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Abstract

Background: Kabuki syndrome is a congenital developmental disorder that is

characterized by distinctive facial gestalt and skeletal abnormalities. Although

rare, the disorder shares clinical features with several related craniofacial syn-

dromes that manifest from mutations in chromatin-modifying enzymes. Col-

lectively, these clinical studies underscore the crucial, concerted functions of

chromatin factors in shaping developmental genome structure and driving cel-

lular transcriptional states. Kabuki syndrome predominantly results from

mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone

H3 lysine 27 demethylase.

Aims: In this review, we summarize the research efforts to model Kabuki syn-

drome in vivo to understand the cellular and molecular mechanisms that lead

to the craniofacial and skeletal pathogenesis that defines the disorder.

Discussion: As several studies have indicated the importance of KMT2D and

KDM6A function through catalytic-independent mechanisms, we highlight

noncanonical roles for these enzymes as recruitment centers for alternative

chromatin and transcriptional machinery.
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1 | KABUKI SYNDROME IS A
HETEROGENEOUS
DEVELOPMENTAL DISORDER OF
CHROMATIN REGULATORS

Kabuki syndrome was first clinically characterized by
Norio Niikawa in 1981 in pediatric patients featuring cra-
niofacial, growth, and cognitive abnormalities (Niikawa
et al., 1981). Due to ocular components such as elongated
palpebral fissures (length of eye-opening) and out turned

lower eyelids, the authors proposed calling the syndrome
“Kabuki” with reference to the makeup worn by Kabuki
actors. The prevalence is estimated at 1 in 32,000 individ-
uals. Over the past 50 years, clinical and basic research
have made tremendous progress in advancing our under-
standing of the pathogenesis of this disorder. Kabuki syn-
drome patients develop a myriad of multi-organ
deficiencies that manifest in a variety of clinical features.
In craniofacial tissues, Kabuki patients exhibit facial
hypoplasia that produces a broad, depressed nasal tip
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that can be accompanied with cleft or high-arched palate,
high-arched eyebrows, elongated palpebral fissures,
lower eyelid eversion, prominent ears, and micrognathia
(see Figure 1a for craniofacial frequencies; Adam
et al., 2019; Wessels et al., 2002; Porntaveetus
et al., 2018). Craniofacial dysmorphism is accompanied
by a variety of dental abnormalities including excessive
caries, enamel hypoplasia, altered tooth shape, size, and
agenesis (Porntaveetus et al., 2018; Teixeira et al., 2009).
Irregularities in skeletal development produce short stat-
ure with reduced postnatal growth, scoliosis, hip dyspla-
sia, joint laxity, hypermobility, and patellar dislocation
(see Figure 1b for skeletal frequencies with regards to
ossification origins; Adam & Hudgins, 2005; Barry
et al., 2022; Bogershausen et al., 2016; Schrander-Stumpel
et al., 2005; Wessels et al., 2002). Outside of craniofacial
and skeletal features, alterations in other organ systems
result in intellectual deficiencies, dermatoglyphic abnor-
malities, developmental delay, otitis media and recurrent
infections, and a variety of congenital heart problems

including atrial and ventricular septal defects as well as
aortic coarctation (Barry et al., 2022; Bögershausen &
Wollnik, 2013).

Kabuki syndrome mutations were first identified in
KMT2D (also termed MLL4), a histone H3 lysine
4 (H3K4) methylase (Ng et al., 2010). However, the disor-
der is genetically heterogenous with causative heterozy-
gous mutations in KMT2D (39%–74% of patients; Banka
et al., 2015; Bogershausen et al., 2016; Cocciadiferro
et al., 2018; Hannibal et al., 2011; Makrythanasis
et al., 2013; Micale et al., 2011; Miyake et al., 2013; Ng
et al., 2010), mutations in KDM6A (3%–6% of patients;
Banka et al., 2015; Bogershausen et al., 2016;
Cocciadiferro et al., 2018; Lederer et al., 2012; Miyake
et al., 2013), and infrequent mutations in a variety of
other transcriptional and chromatin regulatory proteins
(Lintas & Persico, 2018). KDM6A (also termed UTX) is
an X-linked gene with a Y-chromosome homolog termed
UTY. Kabuki syndrome can result from female heterozy-
gous or male hemizygous KDM6A mutations. KDM6A

FIGURE 1 Craniofacial and skeletal features in Kabuki syndrome patients. (a) Frequencies of common craniofacial features found in

