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Abstract
The early diagnosis of brain tumors is critical in the area of healthcare, owing to the potentially life-threatening repercussions
unstable growths within the brain can pose to individuals. The accurate and early diagnosis of brain tumors enables prompt
medical intervention. In this context, we have established a new model called MTAP to enable a highly accurate diagnosis
of brain tumors. The MTAP model addresses dataset class imbalance by utilizing the ADASYN method, employs a network
pruning technique to reduce unnecessaryweights and nodes in the neural network, and incorporatesAvg-TopKpoolingmethod
for enhanced feature extraction. The primary goal of our research is to enhance the accuracy of brain tumor type detection,
a critical aspect of medical imaging and diagnostics. The MTAP model introduces a novel classification strategy for brain
tumors, leveraging the strength of deep learning methods and novel model refinement techniques. Following comprehensive
experimental studies and meticulous design, the MTAP model has achieved a state-of-the-art accuracy of 99.69%. Our
findings indicate that the use of deep learning and innovative model refinement techniques shows promise in facilitating the
early detection of brain tumors. Analysis of the model’s heat map revealed a notable focus on regions encompassing the
parietal and temporal lobes.
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1 Introduction

A brain tumor is a mass or abnormal growth of cells within
the brain or the central spinal canal. This uncontrolled growth
can arise from various cell types within the brain, including
glial cells, neurons, and meningeal tissues. The development
of brain tumors can result from genetic mutations, exposure
to ionizing radiation, certain hereditary conditions, or envi-
ronmental factors. Genetic mutations may disrupt the normal
regulatory mechanisms that control cell growth and division,
leading to the formation of a tumor [1]. The classification
of brain tumors is intricate due to the diversity of cell types
within the central nervous system and the varied pathological
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behaviors exhibited by these tumors. TheWorldHealthOrga-
nization (WHO) classification system stratifies brain tumors
based on histological, genetic, and molecular characteristics,
resulting in a classification that encompasses over 100 dif-
ferent types and subtypes of brain tumors [2].

Tumors in the brain are divided into two categories:malig-
nant and benign. Malignant tumors, if not detected in their
early stages, can lead to significant damage to brain tissue
and can be fatal. Malignant tumors are classified into sub-
types such as meningiomas, gliomas, and pituitary tumors.
Meningiomas originate in the cells surrounding the brain and
can present challenges for accurate diagnosis. Meningiomas
are often slow-growing tumors that originate in themeninges,
the protective layers surrounding the brain and spinal cord.
They are typically benign but can cause problems due to their
location and potential compression of surrounding brain tis-
sue [1]. Glioma is a type of brain tumor that originates from
the supportive cells in the brain, known as glial cells, and
can be of low or high grade depending on the severity of
the tumor [2]. Pituitary tumors, which develop within the
pituitary gland located at the base of the brain and often
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referred to as the master gland, are typically non-cancerous
growths. These tumors can cause overproduction or under-
production of hormones, resulting in a variety of hormonal
imbalances and associated symptoms [3]. Given their ability
to cause damage to brain tissue and cause a variety of side
effects, brain tumors should be identified as soon as possible,
whether malignant or benign [4].

Diagnosing brain tumors involves a multidisciplinary
approach, integrating clinical assessments, neuroimaging,
and histopathological analysis. Neuroimaging techniques
such as magnetic resonance imaging (MRI), computed
tomography (CT), and positron emission tomography (PET)
scans play a critical role in visualizing and locating tumors
within the brain. Histopathological examination of biopsy
or surgical specimens provides detailed insights into the
tumor’s cell type, grade, and molecular features [2]. Brain
tumor diagnosis is critical for effective therapy and improved
patient outcomes. Early detection allows for the rapid begin-
ning of suitable therapeutic measures, potentially boosting
treatment success and lowering morbidity associated with
advanced-stage malignancies [5]. Early diagnosis also offers
the possibility of less invasive surgical procedures and better
preservation of neurological function.

