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SUMMARY

p53 was discovered 45 years ago as a SV40 large T antigen binding protein, coded by the most 

frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated 

by a rich network of post-translational modifications to execute its diverse functions in tumor 

suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and 

senescence as the classic barriers in cancer development, a growing number of new functions of 

p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. 

Here, we review the complexity of different layers of p53 regulation, and the recent advance 

of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor 

suppression. We also discuss the challenge regarding how to activate p53 function specifically 

effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
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INTRODUCTION

Discovered in 1979, the p53 protein, encoded by the tumor protein p53 (TP53, or p53) gene, 

has captivated the attention of both the cancer research community and the pharmaceutical 

industry, positioning it the most extensively studied gene.1 Over the past 45 years of 

research, p53 has consistently yielded both surprise and excitement, albeit accompanied 
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by persistent confusions. Numerous efforts have been dedicated to understanding p53. In 

return for this, we now have a better picture of this gene (Figure 1). However, there are 

still certain aspects of p53 that remain unclear. In this review, we first introduce the basic 

information about p53 and its regulatory mechanisms. We then summarize the functions of 

p53 and its roles in both normal physiological conditions and various pathological disorders, 

particularly cancers. Finally, we discuss the therapeutic applications of targeting p53 and the 

unaddressed issues in the p53 field. Due to space constraints, many original research papers 

and important reviews on p53 could not be cited.

DISCOVERY, EVOLUTION, AND STRUCTURE OF p53

The study of p53 has experienced several pivotal twists and turns over the past decades, 

mirroring the tortuous development of oncology, characterized by significant paradigm 

shifts.2–5 In 1979, the p53 protein was independently discovered by several laboratories 

during research on cells transformed by simian virus 40 (SV40) or through other methods.6–

9 Initially, p53 was believed to be an oncogene involved in cell transformation. However, 

in 1989, a series of papers revealed that wild-type (WT) p53 is, in fact, a tumor suppressor 

(Figure 1).2–5,10–14

The human p53 gene family comprises three members p53, p63, and p73. This family 

originated at least 800 million years ago and followed by gene duplication and structural 

diversification.15,16 An intriguing discovery is that the p53 family gene is present in 

some unicellular eukaryotes, such as the choanoflagellate Monosiga brevicollis, suggesting 

its important role in the evolution of multicellular organisms. The p53 family gene in 

unicellular eukaryotes is believed to maintain genome stability in response to various 

stresses. The p53 gene emerged in the earliest vertebrates and has since been evolutionarily 

conserved.15,16 The presence of p53 family in lower organisms is remarkable, given their 

minimal risk of cancer. This raises a question about the primitive role of p53 family in 

evolution. It is possible that this family was initially involved in maintaining the integrity of 

germline cells, with its well-known tumor suppression capability emerging much later.

The p53 protein primarily functions as a transcription factor (TF), although TF-independent 

activity has also been implicated (Figure 2).15,17,18 The full-length p53 protein (FLp53) in 

human comprises 393 amino acids, which are organized into five different domains: the 

N-terminal transactivation domain (TAD), the proline-rich domain (PRD), the central DNA-

binding domain (DBD), the tetramerization domain (TD), and the C-terminal regulatory 

domain (CTD). The TAD of p53 is divided into two subdomains TAD1 and TAD2.15,19 

In unstressed cells, p53 protein adopts a mixture of monomeric, dimeric, and tetrameric 

states, with dimer predominating.20 Upon diverse types of stress signals (including DNA 

damage, oncogene activation, ribosomal stress, telomere erosion, nutrient deprivation, and 

hypoxia), the majority of p53 proteins rapidly assemble into a functional tetramer (a dimer 

of dimers) via its TD. By using the DBD, this tetramer recognizes the p53 binding sites 

located at either the promoters or enhancers of target genes to modulate transcription. 

Unlike the well-folded DBD, whose structure has been solved, the TAD and CTD of p53 

are intrinsically disordered, facilitating their interaction with cofactors for transcription 

mediation.15 These two domains are also the major regions to undergo post-translational 
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modifications (PTMs).21 The PRD also contributes to the activity of p53.22 p53 is recruited 

to DNA via a specific response element (RE) composed by two decameric repeats: 

RRRCWWGYYY (R, purine; W, A or T; and Y, pyrimidine).23 p53 directly regulates the 

transcription of more than 300 target genes. In view of the indirect targets, p53 is believed to 

mediate the expression of several thousands of genes.24 Majority of the reported targets are 

protein-coding genes, but p53 also regulates various non-coding RNAs.25

REGULATION OF p53: PTM IS THE KEY

To accurately execute its multifaceted functions, the expression and activity of p53 are 

subject to elaborate and multilayered regulation at the protein, DNA, and RNA levels 

(Figure 2).23,26

Regulation of p53 at the protein level

The p53 protein can undergo many types of PTMs, including ubiquitination, 

phosphorylation, acetylation, methylation, SUMOylation, NEDDylation, O-GlcNAcylation, 

ADP-ribosylation, UFMylation, hydroxylation, β-hydroxybutyrylation, sulfation, and isoLG 

adduction.21,27–29 Different stress signals determine the site and type of PTMs. Many 

PTMs of p53 are reversible. The overall effect of PTMs on p53 include altering its 

protein level, cellular localization, cofactor recruitment, target selectivity, and even protein 

aggregation.21,29,30 Among these, ubiquitination, phosphorylation, and acetylation are the 

most common and influential in affecting p53 activity.

Ubiquitination typically occurs at the C-terminal lysine residues of p53. Mouse double 

minute 2 homolog (MDM2) is the most well-known regulator of p53, ubiquitinating p53 to 

maintain low protein levels in unstressed cells or to export nuclear p53 to the cytoplasm.21 

Many stimuli and regulators activate p53 through alleviating repression by MDM2.21 For 

instance, the p14ARF protein can stabilize p53 via inhibiting MDM2-mediated degradation 

of p53. Convincing evidence supporting the importance of MDM2-mediated p53 inhibition 

comes from mouse models, where the MDM2 deficiency-caused embryonic lethality can 

be rescued by deleting p53.31,32 Interestingly, MDM2 is itself a target gene of p53.33 The 

MDM2-p53 feedback loop forms the core in p53-associated pathways. MDMX (or MDM4), 

a family member of MDM2, although lacking E3 ubiquitin ligase activity itself, can form a 

heterodimer with MDM2 to enhance the degradation of p53. Other E3 ubiquitin ligases that 

can degrade p53 include ARF-BP1/HUWE1, COP1, CHIP, and Pirh2.21

Serine and threonine phosphorylation sites span across the p53 protein. The phosphorylation 

of p53 by ATM represents the earliest mechanism demonstrating how p53 responds to DNA 

damage.34,35 Phosphorylation at S15, T18, and S20 disrupts the binding and inhibition of 

p53 by MDM2, while enhancing interaction with transcription cofactors such as CBP. As a 

result, p53-mediated transcription is activated to induce cell-cycle arrest and apoptosis.36–38 

Severe DNA damage further phosphorylates p53 at S46, strengthening apoptosis.39

Acetylation of several lysine residues in the DBD is critical for p53’s ability to 

activate key targets responsible for cell-cycle arrest, apoptosis, senescence, ferroptosis, and 

mTOR inhibition in a promoter-specific manner. The impact of p53 acetylation in tumor 
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suppression is best illustrated by a series of acetylation-defective knock-in mouse models.40–

