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Abstract

Arterial spin labeling (ASL) perfusion MRI is the only non-invasive imaging technique for 

quantifying regional cerebral blood flow (CBF), which is a fundamental physiological variable. 

ASL MRI has a relatively low signal-to-noise-ratio (SNR). In this study, we proposed a novel 

ASL denoising method by simultaneously exploiting the inter- and intra-receive channel data 

correlations. MRI including ASL MRI data have been routinely acquired with multi-channel coils 

but current denoising methods are designed for denoising the coil-combined data. Indeed, the 

concurrently acquired multi-channel images differ only by coil sensitivity weighting and random 

noise, resulting in a strong low-rank structure of the stacked multi-channel data matrix. In our 

method, this matrix was formed by stacking the vectorized slices from different channels. Matrix 

rank was then approximately measured through the logarithm-determinant of the covariance 

matrix. Notably, our filtering technique is applied directly to complex data, avoiding the need 

to separate magnitude and phase or divide real and imaginary data, thereby ensuring minimal 

information loss. The degree of low-rank regularization is controlled based on the estimated noise 

level, striking a balance between noise removal and texture preservation. A noteworthy advantage 

of our framework is its freedom from parameter tuning, distinguishing it from most existing 

methods. Experimental results on real-world imaging data demonstrate the effectiveness of our 

proposed approach in significantly improving ASL perfusion quality. By effectively mitigating 

noise while preserving important textural information, our method showcases its potential for 

enhancing the utility and accuracy of ASL perfusion MRI, paving the way for improved 

neuroimaging studies and clinical diagnoses.
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1. INTRODUCTION

Arterial spin labeling (ASL) stands as a non-invasive and non-ionizing technique within 

perfusion MRI, facilitating the measurement of cerebral blood flow (CBF) [1–5]. Employing 
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radio-frequency pulses, ASL MRI tags the arterial blood water and captures perfusion-

weighted MR images as this labeled arterial blood infiltrates the desired brain tissues. 

Over recent decades, ASL MRI has seen increasing applications across various clinical 

domains [6–10]. However, its comprehensive potential is curbed by the inherently low 

signal-to-noise ratio (SNR) in the perfusion effect, primarily due to T1 decay of the labeled 

arterial blood during post-labeling transit time. To address this challenge, the standard 

approach involves acquiring multiple label and control (L/C) image pairs and averaging their 

corresponding perfusion measurements. Yet, this method demands numerous L/C pairs to 

significantly boost SNR, impractical due to prolonged scan times and heightened motion 

risks. Moreover, averaging across multiple pairs may blur images due to inevitable subtle 

inter-frame movements.

In the realm of ASL denoising, initial methods relied on principal component 

decomposition-based noise removal [11], wavelet-domain filtering [12], or independent 

component decomposition-based noise suppression [13]. Later endeavors have expanded 

into spatio-temporal denoising frameworks, encompassing support vector machine-based 

CBF quantification and denoising algorithms [14] and total generalized variation 

regularization-based spatio-temporal filtering [15]. Meanwhile, Liang et al. fused nonlocal 

means [16] with dual-tree complex wavelet transform [17], and Xie et al. designed a 

deep convolutional neural network for ASL denoising [18], yielding enhanced outcomes. 

Nevertheless, these approaches overlooked the full utilization of multi-channel data to 

optimize performance, leaving their results less than satisfactory.

Consequently, the quest for advanced ASL denoising methods persists, aiming to surmount 

these challenges and unlock the technique’s full potential. Inspired by effectiveness of 

low-rank and sparse models for image denoising [19–27], this study attempts to enhance 

ASL MRI SNR by utilizing the low-rank property of the multi-channel data. Specifically, 

to preserve regional image contrast while suppressing the non-structural noise, we proposed 

a method that constructs a data matrix through stacking vectorized slices from different 

channels, and achieves denoising and texture preservation through an iterative optimization 

process which dynamically regularize the rank of the denoised data matrix to be low 

based on the estimated noise level. A notable advantage of our proposed framework 

is its independence from parameter tuning, setting it apart from existing methods. The 

efficacy of the approach is validated on real-world imaging data. The obtained experimental 

results convincingly demonstrate the significant enhancement in ASL perfusion quality. 

By addressing the limitations of current techniques, the ultimate goal of this study is to 

substantially improve the utility and accuracy of ASL perfusion MRI, leading to more 

reliable and informative neuroimaging studies and enhanced precision in clinical diagnoses.

