisher’s exact test was used. Comparative analyses were
carried out using either the Wilcoxon or Kruskal-Wallis test. A P < 0.05 was
considered statistically significant unless otherwise stated. Multiple testing
was performed as indicated in individual analysis. Analysis were performed
using R and GraphPad Prism [28].

RESULTS
Cohort description and performance of published molecular
classifiers for early clinical failure
A summary of available molecular and genetic features on the 444
ndDLBCL is shown in Fig. S3A. The median age at diagnosis was 64.5
years, 57% were male, and all were treated with immunochem-
otherapy; full clinical details are summarized in Fig. S3B. During a
median follow-up time of 82.8 months (for living patients), 168
(37.8%) had an event and 112 (25.2%) failed to achieve EFS24. Those
failing EFS24 had a median survival of only 18 months compared to
182 months for those who achieved EFS24. While some DLBCL

molecular classifiers have been associated with prognosis, none were
designed to discriminate early clinical failures. In our cohort, COO(5)
(overall, P= 0.05, compared to GCB, ABC HR, 1.63 [95% CI 1.08–2.45]
P= 0.019, and Unclassified HR, 1.50 [95% CI 0.84–2.67] P= 0.169),
and DH FISH (DH FISH+HR, 1.93 [95% CI 0.96–3.86] P= 0.064),
showed nominal associations with EFS24 in expected directions (Fig.
S4A, B). The recently developed DLBCL molecular classifiers HMRN,
LymphGen, and EcoTyper B Cell State showed expected distributions
(Fig. 1A−C top panel), but were not associated with EFS24 (Fig. 1A
−C, lower panel) and EFS24 failures spread across groups within each
classifier as shown in Sankey plots (Fig. 1A−C, middle panel top). The
genomic classification based on Chapuy et al was only available on
41 cases and therefore was not further analyzed [12].

WGCNA analysis of DLBCL
Because the existing molecular classifiers were at best weak
predictors of EFS24, we analyzed the RNA-seq data from our
ndDLBCL cohort (n= 321) using WGCNA [29], a method for
identifying biologic networks, or gene modules, by using pairwise
correlations between variables (Fig. 2A). Unsupervised hierarchical
clustering, followed by branch cutting, identified 15 modules with
a range of 17 to 2685 genes (Fig. 2B). EFS24 as well as COO and
DH characteristics were correlated with individual gene modules
(Fig. 2C). The strongest positive correlations were observed for the
cyan module (which included IRF4) with ABC and the pink module
(which included BCL6) with GCB (Table S3). The pink module also
showed strong correlation with DH FISH. Genes in the pink and
cyan modules are in Table S3. As proof of principle for the utility of
WGCNA, we calculated the eigengene gene score for each patient
for the two COO-associated modules and found that the scores
correlated well with their COO call (Fig. S5). The greenyellow
module had the strongest correlation with EFS24 failure
(r=−0.28), and was selected for further investigation. Genes
(n= 37; Table S3) in this module had a negative correlation with
EFS24 failure, suggesting that downregulation of their expression
may be associated with early clinical failure (Fig. 2C). Figure 2D
shows the tightly interconnected correlation network for the 37
genes in the greenyellow module.

Generation of a high risk EFS24 failure gene signature
As the WGCNA analysis was unsupervised, we conducted
complementary analyses that trained on the EFS24 endpoint using
RNA-seq data from both nd- and rrDLBCL cases. We selected
protein coding genes that were (1) differentially expressed
(FDR < 0.05, n= 779 genes) between cases who failed (n= 84)
and achieved (n= 237) EFS24; and (2) differentially expressed
(FDR < 0.05, n= 3640 genes) between cases who achieved EFS24
(n= 235) and rrDLBCL cases (n= 143, Fig. 3A). Next, genes
common to both analyses were intersected and added to the 37
genes from the WGCNA analysis, ultimately defining a 387 gene
signature associated with EFS24 failures and relapsed disease (Fig.
3B and Table S4). To score each patient for the gene signature, the
R tool singscore was used, which generates a totalscore for all 387
up- and downregulated genes (Fig. 3C) [30]. Patients who achieved
EFS24 had a lower totalscore (median= 0.108), while patients who
failed EFS24 (median= 0.165) or who had rrDLBCL (median=
0.168) had significantly higher totalscores. Next, we divided the
cases into three groups based on the distribution of their totalscore
by using a cut point of +/- one standard deviation (Fig. 3D), which
shows that EFS24 failures increase with higher scores. A heatmap
of the 387 gene signature, herein referred to as the risk signature,
for the low, intermediate, and high risk groups is shown in Fig. S6.