Kabuki syndrome patients. Phenotypic frequencies in parts (a) and (b) were compiled from the following References: (Adam &

Hudgins, 2005; Barry et al., 2022; Schrander-Stumpel et al., 2005; Wessels et al., 2002). (b) Illustration demonstrating frequencies of common

skeletal features present in Kabuki syndrome patients with reference to mode of bone formation and cellular origin. Ossification is the

process by which new bone tissue is formed during skeletal development, or during remodeling and repair of bones. There are two primary

types of ossification: endochondral ossification, where bone forms from a cartilaginous precursor, and intramembranous ossification, where

bone forms directly from sheets of connective tissue. Endochondral ossification occurs in most of the skeleton, including long bones and the

cranial base (blue). Intramembranous ossification (red) occurs primarily in skull bones, facial bones, clavicles, and some irregular bones

such as the scapula and ossicles of the ear. All anterior craniofacial bone and cartilage are derived from neural crest stem cells (dashed area).

Figure created with BioRender.com.
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functions as a histone H3 lysine 27 (H3K27) demethylase
and it is hypothesized that removal of this repressive his-
tone modification may be coordinated with KMT2D
deposition of activating H3K4 methylation (Figure 2).

2 | KMT2D IS REQUIRED FOR
COMPASS COMPLEX INTEGRITY
AND KDM6A STABILIZATION

KMT2D and KDM6A associate together in a protein com-
plex (Cho et al., 2007) termed COMPASS, an acronym for
complex of proteins associated with SET1 (see Figure 2;
Miller et al., 2001). Although a variety of H3K4 methyl-
ases can comprise the catalytic core of COMPASS com-
plexes (SET1-2 or KMT2A-D; Shilatifard, 2012), KDM6A
is only found in those containing KMT2C or KMT2D
(Cho et al., 2007). Other components of the KMT2D and
KMT2C COMPASS complexes include WDR5, RBBP5,
ASH2L, and DPY30, the WRAD portion of the complex
that regulates KMT2D methylase activity (Zhang

et al., 2015). KMT2C mutations have not been described
in Kabuki syndrome but can result in a distinct intellec-
tual disability syndrome with craniofacial dysmorphism
(Koemans et al., 2017). More peripheral components of
the COMPASS complex include NCOA6 as well as PTIP
and PA1 which are not thought to be essential for
KMT2D catalytic activity (Cho et al., 2007).

As the central component of the COMPASS complex,
KMT2D is required to maintain the integrity of the asso-
ciated components. In the absence of KMT2D, PTIP, and
PA1 lose biochemical association with the WRAD com-
ponents of the COMPASS complex. Moreover, KDM6A
protein levels are reduced when KMT2D is lost in several
cell types (embryonic tissue, embryonic stem (ES) cells,
mesenchymal stem cells, adipocytes) from various organ-
ismal models such as Human, Mouse, and Drosophila
(Dorighi et al., 2017; Fasciani et al., 2020; Herz
et al., 2012; Lee et al., 2013; Rickels et al., 2020; Xie
et al., 2023). The trr Drosophila ortholog of KMT2C/D
binds to KDM6A (UTX) through a domain termed the
UTX stabilization domain (USD; Rickels et al., 2020).

FIGURE 2 The KMT2D and KDM6A COMPASS complex regulates histone methylation. The mixed-lineage leukemia (MLL)

complexes, also known as COMPASS (complex of proteins associated with Set1), are a family of multi-subunit proteins responsible for

histone 3 lysine 4 (H3K4) mono-, di-, or trimethylation and gene regulation in mammals. KMT2C (MLL3) and KMT2D (MLL4) are histone

methyltransferases that play crucial roles in gene activation by mono- and di-methylation of H3K4. WDR5, RBBP5, ASH2L, and DPY30 are

subunits common to all complexes in the MLL family. PAGR1 (PA-1), PAXIP1 (PTIP), and KDM6A (UTX) are unique to KMT2C/D

COMPASS complexes. KDM6A is responsible for demethylating histone 3 lysine 27 (H3K27), removing methylation marking areas of gene

repression. Figure created with BioRender.com.
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When fused to the KMT2D high-mobility group DNA
binding motif, the USD was capable of restoring KDM6A
binding to chromatin in KMT2D null HCT116 cells with
partial restoration of gene expression (Rickels
et al., 2020).