Brain tumors should be identified quickly and accurately
to develop effective treatment methods, with characteris-
tics such as tumor stage, pathological kind, and degree
being crucial in treatment technique selection. The literature
highlights numerous studies on computer-assisted medical
diagnosis, notably those that use convolutional neural net-
works (CNNs), which are deep learning approaches for
extracting relevant information from medical images such
as MRI scans. Precision identification of tumor size and
location is critical for successful diagnosis in MRI, a task
usually accomplished by skilled doctors visually reading the
data. On the other hand, computer-aided systems necessitate
collaboration with skilled medical practitioners to identify
critical image components for optimal system results. CNN
technology automates these processes, leading to enhanced
efficiency

This work contributes by creating a clinical decision
support system to help healthcare workers who lack knowl-
edge in detecting brain tumors from MR images. Recently,
research in this field extensively employs transfer learn-
ing models. However, models prepared for larger datasets
encompass numerous parameters, leading to expensive hard-
ware and time costs. To expedite model predictions, this
study introduces a simplified and computationally efficient
CNN model. In this context, the weights of the model were
examined to enhance computational efficiency and expedite
model training, leading to the removal of unnecessary lay-
ers. This process facilitated the development of a leaner and

faster model. Furthermore, performance was enhanced by
integrating the Avg-TopK pooling layer instead of traditional
pooling layers. The proposedmodel demonstrated promising
potential as an alternative in the field, achieving state-of-the-
art results.

2 Related works

In recent times, the application of deep learning approaches
has significantly enhanced diagnostic performance in
computer-aided medical diagnoses. Particularly, sophisti-
cated methods for the diagnosis of brain tumors have
contributed to the effectiveness in this domain, contribut-
ing to scientific advancement. These scientific studies stand
out as a significant step in improving diagnostic accuracy and
effectiveness, allowing for the effective integration of techno-
logical developments into the healthcare services paradigm.
This section discusses innovative approaches in the diagnosis
of brain tumors.

Deepak and Ameer [6] developed an automated system
utilizing support vector machine (SVM) and CNN features
for classifying brain tumors in MRI images. Their model
achieved an overall classification accuracy of 95.82% using
the Figshare dataset.

Paul et al. [7] used deep learning methods to classify
brain images associated with meningiomas, gliomas, and
pituitary tumors. This investigation utilized the same dataset,
comprising 3064 T1-weighted contrast-enhanced MRI brain
images derived from 233 patients. The research involved
the design and implementation of two distinct neural net-
work architectures: fully connected networks and CNNs.
Notably, a comprehensive evaluation using a five-fold cross-
validation technique revealed that general methodologies
achieved superior performance with an accuracy rate of
91.43% compared to specific methods that required image
dilation.

Abd-Ellah et al. [8] utilized CNNs to automate the diag-
nosis of brain tumors using magnetic resonance images.
The primary objective of this investigation was to distin-
guish between images of brains with pathology (tumors)
and those of healthy brains. To facilitate this diagnosis, a
two-stage multi-model system was created. In the initial
phase, preprocessing and judicious feature selection were
executed by aCNN. Subsequently, an error-correcting output
codes support vector machine (ECOC-SVM) was employed
to perform a classification task. In this initial phase, three
distinct models—AlexNet, VGG16, and VGG19—were uti-
lized. AlexNet exhibited the most impressive performance,
achieving a 99.55% accuracy rate. During the first phase,
the BraTS (2013 dataset) was used to localize brain lesions,
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while images from the Reference Image Database to Eval-
uate Response (RIDER) neuro MRI database were used for
performance evaluation.

Abiwinanda et al. [9] introduced an optimizedCNNmodel
for brain tumor classification. The design included two con-
volutional layers employing 3 × 3 kernels and a total of 32
filters. These layers were followed by an activation layer
utilizing ReLU and a subsequent maximum pooling layer.
A final layer, containing 64 neurons, culminated in the
architectural composition. This design yielded an impres-
sive classification accuracy of 84.19% in the diagnosis of
brain cancers, demonstrating its efficiency and potential for
medical image analysis.

Gumaei et al. [10] developed an innovative classification
methodology for the analysis of brain tumors. Their approach
harnessed a hybrid strategy, amalgamating advanced tech-
niques for feature extraction with the finesse of a regularized
extreme learning machine (RELM). They introduced a novel
hybrid feature extraction technique christened PCA-NGIST,
a fusion of principal component analysis (PCA), and the
refined normalized Gabor filtered image statistical tech-
nique. The crux of their research lay in a meticulously
conducted series of experiments and analyses, culminating in
a discernible enhancement in performance. Notably, the clas-
sification accuracy witnessed a remarkable surge, ascending
from 91.51% to an impressive 94.23%, as validated through
a stringent evaluation employing a randomized technique.