46 For example, although the p53–3KR mutant, retaining its DNA binding activity, fails to 

activate the major targets such as p21 and PUMA critical for cell-cycle arrest, apoptosis, and 

senescence, the p53–3KR mutant mice are not tumor prone.41 However, further elimination 

of its ability to regulate ferroptosis and the mTOR pathway by p53–4KR and p53–5KR 

mutants recapitulates the loss of its tumor suppressor function as observed in p53-null 

mice.43 Notably, the role of acetylation in the CTD is complexed by the fact that the 

same lysine residues are also modified by methylation, ubiquitination, SUMOylation, and 

NEDDylation, in addition to acetylation. Thus, the CTD acetylation-defective mutant (p53–

6KR and p53–7KR) mice fail to show dramatic impact in tumor suppression as these 

mutants eliminate both positive and negative effects on p53 function by different types 

of PTMs.45,46 Indeed, the acetylation–mimicking (p53-KQ) mutant mice show substantial 

p53 activation in transcription and tumor suppression without increasing p53 protein levels, 

underscoring the role of the CTD acetylation in vivo.42,44

Taken together, a gamut of the various PTMs cooperatively orchestrate the activity of p53. A 

serious caveat is that, albeit many PTMs are proven crucial for regulating p53 in vitro, the in 
vivo functions might be more complex.21 Knock-in mouse models serve as valuable tools for 

elucidating the functions of specific PTMs in modulating p53 activity.

At the protein level, recruitment of cofactors is another important parameter influencing 

p53 activity. p53 protein can bind to a plethora of interacting partners, including both 

activators and repressors, which profoundly affect its folding, stability, cellular localization, 

DNA binding, transactivation ability, and target selection.23,47 For example, a group of 

chaperone proteins regulate p53’s folding and stability.48–50 MDM2 and MDMX bind the 

TAD of p53 to restrict its transactivation activity, independently of MDM2’s role as an E3 

ubiquitin ligase.51 Several transcription regulators such as PBRM1, SET, and Dicer are able 

to interact with p53 in an acetylation-dependent manner.40 The components of the m6A 

methyltransferase complex, METTL3 and RBM15, interact with p53 to selectively modify 

the mRNAs of a group of p53 target genes.52,53

The local chromatin structure and epigenetic state also play a crucial role in dictating p53’s 

DNA binding and effective transcriptional induction. In glioblastoma, BRD8 maintains 

a repressive chromatin state by retaining histone variant H2AZ at p53 target loci, thus 

blocking p53 recruitment.54 TRIM24 simultaneously binds p53 and unmethylated H3K4, 

impeding chromatin opening by p53.55 p53 can cooperate with other locally bound TFs to 

establish an accessible chromatin state and boost transcription.56

Regulation of p53 at the DNA and RNA levels

The modulation at the DNA and RNA levels substantially influences the protein level 

of p53.26 p53 gene possesses two promoters, which leads to alternative transcriptional 

initiation.57 The promoter region of the p53 gene can undergo DNA methylation and histone 

methylation, thereby impacting its transcription.58,59 Multiple TFs control the transcription 

of the p53 gene.26 The pre-mRNA of p53 may undergo alternative splicing.60 Besides, the 

stability, localization, and translation of p53 mRNA are all tightly regulated.61–63
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p53 activation is not a simple all-or-none mode, but a dynamic process. The heterogeneity of 

cells, the characteristic of stresses, the diversified regulatory factors above, and the stability 

of target genes together determine the dynamics of p53 activity.23,64,65

VARIANTS, ISOFORMS, AND FAMILY MEMBERS OF p53

Besides the diverse regulatory means acting on WT FLp53, the field is further complicated 

by the presence of p53 variants (including single nucleotide polymorphisms (SNPs) and 

mutants), isoforms, and other family members (Figure 2).

p53 SNPs: twins are different

The P72R polymorphism is the most extensively studied SNP of p53. The P72 variant has 

a weaker ability to induce apoptosis compared to the R72 variant,66 and thus is associated 

with a longer lifespan but a higher cancer mortality than the latter.67,68 However, there 

is also report that people bearing the P72 variant are less susceptible to HPV-associated 

carcinogenesis.69 Mice carrying the R72 variant of p53 show a higher propensity for 

metabolic dysfunction,70 yet they also exhibit increased rates of embryo implantation in 

females71. There are also several ethnic-specific SNPs in the p53 gene that have implications 

for disease susceptibility and treatment.72

p53 mutants: guardian has a dark side

Beyond SNPs, the p53 gene undergoes other types of genetic variation, such as deletions, 

and more commonly, mutations. p53 is among the most frequently mutated genes in cancers, 

with over half of all cancers possessing a mutated p53 allele. Missense mutation is the 

predominant mutation type of p53. There are six notable hotspots for missense mutations: 

R175, G245, R248, R249, R273, and R282, that all locate in the DBD, accounting for 

nearly 30% of all missense mutations of p53. Other sites with relatively higher incidences 

of missense mutations include H179 and Y220.15,73,74 All missense mutations affect 

the thermal stability of p53 to varying degrees. Generally, missense mutations can be 

classified into contact mutations, which maintain the overall conformation of p53 but impair 

DNA binding (e.g., R248W and R273H), and structural/conformational mutations, which 

significantly alter the conformation and stability of the DBD (e.g., R175H, G245S, and 

R249S), all disrupting p53’s TF activity. R196, R213, R306, and R342 are major sites 

for nonsense mutations.15,73,74 While most cancer patients acquire p53 mutations in their 

somatic cells, a notable exception is seen in patients with Li-Fraumeni syndrome (LFS), who 

carry a germline mutant p53 and have up to a 90% lifetime risk of developing one or more 

cancers and 50% of them get cancer before 30 years old.75,76 Notably, normal somatic cells 

may also harbor p53 mutations and other oncogenic mutations,77,78 raising the question of 

whether these cells are predisposed to oncogenesis under certain conditions.

The functional outcome of mutant p53 can be attributed to three different effects: (1) 

Loss-of-function (LOF): mutant p53 loses the activity of WT p53. For example, p53 

mutants are often impaired in their ability to induce cell-cycle arrest and apoptosis.79 (2) 

Dominant-negative effect (DNE): mutant p53 interferes with the function of any remaining 

WT p53. In human pluripotent stem cells, mutant p53 confers an advantage in accelerating 
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self-renewal.80 However, this DNE in normal tissues may not be as common as in cancer 

cells, as the levels of mutant p53 in normal cells are often kept low, similar to WT p53. 

(3) Gain-of-function (GOF): mutant p53 acquires additional activities not observed by loss 

of WT p53, typically through interaction with specific cofactors. The GOF of mutant p53 

is largely attributed to its accumulation to high levels in cancer cells. For instance, mutant 

p53 can co-aggregate with WT p53 and other tumor suppressors (such as p63 and p73).81,82 

The p53 hotspot mutants gain anti-ferroptosis activity to promote tumor growth.83,84 By 

modulating the expression of pro-metastatic targets, the p53 mutants are able to enhance 

the metastatic potential of cancer cells in different mouse models.83,85–88 Depsite the 

overwhelming evidence indicating the importance of the GOF of p53 mutants,89 one recent 

study showed that the LOF but not the GOF of p53 mutants is more critical under different 

experimental settings90. Nevertheless, categorizing p53 mutations into only one of these 

three effects is over-simplistic and whether the GOF or the LOF plays a more dominant 

role in vivo is likely context-dependent. It is clear that the overall outcome induced by p53 

mutations results from the combination of all the three effects described above.

p53 isoforms: one root, many branches

Beyond FLp53, the p53 gene can produce other protein isoforms, resulting from promoter 

selection, alternative splicing, alternative translation, and even post-translational cleavage of 

FLp53.57 Attributable to combinations of four distinct N-termini (ATG1, Δ40, Δ133, and 