3 | GERMLINE ANIMAL MODELS
OF KABUKI SYNDROME

Diverse animal models have been developed to unravel
mechanisms behind Kabuki syndrome pathogenesis. In
several mouse models for COMPASS complex function,
Kmt2d, Kmt2c, or Kdm6a mutations are established in
the germline and propagated throughout all embryonic
and adult tissues. Homozygous deletion of Kmt2d
throughout the entire organism is lethal before embry-
onic mid-gestation with observed growth retardation and
developmental delay (Ashokkumar et al., 2020; Lee
et al., 2013; Shpargel et al., 2020). Kmt2d heterozygous
deletion throughout all mouse tissues is haploinsufficient
in producing facial hypoplasia, postnatal growth retarda-
tion with reduced bone length and thickness, reduced
hippocampal neurogenesis and memory, mild aorta nar-
rowing, and can exhibit exencephaly (Ang et al., 2016;
Ashokkumar et al., 2020; Bjornsson et al., 2014; Carosso
et al., 2019; Fahrner et al., 2019). Mouse homozygous
mutation of Kmt2c exhibits partial perinatal lethality with
surviving mice experiencing reductions in postnatal
growth (Ashokkumar et al., 2020; Lee et al., 2006).
Kdm6a mouse deletion results in female-specific embry-
onic lethality during a similar developmental period as
Kmt2d with developmental delay, deficiencies in meso-
derm differentiation, and cardiac abnormalities (Lee
et al., 2012; Shpargel et al., 2012; Wang et al., 2012;
Welstead et al., 2012). The X-chromosomal mutation of
Kdm6a features sexual dimorphism due to the male pres-
ence of the Uty Y-chromosome homolog that retains
redundant function (Shpargel et al., 2012). Male mice car-
rying Kdm6a mutations experience partial penetrance of
perinatal lethality and postnatal growth deficiency
(Shpargel et al., 2012; Welstead et al., 2012).

4 | KMT2D AND KDM6A
MECHANISMS IN
NONMAMMALIAN CRANIAL AND
SKELETAL DEVELOPMENT

Modeling KMT2D or KDM6A function using nonmam-
malian model organisms has proved instrumental in
understanding broader cellular and molecular mecha-
nisms relevant to Kabuki syndrome cranial and skeletal
dysplasia. Zebrafish morpholinos inhibiting expression of

Kmt2d or Kdm6a orthologs in early development pro-
duced craniofacial hypoplasia, loss of branchial arches,
absence or reduced dimensions of cranial cartilage, and
convergent-extension developmental growth deficits
(Bögershausen et al., 2015; van Laarhoven et al., 2015).
In a similar fashion, Kmt2d homozygous deletion
throughout all zebrafish tissues resulted in microcephaly,
shortened body axis, underdeveloped neurocranium,
altered palate structure, and absence or reduction in car-
tilaginous jaw structures (de Serrano et al., 2019). Chon-
drocyte organization in the jaw was altered in Kmt2d
morphant zebrafish with a lack of columnar orientation
and polarization (Bögershausen et al., 2015). These phe-
notypes were dependent on GTPase signaling as morpho-
lino knockdown of Rap1 enhanced Kmt2d-dependent
phenotypes, and exogenous RAP1A expression amelio-
rated developmental defects. KMT2D inhibition in Xeno-
pus through early embryonic morpholino knockdown
resulted in craniofacial and cartilaginous deformities
(Schwenty-Lara et al., 2019). KMT2D loss of function led
to deficiencies in neural crest cell (NCC) specification
and migration. KMT2D loss impacted Xenopus Sema3F
expression, a transmembrane regulator of NCC
migration.

5 | MOUSE NEURAL CREST-
SPECIFIC MUTATION OF KMT2D
AND KDM6A TO MODEL FACIAL
DEVELOPMENT

Cranial NCCs are a multipotent stem cell population that
is specified in the dorsal neural tube. After migration,
these stem cells differentiate into osteoblast and chondro-
cyte lineages that will develop anterior facial bone and
cartilage (Figure 1b; Dupin et al., 2006; Trainor, 2005;
Santagati & Rijli, 2003; Jiang et al., 2002; McBratney-
Owen et al., 2008). Mouse NCC-specific homozygous
deletion of Kmt2d models the craniofacial features of
Kabuki syndrome as these mice develop hypoplasia
of anterior facial bones, depressed snouts, and die at birth
with cleft palate (Shpargel et al., 2020). Kmt2d heterozy-
gous NCC-specific deletion was viable with mild facial
phenotypes and altered postnatal growth. Mouse Kdm6a
NCC-specific deletion also recapitulated many features of
human Kabuki syndrome including craniofacial dys-
morphism, postnatal growth retardation, and cardiac
abnormalities (Shpargel et al., 2017).