Kaplan et al. [11] pioneered the use of twodifferent feature
extraction techniques, nLBP and αLBP, for brain tumor clas-
sification. The classification study involved the use of various
methodologies, including K -nearest neighbors (KNN), arti-
ficial neural networks (ANN), random forest (RF), A1DE,
and linear discriminant analysis (LDA). Within the frame-
work of this research and using the Figshare dataset, the
KNN model combined with the LBPd=1 feature extraction
technique achieved a 95.56% success rate in accurately clas-
sifying brain tumors.

Toğaçar et al. [12] employed a feed-forward CNN model
named BrainMRNet. This model integrated a pioneering
Hypercolumn technique, strategically engineered to enhance
classification performance by discerning the most influential
features from the input data while minimizing computational
expenses. Upon conducting extensive experiments utilizing
the Figshare dataset, they achieved a notable classification
accuracy of 96.57%.

3 Materials andmethods

The Figshare dataset was used in this work, and cutting-
edge results were obtained by merging several contemporary
techniques into an established model. This section contains
information about the dataset and themethods thatwere used.

Table 1 Sample counts for each class in the Figshare dataset

Class name Size Percentage

Glioma 1426 46.5%

Meningiomas 708 23.1%

Pituitary 930 30.4%

Total 3064

3.1 Dataset

The Figshare dataset, introduced by Cheng in 2015 and
subsequently updated in 2017 [13], serves as a publicly
accessible repository. This dataset includes images related to
three prevalent types of brain tumors:meningiomas, gliomas,
and pituitary tumors. The dataset comprises a total of 3064
images, distributed as 708 meningioma images, 1426 glioma
images, and 930 pituitary tumor images. Table 1 provides the
distribution of tumor types within the dataset. Furthermore,
example images for three different types of brain tumors are
provided in Fig. 1.

In experimental studies, the dataset was divided into two
distinct categories: training and testing. The training set cov-
ers 85% of the dataset, consisting of 2604 images, while the
remaining 15% (460 images) is allocated to the test set. To
achieve robust results, the training dataset was partitioned
into fivefolds, and a cross-validation process was applied,
with fourfolds used for training and onefold for validation
at each stage. The results presented in the tables indicate
the average scores obtained through the cross-validation
process.

3.2 Method

In this study, a customized innovative CNN model has been
proposed to distinguish between three different types of brain
tumors using the Figshare dataset. The DenseNet201 archi-
tecture [15] has been utilized as the transfer learning model.
The CNN model created for brain tumor classification con-
sists of three main components: ADASYN, model pruning,
and Avg-TopK.

ADASYN is a potent tool in machine learning for mitigat-
ing class imbalance issues prevalent in datasets, particularly
within classification tasks proposed by He et al. [16].
ADASYNfocuses on scenarioswhere one class (theminority
class) is significantly underrepresented compared to another
(the majority class). This disparity can significantly skew
model learning and performance. The essence of ADASYN
lies in the generation of synthetic data, primarily aimed
at augmenting the minority class. Unlike traditional over-
sampling techniques, ADASYN dynamically computes the
number of synthetic samples needed for each minority class
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Fig. 1 In the Figshare dataset,
MRI images of meningiomas,
gliomas, and pituitary tumors
are presented through sagittal,
coronal, and axial cross-sections
[14]

instance. This adaptability is crucial, as it enables the algo-
rithm to generate more synthetic examples in regions with a
lower class density, effectively resolving the difficult-to-learn
minority examples.

Model pruning Model pruning refers to the process of
streamlining complexmachine learningmodels by removing
unnecessary parameters, connections, or weights. This tech-
nique aims to enhance model efficiency, reducing computa-
tional demands and memory requirements without compro-
mising performance. By selectively eliminating redundant
or less impactful parameters, pruning mitigates overfitting
and enhances the model’s generalization capabilities. This
approach contributes significantly to model optimization,
allowing for leaner, more efficient neural networks that are
better suited for deployment in resource-constrained envi-
ronments.