RNA risk signature is associated with prognosis
There was a strong association of the RNA signature score with EFS
(Fig. 4A) and OS (Fig. 4B). Compared to low risk, patients with an
intermediate or high risk signature had inferior EFS and OS, which did
not attenuate after adjustment for COO and IPI (Fig. 4C). Furthermore,
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results held in analyses stratified on COO, IPI, after exclusion of HGBCL
cases, and by treatment (Fig. S7A−G). The clinical features of cases in
each risk group are shown in Table S5. Next, we attempted to validate
our findings using gene expression data from cases with available
outcome data from BCCA, Duke, and REMoDL-B (Fig. 4D−F).
Compared to the low risk RNA signature group, patients with a high
risk signature in BCCA (PFS, HR, 9.62 [95% CI 2.12–43.55] P= 0.003),
Duke (OS, HR, 3.04 [95% CI 1.58–5.83] P= 0.001) and REMoDL-B (PFS,
HR, 2.4 [95% CI 1.57–3.68] P< 0.001) had inferior outcomes.

High risk cases are enriched with metabolic and TME
signatures
To better understand the biology underlying the RNA signature,
we conducted additional in silico analyses. Using a 26 gene TME
score (TME26) [31], we found a significant enrichment of TME
negative cases in the high risk group (Table S5, P < 0.0001),
suggesting the importance of overall cellular composition and TME
biology in these tumors. To further explore which biological
processes drive the high risk signature, we first performed pathway
analysis. We first looked at all 3 RNA analyses individually, the
WGCNA gene set, and the DEG analyses from Fig. 3A. As shown in
Fig. S8A, oxidative phosphorylation and metabolic processes genes
are represented in the greenyellow module. In the DEG analysis
between EFS24 achieve vs EFS24 fail we again identified oxidative
phosphorylation and metabolic processes (Fig. S8B). In the DEG
analysis between EFS24 achieve and rrDLBCL, there were genes

involved in mismatch repair, NF-κB, and inflammation (Fig. S8C).
Next, we ran overrepresentation analysis on the 387 genes from
our high risk signature and again identified genes that are involved
in metabolic processes and oxidative phosphorylation (Fig. 5A). We
then performed differential gene expression analysis between case
categorized as high risk (n= 41) vs low risk (n= 45) and found that
high risk cases were enriched for pathways related to oxidative
phosphorylation, glycolysis, DNA replication, Myc targets, and BCR
signaling. Supporting the TME26 finding, we also identified
downregulation of immune related pathways (Fig. S8D).
To further expand on the TME findings and explore the immune

composition of the high risk tumors we profiled the TME using
computational prediction approaches to assess immune cell content.
As shown in Fig. 5B using CibersortX, we found that there was a
significant decrease in CD4 memory and CD8 T cells, T follicular helper
(TFH), M0, M1, and M2 macrophages in the high risk group. These
results were further supported when we examined the TME using the
Lymphoma Ecotype or LME classifiers (Fig. S9), both of which
identified a significant increase in LME depleted or unclassified TME
Ecotype in the high cases vs low risk cases (Fig. 5C). Of note, EcoTyper
and LME classification were not associated with EFS24 (Fig. S9).