At the cellular level, KMT2D and KDM6A loss of
function in NCCs had a significant impact on differentia-
tion of cell types relevant to mammalian bone and carti-
lage development. Deletion of KMT2D or KDM6A did
not alter NCC specification or migration as these cells
populated anterior facial regions (Shpargel et al., 2017,

1888 SHPARGEL and QUICKSTAD



2020). However, KMT2D or KDM6A loss of function did
affect distribution of NCC-differentiated osteoblasts in
ossification center primordia that form frontal bones
(Shpargel et al., 2017, 2020). KMT2D NCC deletion also
impaired expression of extracellular matrix components
within osteoblasts of the developing palatal shelf
(Shpargel et al., 2020). KDM6A deletion downstream of
osteoblast specification produced a loss of skeletal bone
volume and mineralization that resulted from alterations
in osteocyte differentiation from osteoblasts (Xia
et al., 2022). Collectively, these studies highlight the
importance of Kabuki-causative histone modifiers in
multiple stages of osteoblast differentiation.

6 | KMT2D AND KDM6A
REGULATION OF CHONDROCYTE
DIFFERENTIATION AND SKELETAL
DEVELOPMENT

Unlike most facial bones that form directly by osteoblast-
dependent intramembranous ossification, the cranial
base is a support structure that forms by endochondral
ossification whereby NCC-derived chondrocytes in carti-
lage enter a terminal hypertrophic differentiation stage,
forming a scaffold for bone formation (Figure 1b;
McBratney-Owen et al., 2008; Szabo-Rogers et al., 2010).
KMT2D deletion prevented terminal hypertrophic differ-
entiation of NCC-derived chondrocytes in the cranial
base which led to deficiencies in endochondral bone for-
mation (Shpargel et al., 2020). Alternative mouse models
have implicated more extensive roles for KMT2D and
KDM6A during endochondral ossification of skeletal
development (Figure 1b). The postnatal growth deficits of
KMT2D heterozygous gene trap mice resulted from an
expansion of long bone growth plates due to precocious,
unregulated chondrocyte differentiation to restrict bone
formation (Fahrner et al., 2019). KMT2D and KDM6A
loss in mesenchymal stem cells impaired chondrocyte or
osteoblast differentiation (Fasciani et al., 2020; Hemming
et al., 2014). These broader functions in stem cell to chon-
drocyte transitions may underly the skeletal and joint
phenotypes prevalent in Kabuki syndrome (Figure 1b).

7 | CANONICAL GENOMIC
FUNCTIONS OF KMT2D AND
KDM6A: ESTABLISHING
ENHANCER CHROMATIN

At the genome level, tri-methylation of H3K4 is com-
monly found at active promoters, however, mono-
methylation of H3K4 is enriched at enhancers

(Heintzman et al., 2007). These enhancers can be subclas-
sified as poised with co-enriched methylation of H3K27
or active with accompanying acetylation of
H3K27 (Calo & Wysocka, 2013; Creyghton et al., 2010;
Rada-Iglesias et al., 2011). KMT2D and KMT2C proteins
(KMT2C/D) contain carboxy-terminal SET domains that
catalyze methylation of H3K4 in vitro (Goo et al., 2003).
Although H3K4 can be mono, di, or tri-methylated in the
genome with correlations to transcriptional activation
(Ruthenburg et al., 2007), KMT2D demonstrates the
highest catalytic activity in producing H3K4me1 and
weak activity in generating H3K4me2 (Zhang
et al., 2015). KMT2C/D redundantly regulates H3K4me1
and H3K4me2 in vivo as global levels of these histone
modifications drop with mutations of both enzymes in
mammalian cells (Hu et al., 2013; Lee et al., 2013; Wang
et al., 2016), similar to mutation of Kmt2d orthologous
genes in Xenopus or Drosophila (Herz et al., 2012;
Schwenty-Lara et al., 2019). Accordingly, KMT2C/D has
been observed to function at enhancers during stem cell
differentiation (Wang et al., 2016). Mutation of both
redundant methylases in mouse ES cells were dispens-
able in maintaining stem cell properties and gene expres-
sion, however, upon embryoid body differentiation,
KMT2D binding shifted to novel developmental
enhancers where KMT2C/D were required for histone
acetylase recruitment, H3K27 acetylation, gene induc-
tion, and proper embryoid body formation (Wang
et al., 2016).