Δ160) and three different C-termini (α, β, and γ), there are twelve canonical isoforms of the 

p53 protein. The expression of these isoforms depends on the isoform type, developmental 

stage, tissue type, and is also subject to various regulatory mechanisms. These isoforms 

may possess unique activities, with the N-terminal isoforms being better investigated than 

the C-terminal ones. Particularly, they are often dysregulated in different cancers.57 For 

example, Δ40p53 suppresses tumor cell growth,91 while Δ160p53 can cooperate with mutant 

p53 to facilitate tumorigenesis92.

p63 and p73: siblings stand together

p53 shares high structural similarity with p63 and p73, especially in the DBD. Yet they also 

show differences in structure.15 These structural features result in both shared and distinct 

functions among the three proteins. Both p63 and p73 are able to regulate a number of 

well-known p53 targets,93 and exhibit tumor suppression activity94. Compared to p53, p63 

and p73 have more roles in germ cell protection, fertility maintenance, and development 

regulation.16,95 For instance, p63 knockout (KO) mice exhibit defects in limb, craniofacial, 

and epithelial development, while p73 KO mice display neurological abnormalities.95

FUNCTIONS OF p53: DIVERSITY AND COMPLEXITY

p53 regulates a vast range of functions, constituting the complex p53 network (Figure 3).96

Cell-cycle arrest, apoptosis, senescence, and genome stability

The inductions of cell-cycle arrest, apoptosis, and senescence are among the earliest 

discovered functions of p53.2 Various stress signals can induce p53 to exert these functions, 

with DNA damage being the most potent trigger. Upon DNA damage, p53 is stabilized and 

Liu et al. Page 6

Cancer Cell. Author manuscript; available in PMC 2024 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activated to arrest the cell cycle, providing cells with a time window and adequate material 

and energy spared from cell cycle progression to repair damaged DNA. If the damage 

is too severe to repair, apoptosis and senescence will be elicited by p53 to eliminate the 

compromised cells. Notably, the outcome of p53 activation is also determined by the type 

of cell and DNA damage. These three activities are well accepted as the major barriers to 

prevent tumorigenesis.

On the other hand, failure to eliminate the damage cells leads to genomic instability. The 

loss of p53, including loss of heterozygosity (LOH) and biallelic inactivation or deletion, 

promotes genomic instability and drives the evolution of the tumor cell genome.97–99 p53 

is well known as “guardian of the genome”,100 thus a highly relevant activity of p53 

is to directly promote DNA damage repair. Indeed, a number of p53 targets have been 

identified to contribute to the DNA repair process.101,102 Nevertheless, it remains unclear 

whether p53-mediated activation of those DNA repair-related targets is sufficient to suppress 

tumorigenesis independent of other p53 activities.

Metabolism and ferroptosis

p53 is a master regulator in modulating metabolism of glucose, lipids, amino acids, 

nucleotides, iron, and redox processes. It also regulates autophagy and has broad crosstalks 

with key metabolic regulators such as AMPK, AKT, and mTOR.103 This function of 

p53 links it to several metabolic disorders, especially cancers. In general, p53 represses 

anabolic processes (such as de novo lipogenesis and nucleotide synthesis), while promotes 

catabolisms (including oxidative phosphorylation, lipolysis, and fatty acid oxidation). The 

enhanced glycolysis generates multiple molecular materials for biosynthesis in cancer cells 

and thus is inhibited by p53, as well.103 These activities of p53 counteract the rapid 

proliferation requirements of cancer cells, thus leading to tumor suppression.

However, p53 manifests bidirectional roles in many metabolic processes. This paradoxical 

activity lies in the context-dependent nature of p53 function.96,104 The role of p53 in 

ROS control provides a good example. When there is a low intensity of ROS (indicating 

mild, transient, tolerable, and mitigable stresses), p53 plays an anti-oxidative role to reduce 

it to safeguard the cell from damage (pro-survival). On the contrary, when ROS levels 

are excessively high and potentially cause uncontrollable damage (representing severe, 

prolonged, detrimental, and unrelievable stresses), p53 further intensifies the ROS, leading 

to cell death and limiting harm in the damaged cells, thus protecting nearby undamaged cells 

(pro-death).47,103,105

Ferroptosis is an iron-dependent form of regulated cell death that occurs upon excess levels 

of lipid peroxidation, tightly linked with metabolic pathways. Several metabolic targets of 

p53 including SLC7A11, VKORC1L1, GLS2, and PLTP are directly involved in modulating 

ferroptosis.106–111 Similar to apoptosis during the DNA damage response, ferroptosis is 

able to eliminate the severe damaged cells during metabolic stress.112 By using acetylation-

defective p53 mouse models, p53-mediated ferroptosis is implicated as an important arsenal 

in tumor suppression41,43 and interestingly, the defect in p53-mediated ferroptosis caused 

by an African-specific p53 SNP impairs its tumor suppressive function.113 Unlike apoptosis, 

initiation of canonical ferroptosis often relies on the treatment of cells with ferroptosis 
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inducers, such as GPX4 inhibitors. It remains unclear whether ferroptosis-dependent tumor 

suppression requires ferroptosis inducers in vivo. Notably, a recent study showed that 

PHLDA2-mediated phosphatidic acid peroxidation triggers a non-canonical ferroptotic 

response in the absence of common ferroptosis inducers.114 Since p53 is able to promote 

both canonical and non-canonical ferroptotic processes, it will be interesting to examine 

which ferroptotic pathway plays a more dominant role in p53-mediated tumor suppression.

Stem cell dynamics and cell competition

Stem cells share many similarities with cancer cells, including sustained proliferative 

ability, reprogrammed metabolism, and the core transcription network. Therefore, it is not 

surprising that p53 restricts the cell stemness and modulates cell fate in various types of 

stem cells.115,116 In embryonic stem cells (ESCs), p53 inhibits genes that maintain stemness 

while activating those related to differentiation.117,118 In diverse types of adult stem cells 

(ASCs), p53 represses self-renewal, promotes depletion, maintains quiescence, or stimulates 

the differentiation.116 The ability of p53 to limit stemness is critical to its tumor suppression 

function, as it impedes the formation of cancer stem cells.119,120 Specific differentiation 

route guided by p53 contributes to tumor suppression in lung cancer.121 Loss or mutation 

of p53 may cause dedifferentiation, cell reprogramming, and increased cellular plasticity in 

cancers.122,123 The course of generating induced pluripotent stem cells (iPSCs) resembles 

dedifferentiation and cell transformation. p53 serves as a major brake in this process, and 

silencing p53 greatly improves the efficiency of iPSC generation.124,125

Cell competition is vital in development, tissue injury repair, tumor evolution, and 

metastasis. Generally, as p53 inhibits anabolism and proliferation while promoting cell 

death, which are not beneficial for cell to outcompete neighboring cells, a high level of p53 

activity often marks a “loser” cell state in cell competition.126 However, there is a study that 

reports p53 activity is required for supercompetitor cells to eliminate nearby normal cells 

in Drosophila.127 The regulation of cell competition by p53 has significant physiological 

implications.128–131 Cells harboring mutant p53 may undergo clonal expansion, potentially 

driving tumor initiation and evolution.80,132,133 However, these p53 mutant cells are not 

always retained, as they may experience necroptosis by competing with nearby normal cells, 

or be outcompeted by cells with mutations in other genes that confer higher fitness.134,135

Metastasis

p53 suppresses metastasis at its multiple stages and in both cell-autonomous and non-

cell-autonomous manners.136 In tumor cells, p53 restricts their mobility and epithelial-

mesenchymal transition (EMT) process.136 Metastatic cancer cells in circulatory system 

may undergo anoikis and ferroptosis, both of which are promoted by p53 to prevent cancer 

cell migration to new sites.106,136 At each step of metastatic spread, cancer cells adopt 

specialized metabolic programs to meet their energy and biomolecular requirements, which 

can be counteracted by p53.103,137 On the other hand, p53 shapes a tumor microenvironment 