2. METHOD

In our pursuit of maximizing information utilization for ASL denoising, we capitalize on 

the inherent low-rank structure within the multi-channel complex imaging data. Unlike 

conventional methods that use magnitude data after combining all channels, our technique 

directly leverages the richness of information present in the complex data to prevent loss of 

information. Specifically, this study proposes Collaborative Low-rank regularization using 
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both Inter and Intra-channel Correlation (CLIIC). CLIIC is founded on the observation that 

the matrix created by stacking vectorized slices demonstrates a low rank property owing to 

inherent redundancy both within and between slices, as well as within and between different 

channels. This low-rank characteristic stems from the presence of local consistency and 

shared patterns across the multi-dimensional data, enabling CLIIC to effectively exploit and 

leverage this redundancy for accurate and efficient MR signal restoration from heavy noise.

Suppose the size of the input MR scan is ℎ × w × ns × nc × nr, where ℎ × w is the size of a 

slice, ns is the number of slices in a single image, nc is the number of channels, and nr is 

the number of repetitions, including nr/2 labeled images and nr/2 control images. Then the 

complex matrix with potentially low rank Y ∈ ℂℎw × nsncnr is formed by vectorizing each slice 

and stacking them together. This study aims to recover the latent noise-free image X via 

low-rank regularization:

X = argminX rank X + 1
2λ X − Y F

2

(1)

where X − Y F
2  is the data fidelity term and the regularization parameter λ controls the 

relative contribution of the two terms. To solve the objective function efficiently, we relax 

the rank penalty to the log-det of the covariance matrix [28, 29]:

X = argminX λ ∙ log XX* + 1
2 X − Y F

2

(2)

which can be tackled through an empirical Bayesian procedure [30]. Here X* is the 

conjugate transpose of X. Since λ is decided by the noise level, which can be estimate 

by existing techniques [31], the whole procedure does not involve any parameter tuning. 

After X is generated and coil combination is performed, the denoised ASL perfusion can 

be obtained by calculating the difference between the control and labeled images, and 

averaging across repetitions.

3. RESULTS

MRI studies were conducted on three subjects utilizing a 3T whole-body system 

(MAGNETOM Prisma, version MR VE11E, Siemens Healthcare, Erlangen, Germany) 

equipped with a 20-channel head coil. Three-dimensional (3D) pseudo-continuous arterial 

spin labeling (pCASL) sequence was used to generate labeled and control images. The 

scan parameters were TR/TE 4600/9.3 ms, fat suppression, slice thickness 2 mm, FOV 

220 × 220 mm2, matrix size 110 × 110, slice partial Fourier 5/8, 72 partitions, 6 in-plane 

spiral interleaves, 6 in-plane acquisition segments, partition GRAPPA 2-fold acceleration, 

10 repetitions (5 labeled images and 5 control images), labeling duration 2 seconds, post 

label delay 1.8 seconds. Background suppression was achieved by three frequency offset 
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corrected inversion (FOCI) pulses. The scan time was 5 minutes and 53 seconds. The 

resolution of the scan was 2 × 2 × 2 mm3.

We compared denoising performance with the standard pipeline and NORDIC [32]. As 

shown in Fig. 1 and Fig. 2, the output of the proposed CLIIC could better reconstruct 

the brain patterns and more effectively remove noise. For objective quality assessment, we 

used a no-reference metric BRISQUE [33] because the ground truth is not available. Lower 

BRISQUE scores indicate better image quality. As can be seen from Fig. 3, CLIIC could 

decrease BRISQUE for all the slices except for the last three slices. Table 1 shows the 

average BRISQUE of all the slices, CLIIC improves BRISQUE by a significant margin.

4. CONCLUSIONS

This study introduced Collaborative Low-rank regularization using both Inter and Intra-

channel Correlation (CLIIC), a novel approach that effectively leverages the inherent 

low-rank structure within multi-channel complex imaging data to enhance the quality of 

ASL perfusion. By preserving valuable textural information and removing noise, CLIIC 

significantly improved the visual quality of ASL perfusion images. Moreover, the no-

reference objective metric BRISQUE demonstrated notable enhancement in image quality. 

The proposed technique not only avoided information loss but also eliminated the need for 

parameter tuning, setting it apart from previous methods.
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Figure 1. 
Three slices of perfusion weighted images processed with different methods. Each row 

corresponds to one slice. (a) Raw input; (b) Standard Pipeline; (c) NORDIC; (d) CLIIC.
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Figure 2. 
Three slices of perfusion weighted images processed with different methods. Each row 

corresponds to one slice. (a) Raw input; (b) Standard Pipeline; (c) NORDIC; (d) CLIIC.
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Figure 3. 
Scatter plot of slice-wise BRISQUE scores.
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Table 1.

Average BRISQUE of all slices. The best score is marked as bold.

Raw Input Standard NORDIC CLIIC

44.16 42.89 41.79 31.29
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