8 | KMT2D MOLECULAR
FUNCTION IN CRANIOFACIAL AND
SKELETAL DEVELOPMENT

KMT2D mechanisms regulating chondrocyte differentia-
tion have been explored through gene expression analysis
and histone methylation profiling at candidate pro-
moters. Through these approaches, KMT2D was discov-
ered to regulate H3K4me3 at the Shox2 promoter and
region surrounding the transcription start site (TSS;
Fahrner et al., 2019). Upon differentiation to chondro-
cytes, KMT2D mutant mouse ATDC5 teratocarcinoma
cells reduced H3K4me3 surrounding the Shox2 TSS,
failed to properly activate Shox2 expression, and
enhanced SOX9-mediated chondrocyte differentiation
due to a loss of SHOX2 dependent repression. KMT2D
regulated RAP1B expression by regulating promoter
H3K4me3 in zebrafish and Kabuki patient fibroblasts
with alterations in MEK/ERK signaling and hyperactiva-
tion of RAS/MAPK pathways (Bögershausen et al., 2015).
Craniofacial phenotypes in KMT2D mutants were sup-
pressed by a RAS/MAPK inhibitor (Tsai et al., 2018). The
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implications of KMT2D function in these instances of
promoter H3K4me3 are unclear as KMT2D lacks tri-
methylation activity in vitro (Zhang et al., 2015). Further
studies will be required to characterize KMT2D genome-
wide binding during osteoblast or chondrocyte differenti-
ation to identify direct genomic functions in regulating
craniofacial or skeletal development.

9 | KDM6A MOLECULAR
FUNCTION IN CRANIOFACIAL
DEVELOPMENT IS CATALYTIC
INDEPENDENT

In several cell culture osteochondral models, KDM6A
regulated differentiation through control of H3K27 meth-
ylation at candidate genomic sites. KDM6A promoted
chondrogenic differentiation of periodontal ligament
stem cells by demethylation of the SOX9 promoter
(Wang et al., 2018). KDM6A regulated MSC osteogenic
differentiation by regulating H3K27 demethylation at
promoters for RUNX2, Osteopontin, and Osteocalcin
(Hemming et al., 2014). Mesenchymal KDM6A knockout
inhibited cranial suture development and restricted cal-
varia osteoblast differentiation by regulating H3K27me3
levels on osteogenic promoters (Pribadi et al., 2023). This
compilation of studies demonstrates that KDM6A loss
can lead to elevated H3K27 methylation in specific geno-
mic instances, however, the direct requirements of
H3K27 demethylation on differentiation and gene expres-
sion were not assayed.

During in vivo NCC differentiation, KDM6A does
not require demethylation activity (Shpargel
et al., 2017). KDM6A is required for appropriate NCC
osteoblast differentiation (Shpargel et al., 2020) and
frontal bone development (Shpargel et al., 2017).
KDM6A bound and regulated gene expression of Notch
and Wnt signaling factors important for NCC and cra-
niofacial development (Shpargel et al., 2017). However,
when KDM6A genome binding was assessed in differ-
entiating embryonic NCCs, KDM6A-dependent gene
expression did not correlate well with H3K27me3
increases in mutant cells (Shpargel et al., 2017).
KDM6A-dependent craniofacial phenotypes were mild
in male NCC knockout animals due to redundancy
with the catalytically inactive Y-chromosomal UTY
homolog. Moreover, homozygous demethylase-dead
point mutation of KDM6A throughout all mouse
female tissues fully supported normal facial develop-
ment (Shpargel et al., 2017). KDM6A catalytic activity
is also not required in other developmental decisions
such as mesoderm differentiation (Wang et al., 2012)
or in other organismal models as the Caenorhabditis

elegans ortholog is required for embryonic develop-
ment independent of demethylase activity (Vandamme
et al., 2012).