(TME) that is unfavorable for metastasis. For example, p53 restrains the angiogenesis 

and lymphangiogenesis, blocking the main metastatic routes via blood and lymphatic 

systems.138,139 It also maintains the integrity of extracellular matrix and enhances tumor 
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cell adhesion to it, limiting tumor cell movement.140 Moreover, p53 hinders pro-metastatic 

inflammation.141

Immunity

Another essential function of p53 is to regulate immune response. p53 functions in both 

innate and adaptive immunity through multiple mechanisms.142,143 Both p53 in tumor cells 

and non-tumor cells synergize to construct a tumor-suppressive immune network. In tumor 

cells, p53 indirectly represses PD-L1 expression by upregulating miR-34, sensitizing tumor 

cells to anti-tumor immune response and immunotherapy.144 p53 activates cGAS-STING 

pathway to induce anti-tumor activity.145 In a mouse liver carcinoma model, restoring p53 

expression induces tumor cell senescence, triggering the release of inflammatory cytokines 

and eliciting an innate immune response to eliminate tumor cells.146

In hepatic stellate cells, p53-induced senescence also exhibits a tumor-suppressive effect in 

liver cancer, establishing a senescence-associated secretory phenotype (SASP) that bolsters 

M1 macrophage polarization to maintain a tumor-inhibitory TME.147,148 In a subtype 

of murine myeloid precursor cells, p53 drives their differentiation into Ly6c+CD103+ 

monocytic antigen-presenting cells, enhancing anti-tumor immunity.149

Loss of p53 in tumor cells or TME cells significantly reverses the tumor-suppressive 

immune microenvironment to an immunosuppressive condition, promoting the immune 

tolerance or escape of tumor cells, or establish an inflammatory environment conducive 

to tumor metastasis.150,151 Mutant p53 may stimulate tumor cell immune evasion,143,152 

and intriguingly, p53 mutants themselves can generate neoantigens that may be novel 

immunotherapeutic targets.153–155

p53 participates in autoimmune responses and immune defenses against various pathogens 

as well.142,156 Noteworthily, not all immunity-related activities of p53 promote immune 

cell function or are beneficial to health. p53 may inhibit the proliferation and function in 

certain T cell subtypes.157,158 For instance, p53 suppresses antigen-non-specific CD4+ T cell 

proliferation, a process that can be abolished by T cell receptor (TCR) signaling.158 Some 

viruses rely on p53 activity for cell-cycle arrest and replication.156

Rethinking the multitudinous functions of p53

p53 is such a powerful regulator with an array of diverse and complex functions that 

summarizing its roles in just a few words is challenging. These functions are intricately 

orchestrated by this single protein to achieve a unified biological purpose. Simplified 

expressions are often used to describe the working model of p53, such as “guardian of 

the genome”,100 “protector or killer”,47 and “pro-survival or pro-death”159. The working 

mode of p53 originates from the protection of germ cells by the ancestral p53 gene in lower 

organisms.160 Human p53 plays a similar protective role in somatic cells. In the majority of 

species expressing p53 or p53-like gene, this gene is essentially a stress-responder, but not 

merely a tumor suppressor. Therefore, p53 could also be called the “guardian of the cell”.21 

The tumor-suppressive role of p53 may be considered coincidental, as some of its guardian 

functions are inherently antagonistic to many cancer cell characteristics. Thus, p53’s normal 

activity incidentally represses tumor initiation and development.
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p53 IN PHYSIOLOGY AND PATHOLOGY: GUARDIAN IS AN ALL-ROUNDER

Due to its myriad functions, p53 is involved in a multitude of biological processes in normal 

physiology. However, both normal and dysregulated p53 activity also contribute to various 

disorders (Figure 3).

Reproduction, development, regeneration, repair, and aging

p53 predominantly influences maternal reproduction.161,162 Mechanistically, p53 

transactivates leukemia inhibitory factor (LIF), a key cytokine for implantation, in the uterus. 

Lower LIF levels in p53-null female mice cause impaired implantation.162 In women under 

35 with infertility, the P72 variant of p53, which has a weaker transactivating effect on LIF, 

is overrepresented, suggesting a positive correlation between p53 activity and implantation 

rate.71

p53’s regulation of development is rooted in its pivotal roles in the cell cycle, cell death, 

stem cell dynamics, and cell competition.116 p53 maintains genomic integrity in stem cells 

of embryo, promote differentiation, and permit normal development.116 The activity of p53 

in early development must be kept in check, as evidenced by that deregulated p53 (loss, 

hyperactivation, and mutation) is linked to a variety of developmental defects in mice and 

humans.163,164 p53 also functions in distinct types of ASCs to maintains proper tissue 

hierarchy by protecting their integrity, holding them in dormancy, fine-tuning differentiation 

route, preventing unlimited proliferation, unordered differentiation, and dedifferentiation, 

plus suppressing tumorigenesis.116 p53 also plays a role in tissue regeneration.165 A recent 

study reported that p53 facilitates alveolar regeneration by regulating AT1 differentiation.121 

As the wound healing course has many similarities with metastasis, p53 is supposed to 

impede it.166

Theoretically, p53’s activity has both pro-aging and anti-aging effects. On one hand, p53-

mediated stress (particularly the DNA damage, a key driver of aging) response supports 

cell survival, removes damaged cells, protects tissue integrity, and maintains organismal 

homeostasis, potentially delaying aging. However, excessive and persistent DNA damage 

response by p53 has the opposite effect on aging.167 On the other hand, stem cell depletion 

by p53 accelerates aging process,38,168 yet there are counter-examples.169,170 Furthermore, 

functions of p53 in modulating senescence, metabolism, immune activity, and its interplay 

with sirtuins are also related to aging mediation.171,172 The relationship between p53 

activity, tumor suppression, and aging has been investigated in different mouse models and 

little consensus has reached, which may stem from the highly context-dependent nature of 

p53’s function.170,173–177 Insights into the relationship between p53, cancers, and aging may 

be gleaned from studying animals other than mice.178 A notable example is the elephant, 

which has twenty copies of the p53 gene and exhibits a low tumor incidence along with a 

long lifespan.179 More efforts are required to dig out the role of p53 in aging, hoping to 

develop interventions that could better balance tumor suppression with aging, or possibly 

achieve longevity with a reduced incidence of tumors.
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Neurodegenerative disease (NDD)

p53’s role in aging regulation is closely related to its function in various NDDs.180–183 

The p53 protein level is often elevated in these disorders. Primarily, p53 contributes to 

NDD pathology by inducing apoptosis. Recently, ferroptosis has been recognized as playing 

a significant role in NDDs.184 As a master regulator of ferroptosis,106 it is logical to 

speculate that p53 participates in NDD progression via regulating ferroptosis. Additionally, 

p53 protein aggregation is implicated in Alzheimer’s disease.185 When developing drugs 

targeting p53 pathway for cancer treatment or slowing aging in elder people, the impact of 

p53 on NDDs should be considered.