Integration of high risk signature with genetic features
To determine if our high risk signature was driven by unique
genetic features, we used WES and OncoScan data to define their
mutation and copy number landscape. Oncoplots for the mutation

Fig. 1 Current DLBCL classifiers do not discriminate early clinical failures. LymphGen (A), HMRN (B), and EcoTyper B Cell State (C)
classification of ndDLBCL. Pie charts (upper panel) show distribution of cases for each classifier. Sankey plots (middle panel) show the
distribution of EFS24 fail or achieve cases for each classifier. Kaplan−Meier analysis (lower panel) of EFS24 for each classifier, LymphGen
P= 0.96, HMRN P= 0.98, and B Cell State P= 0.73.

K. Wenzl et al.

3

Blood Cancer Journal          (2024) 14:100 



and copy number variants are shown in Fig. S10A, B. The high risk
cases were significantly enriched for mutations in TP53 and CREBBP
as well as copy number alterations in 18q21.33 (BCL2), 3q28 (BCL6),
6q14 (TMEM30A), 19q13.42, and 17q24.3 when compared to low
risk (Fig. 6A and Table S6). Enrichments by COO are shown in Fig.
S10C. Classification of by LymphGen and HMRN (Fig. 6B and Fig.
S10D) revealed that the high risk cases are spread across the
molecular classifiers. While no significant enrichments were found
in the high risk cases, we did see increased frequency of EZB, A53,
and BN2, supporting the mutation and translocation enrichments
for BCL2, CREBBP, P53, and BCL6. Because DLBCL is genetically
heterogeneous and not dominated by single mutations, it is
possible to miss the importance of less frequent variants that may

play a role in aggressive biology. We therefore performed a
pathway analysis using all genes previously reported to be
mutated in lymphoma (n= 268) as well as the PanCancer gene
list (n= 184) from maftools (Table S7) [11, 12, 18, 32, 33]. This
analysis revealed an enrichment of mutations in genes related to
Notch signaling, the cell cycle, splicing, and metabolism pathways,
when compared to low risk (Fig. 6C). Conversely, there was
enrichment of mutations in genes related PI3-kinase, Jak/Stat, and
MAP-kinase in the low risk cases.
In our ndDLBCL cohort the high risk signature captured 36% of

EFS24 failures. Therefore, we next wanted to determine if we could
integrate genetic features with the risk signatures to further refine our
ability to identify early failures (Fig. 6D). Using Lasso regression, we

Fig. 2 WGCNA analysis identifies biological modules associated with DLBCL clinical traits. A Schematic representation of WGCNA analysis
workflow, created with BioRender.com. B Cluster dendrogram showing the 15 identified modules defined by color. The gray module consists
of genes that could not be assigned to a co-expression module. C Correlation of individual WGCNA modules with selected traits (COO of ABC
or GCB, n= 279, DH-FISH n= 252, and EFS24, n= 321) was performed using Pearson correlation, *P < 0.05, **P < 0.001 and ***P < 0.0001.
D Correlation network representation of greenyellow module genes (n= 37) analyzed using the igraph R package.
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modeled the risk signatures alone or with the inclusion of mutations
(frequency ≥5%, OR > 1, and P≤ 0.15 in a Chi-square test for
association with EFS24, n= 22, Table S2). As expected, the high risk
signature alone strongly predicted EFS24 (Fig. 6D). Addition of
mutations to the model found that ARID1A was associated with
EFS24, and addition of ARID1A to the high risk signature, including
patients with either an ARID1A mutation and/or the high risk
signature, improved our model by increasing sensitivity and
predicting both positive and negative outcomes more evenly
(Fig. 6D). ARID1A mutations were also associated with EFS24 in the
entire cohort (unadjusted, HR, 2.42 [95% CI 1.17–4.93] P= 0.014,
adjusted for IPI, HR, 2.19 [95% CI 1.02–4.59] P= 0.04). Next, we
categorized patients who had both RNA-seq and WES data as low,
intermediate, or high risk and/or had an ARID1A mutation. Similar to
prior analysis, compared to low risk the new integrated high risk
signature was associated with EFS (HR, 13.53 [95% CI 4.84–37.84]
P< 0.001) (Fig. 6E.) Overall, the integrated high risk signature captured
45% of EFS24 failure in the MER cohort. The association with poor
outcome of integrated model including ARID1A was validated in
independent data sets (Kaplan−Meier curves shown in Fig. S11A−C)
from BCCA (PFS, HR 5.02, [95% CI 1.14–21.98] P= 0.03), and Duke (OS,
HR 2.8, [95% CI 1.48–5.32] P= 0.001), and REMoDL-B (PFS, HR 2.65,
[95% CI 0.85–3.19] P= 0.13).