Avg-TopK Özdemir [17], a recent advancement in deep
learning, provides a dynamic alternative to traditional pool-
ing layers. Instead of using traditional pooling strategies,
Avg-TopK dynamically adapts by calculating the average
activations of the top K activations from a given layer. This

adaptability allows the model to detect complex features and
patterns that static pooling methods would otherwise miss.
The utility of Avg-TopK lies in its ability to enhance fea-
ture representation. By considering the top activations, the
model concentrates on the most prominent features within a
layer, which may result in representations that are richer and
more discriminative. This adaptability is especially useful in
complex tasks such as the classification of medical images,
where minute details significantly contribute to an accurate
diagnosis.

Figure 2 depicts the architecture employed in experimen-
tal studies.

Preprocessing In this initial stage, comprehensive prepro-
cessing procedures were applied to all images within the
dataset. An array of experimental investigations was con-
ducted to assess the impact of preprocessing on the model’s
overall performance, with specific attention given to opti-
mizing parameter settings. A detailed account of these
experimental studies is presented in the subsequent exper-
imental studies section. The images can be accessed in the
sagittal, coronal, and axial directions, with spatial resolutions
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Fig. 2 CNN architecture

of either 512 × 512 or 256 × 256. In experimental stud-
ies, all images were resized to a resolution of 256 × 256.
Initially, a scaling process was employed on the dataset to
resize all images uniformly to dimensions of 256 × 256.
This resizing step is instrumental in expediting computa-
tional processing in deep learning methodologies, mitigating
the computational burden arising from high-level mathemat-
ical operations, particularly in the context of varying image
sizes and resolutions.

Feature extraction In CNN models, features are automati-
cally extracted, but training the entire network from scratch
can require a large dataset and time. Therefore, transfer learn-
ing approaches pre-trained on large datasets, such as the
ImageNet dataset, have been utilized. Thismodel serves as an
effective feature extractor, capturing relevant image features
without the need to train the entire network from scratch.
The initial layers of deep neural networks trained on gen-
eral datasets often learn low-level features such as edges,
textures, and shapes. Hence, being trained on datasets like
ImageNet is particularly advantageous. In this phase, the
pre-trained model acts as a powerful tool to understand and
represent the intricate features present within the brain tumor
images. This representation, or feature vector, obtained from
the pre-trainedmodel, encapsulates valuable information that
is subsequently utilized to train the final classification model
in the subsequent stage of the architecture, the ANN. The
use of a pre-trained model considerably enhances the effi-
ciency and effectiveness of the overall classification process
for brain tumors, enhancing the model’s ability to discern
intricate patterns and make accurate predictions.

Artificial neural network (ANN) In this part, features obtained
from the feature extraction part are integrated with the class
layers. The ANN architecture consists of two fully con-
nected layers with 256 and 128 neurons each, utilizing the
ReLU activation function. The classification layer uses the
Softmax activation function to generate a probability score

ranging from 0 to 1, indicating class membership. Addi-
tionally, dropout regularization is employed after each dense
layer to prevent overfitting. In this study, we used the Adam
optimization algorithm with its default parameters as a ref-
erence. We utilized the ReduceLROnPlateau approach to
dynamically adjust the learning rate. In this context, if there
is no reduction in the validation loss for seven epochs of
training, the learning rate is reduced by a factor of 0.8.
This approach aids in decreasing the learning rate when the
model’s performance does not improve over a certain period.
It is often used to steadily improve the training process and
obtain better results.

3.3 Performancemetrics

In this study, the efficacy of the proposed architecture was
assessed through a comprehensive evaluation, comparing
the obtained results with ground truth labels determined by
domain experts. Key performance indicators utilized for this
evaluation included the F1 score, recall, precision, and accu-
racy. These metrics provide a comprehensive assessment of
the classification performance of the model by assessing
aspects such as the true positive rate, the false positive rate,
and the overall predictive accuracy.

Accuracy Accuracy measures the proportion of precise pre-
dictions (true positives and true negatives) relative to the total
number of predictions. It provides an overall assessment of
the model’s correctness and is suitable for balanced datasets
where the classes are evenly distributed.

Recall Recall assesses the proportion of true positive predic-
tions out of the total actual positives (true positives + false
negatives). It gauges the model’s ability to correctly identify
all relevant instances within the dataset.