10 | EVIDENCE FOR CATALYTIC
INDEPENDENT FUNCTION OF
KMT2C AND KMT2D IN STEM CELL
BIOLOGY

The connections between KMT2D enhancer H3K4
mono-methylation and regulation of osteochondral gene
expression are unknown; however, more recent evidence
in other instances of stem cell differentiation indicates
that KMT2D may not function via histone methylation.
In mouse ES cell culture, homozygous point mutations in
the KMT2D and KMT2C SET domains rendered the pro-
teins incapable of catalyzing H3K4 methylation (Dorighi
et al., 2017). Catalytic inactivation led to loss of enhancer
H3K4me1, but KMT2C/D target genes largely maintained
appropriate expression. Mice carrying germline homozy-
gous catalytic-dead mutations in Kmt2c were viable in
contrast to perinatal lethality in Kmt2c null mice (Xie
et al., 2023). Homozygous catalytic-dead mutations in
Kmt2d produced perinatal lethality whereas Kmt2d null
mutations are early embryonic lethal (Xie et al., 2023).
These results indicate that KMT2C and KMT2D have
non-enzymatic functions during development. Early
embryonic tissues did not require KMT2C/D catalytic
activity as methylase-dead ES cells could differentiate to
all three germ layers and lineage-specific enhancers could
become active with H3K27 acetylation in the absence of
methylation. A conditional approach with Sox2-Cre to
selectively eliminate catalytic function in embryonic tis-
sues revealed that embryos could develop normally to
mid-gestation in the absence of KMT2C/D methylation
(Xie et al., 2023). Similarly, a catalytic-deficient transgene
of trr, the Drosophila KMT2C/D ortholog, was capable of
rescuing embryonic lethality of null mutations (Rickels
et al., 2017). It is currently unknown if KMT2D methyla-
tion activity is essential for osteochondral differentiation
or skeletal development.

11 | A MODEL FOR COMPASS
ENZYMATIC-INDEPENDENT
CRANIOSKELETAL DEVELOPMENT

In both cell culture and differentiating embryoid bodies,
KMT2D can retain ability to bind chromatin in the
absence of H3K4 methylase activity (Rickels et al., 2020;
Xie et al., 2023). KMT2D encodes for tandem plant home-
odomain (PHD) regions that bind to histones methylated
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at H4R3 (Dhar et al., 2012) or acetylated H4K16 (Zhang
et al., 2019). Thus, KMT2D and the COMPASS complex
may have a prominent scaffolding function in the recruit-
ment of alternative histone modification, chromatin regu-
latory, or transcription factors (Figure 3). Notably, many
chromatin complexes that have been tied to COMPASS
co-regulation at enhancers are mutated in craniofacial
disorders (table in Figure 3). Although patients diagnosed
with specific disorders have distinct facial gestalt and
unique syndromic features, they share common elements
such as hypoplasia and dysmorphic facial structures in
combination with short stature and growth deficits. Simi-
larity between these disorders can even result in a

blending of phenotypic presentation whereby KMT2D
mutations have been ascribed to alternative syndromes
(Sakata et al., 2017; Schulz et al., 2014; Verhagen
et al., 2014). We hypothesize that KMT2D and KDM6A
catalytic-independent function in Kabuki syndrome
craniofacial and skeletal development involves enhancer
co-regulation with these related factors. Although the
coordinated functional mechanisms between Kabuki
causative factors and other enhancer chromatin disorders
have not been extensively studied in cranioskeletal devel-
opment, in the remainder of this review we highlight
known connections gleaned from other developmental
systems.

FIGURE 3 A model for COMPASS enzymatic-independent cranioskeletal development. An inactivating point mutation in the SET

domain of KMT2C/D (MLL3/4) results in loss of methylase activity. The resulting decrease in histone H3K4 methylation, a mark associated

with gene activation, can result in minor effects on transcription and H3K27 acetylation, suggesting alternative roles for KMT2C/D in

enhancer activation and gene regulation. Point mutations of the KDM6A Jumonji C (JmjC) domain that inactivate histone H3K27

demethylation can support normal mouse development. In the absence of KMT2C/D or KDM6A catalytic activity, COMPASS complex

enhancer relevant functions may compensate for the loss of enzymatic activity. Blue: KMT2C/D and KDM6A can regulate EP300/CREBBP

binding and enhancer recruitment for H3K27 acetylation. Orange: The COMPASS complex is co-recruited to enhancers with SWI/SNF

remodelers and can associate with CHD7. KMT2C/D specify enhancer RNA polymerase II occupancy, impact lineage transcription factor

binding, and influence eRNA production. Purple: KMT2C/D presence is required to promote BRD4 reading of H3K27ac, association with

the Mediator complex, and proper localization of cohesin/CTCF-mediated DNA looping to facilitate enhancer-promoter interactions.