Recent advanced in the field have highlighted new classification
models for DLBCL. Dark zone signature (DZsig), [34] which has
recently been incorporated into COO classification and was previously
referred to as double hit signature, identifies a subset of GCB and
unclassified cases with poor outcomes. Additionally, Ren et all
developed a gene expression score, LymphProg, that is a prognostic
predictor for treatment outcomes [27]. We first looked at the gene
sets for each classifier and found that our high risk signature shared 5
(1%) genes with DZ, and no genes with LymphProg, suggesting
minimal overlap in signatures. To determine if our new high risk
signature identified overlapping cases with either signature we first
classified our samples as DZ or high/low for LymphProg. The co-
occurrence between individual classifiers was quantified using
Cohen’s kappa coefficient (κ), which tests for agreement between
nominal variables, such as MCD with MYD88. As shown in Fig. 7, we
measured agreement of our risk signatures with individual classifiers
categories and compared the probabilities of each to identify
overlapping samples. Positive agreements are shown in red and
negative in blue. Cohen’s kappa values for all comparisons are shown
in Table S8. This analysis found that cases captured by our integrated
risk signature positively agreed with EFS24 failure (κ= 0.37) and LME
DE (κ= 0.21), but also LymphProg (κ= 0.25), ABC (κ= 0.19), and DZ
(κ= 0.16). This agreement was expected, as we found that our cases

Fig. 3 Generation of the RNA risk signatures. A Volcano plots showing differentially expressed genes (FDR < 0.05) between EFS24 achieve vs
fail or EFS24 achieve vs rrDLBCL cases. Red dots represent upregulated genes, blue dots represent downregulated genes, gold dots represent
genes identified in the WGCNA analysis, and gray dots are non-significant genes. B Schematic representation of how the 387 gene risk
signature was generated. C Boxplots TotalScores for the risk signature foreach patient. *P < 0.05. D Distribution of the scaled Totalscores.
Vertical lines represent +/- standard deviation which groups the scaled Totalscores samples into high, low and intermediated risk cases.
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identified by the integrated risk signature were a mixture of ABC
(56%), DZ (24%), GCB (18%), and unclassified (2%). The LymphProg
high cases agreed most highly with ABC (κ= 0.43) and LME-DE
(κ= 0.35), less so with EFS24 failure (κ= 0.14). This analysis also
showed expected agreements across all comparisons including LME-
IN and LE4 (κ= 0.47), both characterized by immune cell infiltration
and inflammation, TME26 negative and LME-DE (κ= 0.43), both
lacking immune cells, MCD with MYD88 (κ= 0.3), both of which
harbor MYD88 mutations, and EZB with BCL2 (κ= 0.27), both
classified by mutations in BCL2 and EZH2. Together, these data

suggests that our new risk signature is unique and identifies high risk
cases across existing DLBCL classifiers.