Precision Precision determines the proportion of true posi-
tives out of the total predicted positives (true positives + false
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Table 2 Description of evaluation metrics

Predicted (P) Predicted (N )

Actual (P) T P FN

Actual (N) FP T N

positives). It reflects the accuracy of the positive predictions
made by the model and is particularly important when min-
imizing false positives is crucial.

F1 score The F1 score is ameasure that combines both preci-
sion and recall into a single value. It is the harmonic mean of
precision and recall and provides a balance between the two.
A high F1 score indicates a good balance between precision
and recall.

Table 2 provides performance metrics offering a detailed
quantitative analysis of the model’s classification perfor-
mance.

Recall = T P

T P + FN

Precision = T P

T P + FP

Accuracy = T P + T N

T N + T P + FP + FN

F1score = 2 × Precision × Recall

Precision + Recall

3.4 Training details

We use the Adam optimizer with a batch size of 32 and train
all models from scratch for 20 epochs, setting the learning
rate to 0.001 and epsilon to 1e − 07. To dynamically adjust
the learning rate based on validation loss, we implement
the ReduceLROnPlateau strategy. This approach reduces the
learning rate by a factor of 0.8 when the minimum valida-
tion loss stops improving after 7 epochs, ensuring that the
best model is saved using model checkpointing based on
validation loss. Throughout the training process, we use the
categorical cross-entropy loss function to update the model
weights. Table 3 shows the hyperparameters used in the train-
ing of the overall model.

4 Experimental and results

In this study, a novel CNNmodel was developed specifically
for the Figshare dataset, consisting of three different classes
and a total of 3064 MR images. Due to the absence of a stan-
dardized method for splitting the dataset, we ensured model

Table 3 Hyperparameters of model

Batch size 32

Learning rate 0.001

Input size 256 × 256 × 3

Optimizer Adam

Loss function Categorical cross-entropy loss

Epoch 20

Epsilon 1e − 07

Learning rate decay factor 0.8

robustness through cross-validation. Initially, the dataset,
consisting of 3064 images, was divided into an 85–15%
split for training and testing, respectively. Following that,
the training set was further partitioned into fivefolds. The
model underwent iterative training using a fourfold train-
ing and onefold validation approach in each cross-validation
step. Throughout these steps, the model was trained with the
training set, hyperparameter optimized using the validation
set, and finally tested with the test set. The visual representa-
tion of the cross-validation approach can be found in Fig. 3.
We used the Eq. 1 to calculate the average performance of
the model after cross-validation.

μ = 1

5

5∑

i=1

Pi (1)

Firstly, to determine the transfer learning model that
exhibits the highest performance for the brain tumor clas-
sification problem, the performances of current transfer
learning models were investigated. In this context, the per-
formances of commonly referenced models in the literature,
such as ResNet101V2, EfficientNetB3, ResNeXt-101, and
DenseNet201, were examined. The results are presented in
Table 4. Since the DenseNet201 model demonstrated the
highest performance, subsequent experimental studies were
conducted using this model as a reference.

Secondly, the performance of applying different pre-
processing techniques to enhance model performance was
investigated. In medical image classification studies, prepro-
cessing techniques are commonly applied to enhance model
performance and improve generalizability. The fundamental
reasons for applying preprocessing to images are as follows:

(1) Data diversity and generalization: Transformations such
as rotation, zooming, and flipping enable the model to
handle images with different poses, angles, and scales.
This enhances themodel’s generalization ability, making
it better suited to real-world scenarios.

(2) Overfitting reduction:Models that tend to focus on small
details or noise in training data may fail on test data.
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Fig. 3 Cross-validation steps

Preprocessing helps the model focus on meaningful fea-
tures and can reduce overfitting.

(3) Dealingwith data imbalance: Imbalances between classes
are common in medical images. Preprocessing tech-
niques can encourage more effective learning of under-
represented classes and alleviate imbalances.

(4) Enhancing model robustness: Different image transfor-
mations make the model more resistant to noise, slight
deformations, or minor changes. In the study, the impact
of preprocessing applied to the dataset on performance
was investigated.