Radiation sickness, chemotherapeutic toxicity, and ischemic injury

Exposure to radiation and genotoxic reagents, whether accidental or as part of cancer 

treatment, activates p53-dependent apoptosis and ferroptosis, causing pathologies in 

various organs.106,186 Particularly, this mechanism underlies major side effects in tumor 

radiotherapy and chemotherapy.187,188 Upon genotoxic stresses, the presence of p53 is not 

always harmful. The response of p53 to radiation is tissue-specific; while it stimulates 

radiation-related cell death in hematopoietic system, hair follicle, and spinal cord, it offers 

a radioprotective effect on gastrointestinal tract.186,189 Similarly, apoptosis and ferroptosis 

promoted by p53 lead to ischemic injuries in organs such as brain (e.g. stroke), kidney (e.g. 

kidney transplantation), and heart (e.g. myocardial infarction).106,186

Metabolic disease

p53 plays a complicated role in diverse metabolic diseases, including obesity, diabetes, 

alcoholic and non-alcoholic fatty liver diseases (AFLD and NAFLD), and cardiovascular 

diseases.103,190,191 Its multifaceted activities, particularly in metabolic regulation, affect 

these disorders in different cells, tissues, and organs, such as pancreatic β-cell, liver, muscle, 

and adipose tissue. Contradictory results are often reported about functions of p53 in these 

diseases. For example, while p53 in skeletal muscle progenitor cells and agouti-related 

peptide neurons protects against obesity,192,193 the liver R72 variant of p53, with enhanced 

transactivation ability, promotes fat accumulation and NAFLD.70 Besides, in endothelial 

cells p53 exacerbates dietary obesity-related metabolic abnormalities.194 Hence, when 

discussing the function of p53 in systemic metabolism and associated metabolic diseases, it 

must be put into a specific setting. Care must be taken when targeting p53 to treat certain 

metabolic diseases to avoid disrupting other metabolic processes and minimize the risk of 

predisposing recipient cells to cancer.

Cancer

As previously mentioned, p53 possesses an arsenal of functions to combat all the hallmarks 

of cancer,195 which may be lost or reversed due to its mutation, deletion, or repression in 

cancer cells (Figure 4).

While a mutation in one p53 allele may be sufficient for cellular transformation when 

the other WT p53 allele remains intact,196,197 LOH of p53 gene is often observed. 

The mechanisms behind p53 mutations are not entirely clear. Some may result from 

environmental and chemical carcinogens such as ultraviolet radiation, aflatoxin, and tobacco 
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smoke, which leave characteristic fingerprints on the p53 gene.73,198 The frequency and 

spectrum of p53 mutations are dictated by factors such as gender, tissue type, and both cell-

autonomous and non-cell-autonomous mechanisms in tumor evolution.199–203 In addition, 

the timing of p53 mutations varies among different tumors.198 Even within the same 

tumor type, different p53 mutants may not lead to the same phenotype.204 As introduced 

before, mutant p53 promotes tumor development via LOF, DNE, and GOF, which are well-

elucidated in mouse models.79,196,197 While extensive focus has been placed on p53 hotspot 

mutations, other mutations should not be overlooked. For instance, missense mutations 

disrupting p53 oligomerization can lead to tumorigenesis.205,206 Missense mutations in the 

PRD of p53 may potentially impact its tumor-suppressive functions.207 Serum antibodies 

against mutant p53, immunohistochemistry of mutant p53, and DNA fragments of mutant 

p53 in tumor cells or body fluids and feces can be used as diagnostic and prognostic 

biomarkers in tumor patients.198,208–211 p53 mutations also act as predictors for the efficacy 

of certain tumor treatments and are useful for patient stratification.212

The p53 gene is located on the short arm of chromosome 17 (17p13.1), a region frequently 

deleted in tumors. p53 loss promotes tumor growth and metastasis in many different 

ways.97,98,123,151,213 p53 deletion is often linked with the loss of nearby genes, such 

as POLR2A and EIF5A, which also contributes to tumorigenesis and creates therapeutic 

vulnerabilities by targeting the co-deleted genes.214,215

As p53 mutation and deletion have significant impact on carcinogenesis, mutating 

or deleting p53 have been effectively applied to generate various mouse tumor 

models.196,197,216,217 A tightly relevant question is, among the LOF, DNE, and GOF of p53 

alteration, which is the predominant mechanism underpinning p53-related tumor initiation 

and progression? While GOF of p53 mutants has garnered plenty of evidence supporting its 

tumorigenic role,218 there are also studies suggesting that LOF and DNE contribute more to 

cell transformation than GOF90,201,219. The moderate LOH rate (40–60%) in LFS patients 

has implications for this question.220 More well-controlled and tumor type-specific studies 

are warranted to clarify this issue. The answer is likely highly context-dependent.

A notable percentage of tumors retain two intact WT p53 alleles. These tumors may use 

different methods to attenuate p53 activity and its associated pathway. A common way 

is to enhance inhibition of p53 protein level, nuclear import, promoter recruitment, and 

transactivation activity by upregulating its negative regulators.54,63,221 The amplification 

of the MDM2 gene in sarcoma and glioblastoma is a notable example.221,222 Besides 

amplification, the T309G SNP of MDM2 and deletion of p14ARF both enhance repression of 

WT p53 by MDM2 in tumors.221,223,224 Many oncogenic viruses (such as SV40, EBV, and 

KHSV) transform cells partially by inactivating p53.221 Sometimes, WT p53 is misfolded 

into a pseudo-mutant conformation due to multiple mechanisms.74 In addition to inhibiting 

p53 directly, disruption of p53 downstream effectors also impairs the tumor-suppressive 

effect of WT p53.225

Although p53 is a well-known tumor suppressor, sporadic reports indicate that under certain 

circumstances, WT p53 activity may facilitate tumorigenesis and tumor survival. This can 

occur in the precancerous stage226 and during tumor growth227–230. Activation of WT p53 
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may also impair the efficacy of tumor treatment, promote resistance to anti-tumor drugs, and 

cause tumor relapse.231–234 These cases stem from the hijacking of one or more functions of 

p53 by precancerous or tumor cells to survive and develop. Correspondingly, some bona fide 

p53 target genes, such as MDM2 and TIGAR,235,236 can function as oncogenes. Hence, p53 

should not be seen as a stereotypical tumor suppressor, but as a context-dependent guardian 

of the cell.

The list of disorders influenced by p53 extends to some other diseases. Taken together, 

beyond its most famous function in cancer, p53 is a highly health-relevant gene in both 

normal physiology and pathology (Figure 3). Health is achieved by maintaining the body’s 

homeostasis, which is a dynamic and balanced process. As a major stress-responder, p53 

guards cellular homeostasis against various stresses. However, its activity can have both 

positive and negative effects on health and should be kept in equilibrium. Both insufficient 

and excessive p53 activities can disrupt a healthy state. Hence, the double-edged power of 

p53 should be seriously and carefully considered in health promotion and disease treatment 

strategies targeting p53.

TARGETING p53 FOR DISEASE TREATMENT: ALL ROADS LEAD TO 

HEALTH

Targeting p53 in cancer

Its “tumor-suppressive TF” nature makes p53 seemingly undruggable. Nevertheless, a 

multitude of methods have been developed to enhance or recover the WT function of p53 

depending on its status in cancer cells (whether repressed, mutated, or lost) (Figure 5). For 

more information, readers are referred to recent reviews.74,237

In cancer cells retaining WT p53, an intuitive idea is to abrogate p53’s inhibition. This 

can be achieved by reducing the protein level (using siRNA, proteolysis-targeting chimera 

(PROTAC), or molecular glue) or activity of negative regulators of p53. However, these 

methods often lack specificity, as many p53 inhibitory factors have additional targets.238 

Hence, lots of efforts have been made to identify molecules that specifically disrupt the 

protein-protein interactions (PPIs) between p53 and its negative regulators. MDM2 is the 

major target for elevating WT p53’s protein level and activity. Nutlin, the first small 

molecule to interfere with MDM2’s binding and degradation of p53 was proposed in 

2004.239 Based on it, several derivatives including RG7112 and a more potent RG7388 

(idasanutlin) have been developed and tested in clinical trials.74,237,240 However, in the 

phase 3 MDM2 antagonist Idasanutlin in Relapsed or Refractory acute myeloid leukemia 

for Overall Survival (MIRROS) trial, although an encouraging overall response rate was 

observed in cytarabine plus idasanutlin group over cytarabine plus placebo group, the 

primary endpoint (overall survival) was not reached.241 What’s more, idasanutlin treatment 

may cause hematological and gastrointestinal toxicities, highlighting the potential side 

effects of p53-activating drugs.240 Other small molecular inhibitors of the MDM2-p53 

interaction include APG-115242 and AMG 232 (KRT-232)243, both undergoing clinical 

trials. ALRN-6924, a stapled α-helical peptide, simultaneously relieves the inhibition of 

MDM2 and MDMX on p53.244 Other negative regulators of p53, such as USP7,245 HPV 
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E6,246 SIRT1/2,247 VPRBP,248 and SETD8,249 are promising targets for p53 activation. 