Depicted in the table, mutations in these histone- and chromatin-modifying proteins are responsible for a variety of cranioskeletal

development disorders (KMT2D: Kabuki syndrome type 1, KDM6A: Kabuki syndrome type 2; KMT2C: Kleefstra syndrome; EP300/CREBBP:

Rubinstein-Taybi syndrome; SWI/SNF: Coffin-Siris syndrome; CDH7: CHARGE syndrome; BRD4, NIPBL, and cohesin: Cornelia de Lange

syndrome; MED12 in Mediator complex: Opitz-Kaveggia (FG) syndrome). Figure created with BioRender.com.
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12 | CATALYTIC INDEPENDENT
FUNCTION OF KMT2D/AND
KDM6A: ENHANCER ACETYLATION

Mutation of CREB-binding protein (CREBBP) and EP300
histone acetylases (Figure 3: blue) manifest in the
Rubinstein-Taybi craniofacial disorder with overlapping
clinical features to Kabuki syndrome (Petrij et al., 1995;
Roelfsema et al., 2005). Genomic binding assays indicate
that predominant KMT2D and KDM6A localization is at
active enhancers featuring H3K27 acetylation (Hu
et al., 2013; Lee et al., 2013; Wang et al., 2016; Wang
et al., 2017). In Drosophila, KDM6A can bind directly to
the CREBBP that acetylates H3K27 to modulate levels of
histone acetylation in the genome (Tie et al., 2012). Dur-
ing differentiation, KMT2C/D mutant ES cells demon-
strated a loss of enhancer H3K27ac due to a failure to
recruit EP300 (Wang et al., 2016). Loss of acetylation is
likely due to direct binding between KDM6A and EP300
(Wang et al., 2017). Protein complexes containing both
KMT2D and KDM6A enhanced EP300 acetylase activity
on chromatin using in vitro assays and KDM6A knockout
significantly decreased H3K27 acetylation levels at geno-
mic target enhancers (Wang et al., 2017). In germinal
center B-cells, CREBBP binds to and acetylates KMT2D
to regulate methylase activity (Vlasevska et al., 2023).
Histone deacetylase inhibition improved neurological
phenotypes in KMT2D heterozygous mice, further illus-
trating the role of acetylation in Kabuki-like pathogenesis
(Bjornsson et al., 2014).

Although there is an abundance of experimental evi-
dence supporting KMT2D and KDM6A involvement in
establishing active enhancer acetylation, there are
caveats suggesting that these Kabuki factors are not abso-
lutely required for enhancer acetylation. As ES cells shift
to a formative pluripotent state, KMT2C/D are required
for instances of de novo H3K4 methylation and H3K27
acetylation, however, acetylation can occur indepen-
dently of KMT2C/D and did not correlate with transcrip-
tional activation (Boileau et al., 2023). In fact, H3K27
acetylation may be dispensable for enhancer regulation.
The variant histone H3.3 is commonly located at
enhancers (Chen et al., 2013), and when H3.3 lysine 27 is
mutated to arginine, acetylation is lost at mouse ES cell
enhancers, yet enhancer accessibility and gene expression
are largely unaffected (Zhang et al., 2020). ES cell pan-
H3K27R mutations in all histone H3 variants demon-
strated that H3K27 acetylation is not required for de novo
gene activation during differentiation and that RNA poly-
merase and Mediator complexes can bind genes and
enhancers in the absence of H3K27 acetylation (Sankar
et al., 2022). Thus, due to conflicting data, the connec-
tions between KMT2D or KDM6A, enhancer acetylation,

and transcription remain unclear and will require further
exploration, particularly in osteochondral lineages rele-
vant to cranial or skeletal development.