Experimental studies were conducted using the architec-
ture shown in Fig. 2, with no fine-tuning applied, utilizing
the DenseNet201 transfer learning model. A systematic
approach was followed to determine preprocessing param-
eters. Initially, individual trials were conducted for each
preprocessing parameter, followed by a comprehensive
experiment covering all identified parameters. In all exper-
iments, the data were resized to 256 × 256 dimensions,
and normalization was applied. In this context, images were
initially rotated by ±15◦, then zoomed in by ±10%, and
finally, performance was assessed by applying flipping. The

Table 4 Model performances with and without preprocessing

Accuracy Precision Recall F1 score

ResNet101V2 88.12% 89.17% 88.12% 87.91%

EfficientNetB3 87.35% 88.39% 87.35% 87.15%

ResNeXt-101 88.37% 89.42% 88.36% 88.16%

DenseNet201 88.91% 89.97% 88.91% 88.70%

comparative results obtained from the distinct models are
presented in Table 5.

In the experimental studies section, a comparative analy-
sis of model performance, with and without preprocessing,
was presented (Table 5). The results demonstrate the impact
of preprocessing methods on the classification accuracy of
the proposed CNNmodel. Without preprocessing, the model
achieved a test accuracy of 88.91%, precision of 89.97%,
recall rate of 88.91%, and an F1 score of 88.70%. In con-
trast, when the dataset underwent preprocessing steps, the
model’s performance significantly improved. The prepro-
cessed model achieved a test accuracy of 94.77%, precision
of 95.26%, recall rate of 94.78%, and an F1 score of 94.81%.
These findings underscore the critical role of preprocess-
ing techniques in enhancing the classification accuracy and
overall performance of the CNN model. Applying prepro-
cessing techniques to the dataset noticeably enhances the
performance of the model. Additionally, concurrently imple-
menting multiple preprocessing techniques provides a more
pronounced contribution to boosting the model’s effective-
ness. The presented results emphasize the importance of
preprocessing steps in refining the model’s ability to discern

Table 5 Model performances with and without preprocessing

Accuracy Precision Recall F1 score

Without preprocessing 88.91% 89.97% 88.91% 88.70%

Rotation 89.51% 89.57% 89.51% 89.29%

Zooming 89.51% 89.58% 89.51% 89.29%

Flipping 89.89% 89.95% 89.89% 89.68%

With preprocessing 94.77% 95.26% 94.78% 94.81%
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Table 6 Model pruning performance metrics

Model Accuracy Precision Recall F1 score

DenseConv4Block33 96.52% 96.64% 96.52% 96.46%

brain tumor classes accurately, ultimately contributing to an
efficient diagnostic process.

Continuing with the study, a model pruning process was
implemented with the aim of reducingmodel complexity and
computational costs while optimizing model performance.
The primary objective ofmodel pruning is to eliminate layers
that make insignificant contributions to the overall perfor-
mance of the model. In the model pruning methodology,
initially, the model is trained from scratch. Following that,
the trained model is used to make predictions on images, and
standard deviation and mean values for the weight parame-
ters in each layer are produced during this prediction phase.
The model then assesses these statistical values against a
manually determined threshold to identify layers for removal.
The threshold value is computed by taking into account layers
with significant changes in average and standard deviation
values. In future steps, this criterion led to the systematic
trimming of layers. During this process, layers below the
threshold value are removed, resulting in the derivation of
a new model. This method has optimized the model archi-
tecture by eliminating layers with the least impact, thereby
creating a model that enhances the overall efficiency and
computational performance of the system.

In the DenseNet201 model, standard deviation and mean
values were examined for each layer. Throughmanual obser-
vation, a plateau in model learning was observed beyond the
layer conv4_block33_concat. Starting from this point, lay-
ers were removed from the model, resulting in a shallower
model. The training process, considering the model obtained
through model pruning and the best-performing preprocess-
ing experimental setting, resulted in an observed increase
in model performance. Table 6 presents the results of this
experimental investigation.