Given that PTMs are crucial for regulating p53 activity, targeting these cofactors holds 

attractive potential. Again, how to specifically affect the PTM status of p53 is a big 

challenge. Cofactors adjusting WT p53’s protein folding, cellular localization, DNA 

recruitment, and activity dynamics should be considered for targeting as well. Other aspects 

related to p53 expression and activity, including alternative splicing and translation, mRNA 

stability, and SNPs, can be targeted, too.

In cancer cells with p53 missense mutations, primary efforts are focused on restoring 

WT p53 activity. The existence of pseudo-mutant p53,74 second-site reversion of mutant 

p53,250 and temperature-sensitive mutant p53251 imply that the conformations of WT and 

mutant p53 might be interchangeable. This possibility opens the door to restoring the 

tumor-suppressive conformation of mutant p53 using specially designed small molecules 

(correctors). CP-31398, discovered in 1999, was the first compound found to enable 

mutant p53 to activate transcription and suppress tumor growth.252 After that, many 

more correctors are identified, for instance PRIMA-1.253 The degradation metabolite of 

PRIMA-1, methylene quinuclidinone (MQ), covalently binds to the thiol group of cysteine 

in mutant p53, restoring the WT conformation. Nevertheless, it also alters the redox 

state of the cell independently of p53 by reacting with other proteins. Its derivatives 

PRIMA-1MET (APR-246, or eprenetapopt) and APR-548 are undergoing multiple clinical 

trials.237 A thiosemicarbazone drug COTI-2, is also in a clinical trial.254 Arsenic trioxide 

(ATO), a drug to treat acute promyelocytic leukemia, has been found to rescue many p53 

mutants, with varying efficiencies depending on the solvent accessibility and temperature 

sensitivity of the mutants.255,256 The antiparasitic drug potassium antimony tartrate (PAT) 

also rescues temperature-sensitive p53 mutants, like p53-V272M.257 These correctors above 

are responsible for rescuing multiple p53 mutants, but their broad-spectrum nature may limit 

efficiency for specific mutations. Targeted correctors for particular mutations would be more 

suitable for personalized treatment. For example, PhiKan083,258 PK7088,259 PC14586,260 

and KG13261 are designed to correct the p53-Y220C mutant, because of its special 

conformation. Additionally, MS78, an acetylation targeting chimera (AceTAC), promotes 

the K382 acetylation of p53-Y220C, thereby specially rescuing its tumor suppressive 

activity.262 For a more common p53-R175H mutant, the thiosemicarbazone drug ZMC1 

(NSC319726) is discovered, facilitating zinc binding and forcing the mutant into a WT 

conformation.263 The aggregation of mutant p53 can be relieved by ReACp53264 and 

ADH-6265. The dissociated mutant p53 partly recovers tumor-suppressive activity. Some 

GOF aspects of mutant p53 are targetable, too. NSC59984, for example, promotes mutant 

p53 degradation,266 releasing sequestered p73 to inhibit tumor growth. Other drugs, such 

as ganetespib,267 MCB-613,268 and biomimetic nanoreceptor,269 also promote mutant p53 

degradation.

To treat nonsense mutations of p53, chemicals inducing translational readthrough or 

inhibiting nonsense-mediated mRNA decay (NMD), such as G418, 2,6-DAP, CC-90009, 

and NMDI14 can be utilized.74,237 For p53-mutated cancer cells, an alternative approach 

is oncolytic virus therapy. ONYX-015, a modified adenovirus, replicates only in p53-

inactivated cells, thus selectively targeting cancer cells with p53 mutations while sparing 

normal cells.270
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To treat p53-null tumors, one approach is to introduce p53 protein or use gene therapy to 

deliver p53 mRNA or DNA into tumor cells, thereby reinstating the expression of WT p53 

protein.271–273 Advances in adeno-associated virus (AAV) and nanoparticle techniques may 

enhance the development and application of p53 gene therapy. The potential of CRISPR-

Cas9 base editing technology for correcting p53 mutations in tumors is intriguing.

Targeting p53 can involve diverse cell types in the TME to achieve a tumor-suppressive 

outcome. For example, p53 activation induces the expression of endogenous retroviruses, 

which can potentiate immunotherapy.274 As previously introduced, mutant p53 can generate 

neoantigens targetable by immunotherapy.153–155 The engineered antibody P1C1TM, for 

instance, can distinguish between different p53-derived peptide-MHCs on WT and p53 

mutant cells, mediating cytotoxicity or serving as an antibody-drug conjugate (ADC) to 

specifically eliminate p53 mutated tumor cells.154 The bispecific antibody H2-scDb, which 

bridges cancer cells presenting a p53-R175H neoantigen with T cells, effectively facilitates 

the destruction of cancer cells by T cells.153 Identifying mutant p53-derived neoantigens can 

also enhance adoptive cell therapies (such as CAR-T and TCR-T)155 and the development 

of p53 vaccines275,276. The success of mRNA vaccine technology encourages further 

exploration in the p53 vaccine direction. Targeting p53 in immune cells and tumor stroma 

cells (e.g. cancer-associated fibroblasts) could enhance anti-tumor effects as well.147,277,278

The status of p53 can significantly impact the sensitivity to certain cancer treatments.279,280 

Often, p53-targeted therapies are combined with other treatments for two primary purposes: 

to enhance the efficacy of activating or restoring p53,281 and to exploit synthetic lethal 

effects created by simultaneously activating p53 and intervening in other pathways282–284. 

For instance, in acute myeloid leukemia, the activation of p53 coupled with Bcl-2 inhibition 

helps overcome resistance to individual treatments and stimulates apoptosis in cancer 

cells.282

Beyond directly targeting the p53 protein, key downstream components, especially those 

effectors critical for p53-mediated tumor suppression, can also be targeted to partially 

reactivate the p53 signaling pathway. This approach, while potentially less effective than 

activating WT p53, may be more feasible and serve as a complement to p53-targeting 

strategies.122,225,285 Besides the therapeutic and prophylactic applications, the diagnostic 

and prognostic values of p53 should not be overlooked either.198,208–212,286

Although there never lacks ideas to target p53, only a minority of them can enter clinical 

trial, not to mention the successful approval into clinical application. There are several 

obstacles to overcome before a p53-targeted drug can truly benefit the cancer patients. 