DISCUSSION
In recent years, several molecular and immune classification
systems have been developed to subgroup DLBCL, which has
advanced the understanding of biological pathways driving this
disease. However, our results suggest that these known clusters
fail to identify patients with an early clinical failure, limiting their

Fig. 4 Outcome and clinical characteristics of risk signature groups. A Event free and (B) overall survival of MER ndDLBCL cases according
to RNA risk signature classification. Cox model of high and intermediate risk signatures compared to low risk unadjusted or adjusted for IPI
and/or COO, HR shown on image. D−F Validation of RNA risk signature association with outcome in the BCCA, Duke and REMoDL-B DLBCL
cohorts. The hashed line and percentage shown on EFS curves indicate the percent of case achieving EFS24 in each risk group.
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use in clinical decision making at diagnosis. Using a multiomic
approach on a highly annotated cohort of ndDLBCL, we describe a
risk signature that captured patients at risk of early failure and
poor overall outcomes, and further in silico analysis suggests the
aggressive biology is defined by metabolic expression profiles and
depleted tumor microenvironments. In a simultaneous analysis of
these data, we performed an unsupervised analysis on transcrip-
tomics features from ndDLBCL patients and identified 7 clusters,
one called A7 (Aggressive lymphoma 7) with poor prognosis and
defined by ABC COO, low TMA, and high myc expression [35].
Interestingly, our high risk gene expression signature shared
overlap with only 17% of A7 cases, suggesting that unique
aggressive features were detected by each approach.
Our findings that high risk DLBCL tumors were driven by a

metabolic signature are supported by prior gene expression

studies where Monti et al. [36] identified a subgroup of DLBCL,
OxPHOS-DLBCL, defined by a dysregulation of genes belonging
to the mitochondrial oxidative phosphorylation pathway
(OxPhos) [36] with further analysis suggesting that those
tumors develop an independent nutrition mechanism [37].
However, the association of OxPHOS-DLBCL with outcome has
not been fully explored. The metabolic shift being detected by
our high risk signature may be consistent with the “Warburg
Effect” [38] a well know mechanism of cancer progression that
is often associated with aggressive disease. As recently
reviewed by De Martino et al. [39], metabolic alterations
associated with malignant transformation and tumor progres-
sion can influence tumor-infiltrating immune cells, which may
explain our findings that high risk tumors with metabolic
signatures have a depleted TME.

Fig. 5 Pathway and TME characteristics of high risk signature DLBCL. A Bar plot displaying results from overrepresentation analysis for high
risk cases. B Boxplots of individual cell populations identified by CIBERSORTX in the low, high, and intermediate risk groups. P values represent
comparison between all three groups performed by a Kruskal–Wallis test and the line represents a *P < 0.05 between high and low risk groups
performed by Wilcoxon test. C Bar plot showing the distribution of Lymphoma EcoType and LME classification in each risk group. The line
represents a *P < 0.05 for the comparison of the number of NA or LME-Depleted between the high and low risk groups.
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Fig. 6 Genetic features of high risk DLBCL. A Forest plot showing enrichment of mutations and copy number events between the high and
low risk groups. B Bar plot showing the distribution of LymphGen and HMRN classification in the high risk group. C Dot plot showing the
percentage of samples which have mutations in the represented pathways. Red dots represent the percentage of samples in the high risk
group while blue dots represent the percentage of cases in the low risk group. Shown pathways have at least a 1.3 fold increase or decrease
between both groups. D Lasso regression model of the predictive value of the risk signatures alone (left panel) or with inclusion of mutations
(right panel). Lasso metrics of the risk signature alone, with mutations, or with ARID1A are shown in the Table. E Kaplan−Meir curve showing
event free survival of high risk DLBCL with the inclusion of ARID1A mutations.
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There is a growing literature suggesting that a lack of TME
involvement has a negative impact on outcome [16, 17], Kotlov
et al., reported that the highest number of non-responders on
standard chemotherapy where classified as TME depleted [17].
Our high risk signature is unique in that it simultaneously captures
cases with both metabolic and TME dysregulation, allowing for
early capture of aggressive DLBCL with potentially heterogenous
biologic programs. Although, we recognize that the signature
genes do not clearly represent a specific TME signature, rather, we
would hypothesize that the metabolic signature detected by the
genes occurs early in tumor development with the TME alterations
arising as the tumor progresses.
Several studies have attempted to identify the prognostic value