As seen in Table 6, the DenseConv4Block33 model
demonstrated, achieving a remarkable test accuracy of
96.52% with high precision, recall, and F1 scores, demon-
strating the model’s in classifying brain tumor data. Table 7
provides the capacities of the pruned DenseConv4Block33
model compared to the DenseNet201 model. The DenseC-

Table 7 Model pruning parameter sizes

Model Total
params

Trainable
params

Non-trainable
params

DenseNet201 18,847,043 18,617,987 229,056

DenseConv4Block33 11,833,283 11,701,187 132,096

Table 8 Performance results obtained from model pruning and
ADASYN integration

Model Accuracy Precision Recall F1 score

DenseConv4Block33
+ADASYN

99.53% 99.53% 99.53% 99.53%

DenseNet201+ADASYN 99.37% 99.37% 99.37% 99.37%

onv4Block33 model, which underwent pruning, experienced
a reduction of approximately 37.20% in parameter size. This
reduction signifies improved efficiency of the model, provid-
ing a lighter and faster architecture crucial for rapid inference
and resource optimization in real-world clinical applications.
Pruning process not only significantly reduced the model
capacity but also led to an increase in classification perfor-
mance.

In datasets obtained in the field of healthcare, the diffi-
culty of acquiring data for specific classes often leads to the
emergence of the class imbalance problem. Class imbalance
refers to the unequal distribution of examples among differ-
ent classes in a dataset. This situation can pose challenges
in evaluating model performance. Class imbalance is a com-
mon issue in machine learning, particularly in classification
tasks, and requires preventive measures. This imbalance can
introduce bias into themodel, causing it to prefer themajority
class and consequently impeding the accurate identification
of minority classes. Such bias can have significant impli-
cations in the context of medical diagnoses. For instance,
in the classification of brain cancers, the accurate recogni-
tion of each tumor type is crucial for designing appropriate
treatment approaches. An inconsistent dataset may result
in the successful identification of the most common tumor
types but may fail to detect the less prevalent ones. In the
Figshare dataset under consideration, there is a significant
disparity in the sample sizes among three distinct brain
tumor types: meningiomas, gliomas, and pituitary tumors.
The dataset comprises 708meningioma images, 1426 glioma
images, and 930 pituitary tumor images. Notably, the menin-
gioma class constitutes approximately half the number of
images in the glioma class. To mitigate the adverse effects
of class imbalance and ensure a balanced learning process,
the ADASYN (adaptive synthetic sampling method) [16]
method was employed.

The results obtained when addressing the data imbal-
ance problem using the ADASYN method are presented in

Table 9 Performance results obtained frommodel pruning, ADASYN,
and Avg-TopK integration

Model Test accuracy Precision score Recall score F1 score

MTAP 99.69% 99.69% 99.69% 99.69%
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Fig. 4 Loss and accuracy of the MTAP model

Table 8. These findings demonstrate the significance of cor-
recting class imbalance and the positive impact of obtaining
a balanced dataset on model performance and medical diag-
nostic potential. The accuracy of themodel, obtained through
the pruning process with the ADASYN method, increased
from 96.52 to 99.53%. These results demonstrate that com-
biningmodel pruning and theADASYNmethod significantly
contributes to the classification performance of the model.

The final alteration we applied in our efforts to increase
model performance was the use of the Avg-TopK method.
The local pooling layers in the DenseConv4Block33 model
were replaced with Avg-TopK. Instead of depending on
the single greatest intensity value, this method computes
the average of the top K intensity values within the filter
region. Table 9 details the results of this adjustment, includ-
ing accuracy and loss metrics. As the study develops, the
model created by combining model pruning, ADASYN, and
Avg-TopK methods to improve performance is referred to

Fig. 5 Confusion matrix of the MTAP model

as MTAP. Figure 4 depicts the accuracy and loss graph for
the MTAP model, while Fig. 5 depicts the MTAP model’s
confusion matrix.

We implemented a non-local block [32] attention mech-
anism in our proposed model to enhance its ability to
focus on relevant image sections for more accurate tumor
classification. Additionally, we tested advanced regulariza-
tion techniques such as SpatialDropout and AlphaDropout
variants to reduce overfitting and improve generalization
capabilities. However, we observed that these methods did
not yield a significant improvement in the performance of our
final model. These results suggest that the effectiveness of
specific techniques and mechanisms can vary depending on
the dataset used, model architecture, and the specific prob-
lem context. Therefore, the integration of these techniques
into our model was not carried out, as they did not lead to the
anticipated performance enhancement.