Firstly, the absorption, distribution, metabolism, and excretion (ADME) of the drug need 

to be optimized. Secondly, the efficiency of the p53-targeted therapy is influenced by 

various factors. Although p53 has potent tumor-suppressive capabilities, its activation does 

not always guarantee efficient tumor cell eradication.287,288 Strategies such as patient 

stratification and combination treatments may enhance efficacy. Thirdly, the low specificity 

of some drugs may result in off-target effects. Fourthly, the side effects caused by the 

on-target or off-target drug toxicity are among the major safety concerns. This is particularly 

evident in normal cells when activating WT p53 by blocking MDM2-p53 interaction. 
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Given that the induction of cell-cycle arrest, apoptosis, and senescence is dispensable in 

p53-triggered tumor suppression,289 developing methods to retain p53’s anti-tumor effect 

without harming normal cells is a realistic goal. Another concern arises from the possibility 

that in normal cells harboring p53 mutations, MDM2 inhibitors could potentially activate 

the oncogenic function of these p53 mutants by stabilizing them. This consideration 

warrants serious attention in clinical practice. Specific drug delivery to tumor cells could 

reduce toxicity. It’s worth noting, as previously discussed, that p53-mediated cell death 

contributes significantly to the side effects experienced during tumor radiotherapy and 

chemotherapy.187,188 Consequently, suppressing p53 activity might be beneficial in reducing 

these treatment-related side effects.290 Interestingly, if controlled well, the mild activation 

of p53 could be employed in cyclotherapy, serving to protect normal cells.291 Fifthly, 

p53-targeted therapy poses the risk of driving tumor evolution, and selection of new 

mutations of p53 or alterations in the p53 pathway, leading to treatment resistance and 

tumor relapse.74,292,293 Appropriate combination treatments may help to mitigate this risk. 

Sixthly, p53 rarely promotes tumor survival, progression, drug resistance, and relapse, as 

mentioned before. In such scenarios, careful consideration is necessary to determine whether 

activating p53 is advisable. With progress in fields like artificial intelligence,294 structural 

biology, and multi-omics, these problems will be eventually addressed.

Targeting p53 in other physiological and pathological settings

The exploration of targeting p53 in normal physiological processes and non-cancerous 

diseases is not as extensive as in cancers. However, given p53’s broad impact, strategically 

modulating its activity could potentially enhance health by improving normal physiological 

functions and alleviating p53-associated disorders. For example, activating p53 in the uterus 

might increase the success rate of embryo implantation, while inhibiting p53 might prevent 

NDDs and reduce ischemic organ injury. In the context of metabolic disorders and aging, the 

role of p53 remains debatable and warrants further investigation. To suppress p53 activity, 

various methods can be employed, such as using p53 inhibitors,186,290 disrupting the PPIs 

between p53 and its activators,295 or augmenting the function of negative regulators of p53. 

These approaches essentially mirror those used for activating p53 but in reverse. A word 

of caution is that suppressing p53 might inadvertently increase the risk of tumorigenesis. 

Strategies like short-term intervention and cell type-specific delivery of p53-inhibitory drugs 

could decrease this risk. Looking ahead, it is full of hope that targeting p53 can improve 

health outcomes beyond just cancer treatment.

INTRIGUING QUESTIONS IN THE p53 FIELD: OPEN QUESTIONS, BRIGHT 

FUTURE

Great progress has been made over the past 45 years in p53 research. Basic regulations, 

functions, and therapeutic potentials of p53 have been elucidated. Nevertheless, there are 

still some fundamental questions awaiting to answer.

Firstly, what is the function of basal p53? In resting cell, both the expression and activity 

of p53 protein are kept low, until various stimuli stabilize and activate it. However, obvious 

stress is not always required for p53 to carry out some of its functions, such as regulating 
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stem cell dynamics, cell competition, ROS level, and immune activity.105,142,296 So how 

does basal p53 work in unstressed cells? Does the basal activity of p53 contribute to 

tumor suppression? Basal p53 can bind to the promoters or enhancers of its target genes, 

establishing a primed state for rapid responses to stresses.23 Importantly, it also maintains 

a specific expression profile of target genes.297 Particularly, basal p53 is responsible for the 

baseline level of some tumor suppressor genes like PTEN.298 There may be differences in 

the target gene lists between basal and activated p53. Evidence also suggests that robust 

stabilization,44 full transactivation ability,297 and tetrameric conformation205 of p53 are not 

absolutely necessary for its tumor suppression effect. Therefore, leveraging the basal activity 

of p53 may help minimize side effects on normal cells and reduce the risk of selecting 

p53 mutations resulting from its activation. Studying the function of basal p53 requires an 

appropriate model. While knocking out p53 in a tumor cell line might provide some insights, 

transferring cells to tissue culture can be a p53-inducing stress. p53 levels in cultured cells 

may not reflect a truly unstressed basal state, which presents a caveat when interpreting in 
vitro results. More importantly, cultured cells lack the diverse environmental cues present in 
vivo and thus cannot fully simulate the actual tumorigenic process. Moreover, the phenotype 

observed in p53 KO mice should not be solely attributed to the loss of basal p53 activity, as 

the functions of stress-activated p53 are eliminated, too.

Secondly, what is the contribution of p53’s repressive target genes to its function? p53’s 

role is not limited to activating transcription. It has also been found to repress the 

expression of many genes,299 with the notable examples such as SLC7A11,107 NANOG,117 

and VKORC1L1109. In most cases, p53 suppresses gene expression indirectly, either 

through transcriptional or post-transcriptional mechanisms. It competes with other TFs 

for DNA binding,120,300 activates negative regulators of gene expression,301–304 and 

suppresses the expression of transcription activators.305 Otherwise, direct repression of 

transcription by p53, through binding to special REs,117,119,306,307 interfering with enhancer 

function,118,305 and remolding chromatin structure305 are reported as well. Although the 

direct transcriptional repression by p53 is a subject of ongoing debate308 and requires further 

investigation, it is clear that hundreds of genes are downregulated upon p53 activation or 

upregulated in its absence. Future studies are expected to shed more light on whether and 

how p53 functions as a direct transcription repressor, and the roles these repressive target 

genes play within the p53 network.

Thirdly, are genetically engineered mouse models (GEMMs) sufficiently effective for p53 

research? While GEMMs have significantly advanced our understanding of p53,289,309 they 

also present inherent limitations. The most notable is the species gap between humans and 

mice, as many human p53 targets are not shared by mouse p53,310 not to mention the 

differences in immune system or other biological systems. The knowledge about p53 got 

from in vitro studies is often tested in mouse models. Nonetheless, most reproducible results 

in mice could not be directly translated to applications in humans. Currently, humanized 

mouse models311,312 and human organoids313 serve as useful supplements to GEMMs. 

However, these alternatives have their limitations as well. Consequently, there is a pressing 

need to develop more practical and human physiopathologically relevant systems for p53 

research.
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Fourthly, what are the underpinning mechanisms and biological relevance of the context-

dependent activity of p53? A reiterated feature of p53 activity in above sections is its 

context-dependency. The target profile of p53 exhibits significant organ specificity and 

spatiotemporal variations.314 Heterogeneity in p53 expression is also evident within a single 

tumor.315 Even within the same cell, the target selectivity and functional outcome of p53 

activation are determined by a variety of variables.23 In addition, gender can dictate p53-

regulated human behavior.316 When interpreting experimental results related to p53, placing 

them within a specific context is essential.104 Further effort is still warranted for a deeper 

understanding of p53 activity and the development of context-specific treatment regimens 

that target p53.

Fifthly, is targeting p53 truly a practical approach for treating cancers? The differential 

alterations of p53 in cancers and the extensive variety of p53 missense mutations complicate 

the design of specific drugs for each type of p53 alteration. The context-dependency of p53 

activity adds another layer of complexity to this issue. However, targeting p53 as a treatment 

for cancers remains an enticing approach to pursue. Considering the frequent side effects, 

are there other elements in the p53 pathway that could serve as safer targets than MDM2, 

without compromising anti-tumor efficacy? Is it possible to achieve a “two-drugs-cure-all” 

goal by activating or inhibiting p53 to treat all p53-associated diseases, and improve overall 

health, particularly in extending longevity? This ambition may seem lofty, but it is certainly 

worth exploring.