of single genetic alterations [40, 41], yet there is little consensus
between studies. However, our data do align with previous
findings on TP53 alterations, which have been shown to be
prognostic of inferior survival in DLBCL.[41–44] Mutations inTP53
were found to be associated with EFS24 in the entire cohort
(n= 404, unadjusted, HR, 1.8 [95% CI 1.02–3.13] P= 0.04, adjusted
for IPI, HR, 1.93 [95% CI 1.07–3.45] P= 0.03), but did not increase
the predicative ability of our signature, most likely because the
high risk signature already identified TP53 mutated cases. Because
TP53 mutations are well known to be associated with metabolic
rewiring and chemoresistance, we hypothesize it may play an

important role in driving the metabolic signature identified in our
study [44–48]. Beyond TP53, our analysis highlights a role for
ARID1A, a member of the SWI/SNF complex, in aggressive disease
biology. ARID1A mutations have been implicated in both tumor
suppression and tumor initiation in many malignancies, including
DLBCL [49, 50]. In addition to being an important chromatin
modifier, ARID1A is involved in double strand break repair,
homologous recombination, and mismatch repair pathways
[51–55]. ARID1A can also directly bind TP53 to enhance its activity
[56], thus loss of ARID1A may act like a tumor suppressor and have
a negative prognostic impact even in the absence of TP53
alterations. ARID1A truncating mutations are a defining feature of
the LymphGen EZB genetic subtype, which is enriched for GCB
DLBCL and characterized by epigenetic dysregulation [13]. EZB is
also defined by mutations in CREBBP and alterations in BCL2, both
of which are enriched in our high risk cases. The ability of CREBBP
to modulate the TME through downregulation of MHC expression
[57] combined with the potential for ARID1A to drive cell
proliferation may be an important mechanism that drives high
risk DLBCL. This is further supported by recent findings by Barisic
et al. [58] suggesting that ARID1A mutations may be linked to
accelerated transformation of follicular lymphoma to DLBCL.
Moving forward, our signature and proposed classification

approach (Fig. S11E) may have important clinical implications. While

Fig. 7 Agreement between DLBCL classifiers in MER DLBCL. To measure the agreement, or co-occurance, between individual classifiers (ie
LympGen EZB with HMRN BCL2), Cohen’s kappa statistic was used. Agreements that had a 95% CI that did not span 0 in a positive (red) or
negative (blue) direction are shown in the heatmap.
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not a primary focus of this manuscript, our risk classifier identified
cases with a low risk of having an early event. This may be a subgroup
of patients that will benefit from standard of care treatment with
R-CHOP and may be spared from use of more toxic or expensive
therapies. Identification of cases at diagnosis with our high risk
signature could select patients appropriate for clinical trials evaluating
frontline CAR-T or CD20 x CD3 bispecific antibodies + R-CHOP, both
of which are currently enrolling. These therapies have demonstrated
efficacy in patients resistant to chemotherapy in the relapsed setting,
though biomarkers of response and resistance, including molecular
alterations, remains limited for these newer therapies. Earlier
identification of these patients at diagnosis could allow for sooner
CAR-T manufacturing reducing the percentage of patients with
progression prior to receiving CAR-T, a key barrier to this therapy. We
also identified several important biological pathways that may be
directly targetable. Pre-clinical studies have shown that cell lines with
ARID1A mutations are sensitive to EZH2 inhibitors [59], such as
tazemetostat, which are currently approved for the treatment of FL
and are in clinical trial development for DLBCL. Lastly, a growing
preclinical literature points to the possibility of targeting cancer cell
metabolism to achieve immunostimulatory effects that could be
maximized with combined immunotherapy.
In summary, we used integrative computational approaches to

identify a multiomic signature of early clinical failure. Our
signature captures important clinical and pathological character-
istics, individual molecular alterations, and biological pathways in
one signature for patient stratification at diagnosis which may be
used inform clinical management.
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