Fig. 6 Class-wise prediction ratios in the model
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Table 10 Methods and results
used in studies with Figshare
dataset

References Feature extraction Model Accuracy (%)

Cheng et al. [18] Bag of words SVM 91.28%

Cheng et al. [19] Local features using Fisher Vector SVM 94.68%

Abir et al. [20] GLCM PNN 83.33%

Deepak and Ameer [21] GoogleNet SVM 97.10%

Afshar et al. [22] Capsule networks (CapsNet) − 86.56%

Swati et al. [23] Fine-tune VGG19 − 94.80%

Arı et al. [24] AlexNet and VGG16 ELM 97.64%

Kaplan et al. [11] nLBP ve αLBP KNN 95.56%

Belaid and Loudini [25] VGG16 Softmax 96.5%

Kaur and Gandhi [26] Fine-tuned AlexNet − 96.95%

Rehman et al. [27] VGG16 Softmax 98.69%

Deepak and Ameer [6] CNN SVM 95.82%

Bodapati et al. [28] Xception and InceptionResNetV2 Softmax 95.23%

Sadad et al. [29] NASNet Softmax 99.6%

Oksuz et al. [30] ResNet18+ShallowNet SVM 97.25%

Ayadi et al. [31] DSURF and HoG SVM 90.27%

MTAP model CNN Softmax 99.69%

A pie chart depicting the ratios of correct and incorrect
predictions for each class was created to visually repre-
sent categorization performance across multiple classes. The
graphic in Fig. 6 shows the model’s prediction accuracy for
each class, with each slice representing a different class. The
percentage labels on the graphic represent the proportion of
correct predictions compared to the total samples for each
class.

The comparative analysis of the results obtained in this
study with the findings reported in previous studies con-
ducted on the same dataset is presented in Table 10. This
tabulated comparison provides valuable insights into the per-
formance of our proposed model, i.e., MTAP, in the context
of brain tumor classification. We hope to situate the break-
throughs and contributions of our study within the broader

Fig. 7 Grad-CAM heat map
visualization results
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landscape of brain tumor detection approaches by comparing
our findings with established literature.

Brain tumor classification studies conducted on the
Figshare dataset reveal that, when examining the perfor-
mances presented in Table 10, our proposed MTAP model
provides state-of-the-art results with an accuracy of 99.69%.
To enhance the interpretability of our proposed method
in brain tumor classification on the Figshare dataset, we
employed heat map visualization methods. The primary
objective was to elucidate the spatial attention patterns of
the model across input images, aiming to identify regions of
heightened attention within brain tumor images during the
classification process. Heat map visualization proves to be a
potent tool for comprehending the dynamic attentionalmech-
anism of the model, revealing relevant features and regions
that significantly influence the model’s classification deci-
sions. The utilization of this approachmarkedly improves the
interpretability of our proposed method, offering valuable
insights into the model’s underlying structure concerning
brain tumor classification. As depicted in Fig. 7, the pari-
etal and temporal lobes emerge as focal points in the model’s
attention allocation patterns, underscoring their importance
in the analysis of the resulting heatmap. This finding suggests
the model’s nuanced detection of distinct characteristics or
patterns highly indicative of different tumor types, particu-
larly within the parietal and temporal lobes.

5 Discussion

In this paper, we provide a detailed analysis and improve-
ment in the domain of brain tumor classification using deep
learning methods. Our major goal was to improve the accu-
racy and dependability of brain tumor classification, which
is a critical component of medical diagnostics. Through a
systematic and thorough method, we introduce the MTAP
model, a new neural network architecture that integrates
model pruning, ADASYN to deal with class imbalance,
and Avg-TopK pooling for enhanced feature extraction. The
results are highly promising, demonstrating state-of-the-art
accuracy at 99.69%.

Examination of the heat maps generated by the model
reveals a predominant focus on the parietal and temporal
lobes. This suggests the model effectively identifies distinc-
tive features within the parietal and temporal lobes, crucial
for classifying tumor types.

The MTAP model represents the potential power of
using artificial intelligence in brain tumor classification. The
proposed approach supports integration and advancement
potential for similar problem domains. Our study makes a
positive contribution to the broader exploration of artificial
intelligence applications in improving healthcare services,
particularly in the context of brain tumor classification. In

the continuation of this work, the performance of the pro-
posed model will be investigated on different datasets.
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