Likewise, several other important questions remain unanswered. New targets of p53 are 

continuously being identified. A notable example is zinc finger matrin-type 3 (ZMAT3), 

which plays a critical role in p53-dependent tumor suppression.317–320 What are the 

unidentified targets and functions of p53? What targets or functions are indispensable 

for p53 to mediate tumor suppression? What is the functional diversity and evolutionary 

significance of p53’s two TADs? How do they cooperate in executing p53’s tumor-

suppressive function? Some progress has been made in this area,19,297 but it has not been 

fully addressed. Are the non-cell-autonomous activities of p53 viable targets for cancer 

treatment? Under what circumstances does p53 shift to support tumor development? Can we 

leverage p63 and p73 to synergize with p53 targeting in the treatment of cancers or other 

diseases? The list of the questions could be longer. New questions will emerge in the future. 

It is on the way to find answers to these questions, our understanding of p53 is refreshed and 

deepened.

CONCLUSIONS

The past 45 years of p53 research represent a remarkable journey. As discussed above, 

countless discoveries result in a much better understanding of the complexity of p53 

functions under different physiological settings. The diverse tumor suppression mechanisms 

including both classical activities and a growing number of other p53 functions raise a 

more interesting issue about which pathway is more critical for suppressing tumor growth 

in different types of human cancers. Moreover, although p53 is well accepted as a tumor 

suppressor, not all p53-induced activities are necessary for tumor suppression. For example, 

p53-mediated pro-survival activity seems at odds with its growth-suppressive function in 
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tumors; however, this activity is potentially important for normal cell homeostasis, allowing 

normal cell survival during stress responses. The challenge remains how to activate p53 

function for cancer therapy. The difficulties associated with translating the MDM2-targeting 

approach into clinical application raises a serious issue about how to kill cancer cells 

without harming normal tissues. It remains unclear whether the toxicity induced by MDM2 

inhibitors (particularly in the bone marrow) is unique for the MDM2 pathway or for p53 

activation in general. If the former is the case, targeting different pathways for p53 activation 

should be seriously considered.248 Notably, in contrast to the classic activities such as 

apoptosis, many p53 targets involved in metabolism, ferroptosis, and immunity do not 

directly cause severe harm to cell viability.321 It will be interesting to examine whether the 

specific activation of those pathways effectively suppresses tumor growth without causing 

severe toxicity.
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Figure 1. Timeline of research in the p53 field over the past 45 years.
This figure shows the number of publications recorded in PubMed every five years since 

1979, along with key discoveries about p53. Due to space constraints, many excellent studies 

cannot be included here. LFS, Li-Fraumeni syndrome; PTM, post-translational modification; 

GOF, gain-of-function; NDD, neurodegenerative disease; iPSC, induced pluripotent stem 

cell; TAD2, transactivation domain 2; KR, lysine-to-arginine mutation.
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Figure 2. Regulation of p53.
The expression and activity of p53 are controlled by multilayered regulation at the DNA, 

RNA, and protein levels. At the DNA level, SNPs (e.g. P72R) and mutations (e.g. R273H) 

may occur in the p53 gene. p53 possesses two promoters, which can be methylated and 

silenced. The transcription of p53 gene is activated or suppressed by various TFs (e.g. 

HOXA5). At the RNA level, the cellular localization, stability, and translation of p53 

mRNA are modulated by RNA-binding proteins (e.g. TIA1) and ncRNAs (e.g. miR-380–

5p). p53 pre-mRNA and mRNA can undergo alternative splicing and alternative translation, 

respectively. At the protein level, p53 folding, stability, cellular localization, DNA binding, 

transactivation ability, and target selection are primarily mediated by post-translational 

modifications (e.g. ubiquitination, phosphorylation, and acetylation) and cofactors (e.g. 

MDM2, MDMX, and CBP). Diverse stress signals (e.g. DNA damage) can activate p53, 

and its activity as a TF is highly dynamic. p53 also exhibits TF-independent function in 

cytoplasm (e.g. promoting apoptosis via interacting with Bcl-XL). P1 and P2, promoter 

1 and 2; SNP, single nucleotide polymorphism; E3, E3 ubiquitin ligase; TF, transcription 

factor; Me, methylation; Ub, ubiquitination; P, phosphorylation; Ac, acetylation.
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Figure 3. Functions and physiopathological roles of p53.
p53 exhibits diverse and complex functions: classical functions (including inducing cell-

cycle arrest, apoptosis, and senescence, and maintaining genome stability) and other 

functions (such as mediating metabolism, ferroptosis, stem cell dynamics, cell competition, 

metastasis, and immunity). Due to its wide array of functions, p53 plays a crucial role 

in numerous physiological processes (e.g., reproduction, development, regeneration, repair, 

and aging) and pathological disorders (like neurodegenerative disease, radiation sickness, 

chemotherapeutic toxicity, ischemic injury, metabolic disease, and cancer). The black curves 

illustrate how specific functions of p53 contribute to its role in linked physiological or 

pathological processes.
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Figure 4. p53 and cancer hallmarks.
Activity of WT p53 antagonizes all the hallmarks of cancer, as depicted in the surrounding 

ovals. In contrast, alterations in p53, including repression, mutation, and deletion, promote 

these hallmarks. It is partially adapted from reference195.
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Figure 5. Targeting p53 in cancer.
Various methods have been developed to target p53 for tumor treatment. In tumors retaining 

WT p53, RG7388, APG-115, KRT-232, and ALRN-6924 are used to disrupt the PPIs 

between p53 and MDM2 or MDMX, while RITA, tenovin-6, ML364, and UNC0379 

target other negative regulators of p53. Activation of p53 can be utilized in cyclotherapy 

to protect normal cells, or in combination with other treatments for synergistic tumor 

eradication. WT p53 can be misfolded into a pseudo-mutant conformation, which may be 

reversed with appropriate drugs. Downstream targets of p53 are also potential therapeutic 

targets to partially reactivate the p53 signaling pathway. In tumors containing p53 missense 

mutations, APR-246, COTI-2, ATO, and PAT are capable of restoring the WT conformation 

of many p53 mutants. Specific agents such as PhiKan083, PK7088, PC14586, KG13, and 

MS78 target the p53 Y220C mutation, while ZMC1 is used for the p53 R175H mutant. 

Additionally, genome editing may be useful in correcting p53 gene mutations. NSC59984, 

ganetespib, MCB-613, and nanoreceptors are able to degrade mutant p53. ONYX-015, an 

oncolytic virus, specifically kills tumor cells with p53 mutations. Agents like ReACp53 

and ADH-6 resolve the aggregation of mutant p53, partially restoring WT p53 functions. 

Antibodies like P1C1TM and H2-scDb, which recognize neoantigens derived from mutant 

p53, mediate tumor cell elimination by immune cells. p53MVA and p53-SLP are p53 

vaccines used in immunotherapy. Mutant p53 neoantigens are also useful for developing 

adoptive cell therapies. Mutant p53 DNA fragments and proteins (including their aggregates) 

can be utilized for tumor diagnosis and prognosis. In tumors with p53 nonsense mutations, 

G418, 2,6-DAP, CC-90009, and NMDI14 can induce the readthrough of p53 mutant 
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mRNAs, or inhibiting NMD. In p53-null tumors, delivery of p53 protein, mRNA, and 

DNA may restore p53 expression and eliminate tumor cells. LOF, loss-of-function; DNE, 

dominant-negative effect; GOF, gain-of-function; NR, negative regulator of p53.
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