13 | CATALYTIC INDEPENDENT
FUNCTION OF KMT2D/KDM6A:
CHROMATIN ACCESSIBILITY

Various chromatin remodeling components that regulate
DNA accessibility are mutated in craniofacial disorders
(Figure 3: orange). Components of the SWI/SNF remode-
ler are mutated in the Coffin-Siris craniofacial disorder
(Santen et al., 2012; Tsurusaki et al., 2012). KMT2D
mutations have also been described in patients featuring
the CHARGE craniofacial syndrome (Sakata et al., 2017;
Schulz et al., 2014; Verhagen et al., 2014) that typically
carry alterations to the CHD7 chromatin remodeler
(Vissers et al., 2004). KMT2D and KDM6A can influence
chromatin accessibility to regulate enhancer function.
During adipogenic differentiation, KMT2D and KDM6A
associate with SWI/SNF chromatin remodeling com-
plexes (Park et al., 2021). Mutation of KMT2D or
SMARCB1 (SWI/SNF complex member) demonstrated
reciprocal roles in co-recruitment to enhancers to regu-
late chromatin accessibility. KDM6A bound to
SMARCA4 (BRG1 in SWI/SNF complex) to regulate asso-
ciations with T-box transcription factors during T-cell dif-
ferentiation (Miller et al., 2010). Similarly, CHD7 can
physically associate with KMT2D, KDM6A, and the
COMPASS complex (Schulz et al., 2014; Ufartes
et al., 2021). SWI/SNF and CHD7 remodeling complexes
coordinate to regulate neural crest enhancer activity and
craniofacial development, however, the role of enhancer
priming by the COMPASS complex and coordination
with remodeling complexes is unclear within these line-
ages (Bajpai et al., 2010; Chandler & Magnuson, 2016;
Sanosaka et al., 2022; Sperry et al., 2014).

14 | CATALYTIC INDEPENDENT
FUNCTION OF KMT2D/KDM6A:
ENHANCER-PROMOTER CONTACTS

Chromatin-associated factors play an essential function
in bridging enhancer to promoter contacts to drive tran-
scription (Figure 3: purple). Factors that facilitate
enhancer to promoter crosstalk are mutated in craniofa-
cial disorders (Krantz et al., 2004; Mannini et al., 2013;
Olley et al., 2018; Risheg et al., 2007; Schwartz
et al., 2007; Vulto-van Silfhout et al., 2013) including
BRD4, NIPBL, or cohesin subunits (Cornelia de Lange
syndrome) as well as MED12 of the Mediator complex
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(Opitz-Kaveggia or FG, Lujan-Fryns, and Ohdo syn-
dromes). KMT2C/D were essential for enhancer associa-
tions with promoter elements in ES cells and during
neural progenitor differentiation to regulate gene expres-
sion (Yan et al., 2018). Upon loss of KMT2C/D, these
enhancers lacked cohesin, a protein complex forming a
ring involved in DNA loop extrusion and long-range
chromatin contacts (Davidson & Peters, 2021). KMT2D-
dependent enhancer to promoter communication and
cohesin loading required KMT2D catalytic methylase
activity and the presence of H3K4me1 (Yan et al., 2018).
Other chromatin factors critical for linking enhancer
activity to promoters bind downstream of KMT2D func-
tion. During adipogenesis, KMT2D is required for
enhancer recruitment of BRD4, a tandem bromodomain
encoding protein that binds to acetylated histones (Lee
et al., 2017). BRD4 interacts with components of the
Mediator complex (Jang et al., 2005) and the cohesin-
loading protein NIPBL (Olley et al., 2018). BRD4 recruits
Mediator to KMT2D bound enhancers (Lee et al., 2017).
In turn, Mediator can communicate to promoters with
the aid of cohesin (Pherson et al., 2019). Both NIPBL and
BRD4 are required within NCCs for mouse craniofacial
development, however, their genomic mechanisms with
regard to enhancer regulation in mammalian cranial lin-
eages and cooperation with KMT2D or KDM6A are
unknown (Linares-Saldana et al., 2021; Smith
et al., 2014).

15 | CATALYTIC INDEPENDENT
FUNCTIONS OF KMT2D/KDM6A:
REGULATION OF TRANSCRIPTION

KMT2D and KMT2C may function directly in regulating
active transcription. In KMT2C/D mutant ES cells, target
enhancers have a reduction in RNA polymerase binding
and eRNA transcription (Dorighi et al., 2017). Although
promoter RNA Pol II loading was unaffected, KMT2C/D
loss resulted in increased promoter pausing that was not
dependent on methylase catalytic activity. During muscle
cell differentiation, KDM6A is recruited by SPT6, a his-
tone chaperone that associates with and regulates RNA
Pol II elongation (Wang et al., 2013). KMT2C/D binding
to enhancers is a prerequisite for lineage-determining
transcription factors in adipocyte differentiation (Lai
et al., 2017; Lee et al., 2017). KDM6A is also known to be
associated with transcription factors in cardiac develop-
ment (Lee et al., 2012; Shpargel et al., 2012). KMT2D
binds to enhancers with the MEF2 transcription factor to
coactivate muscle myofiber gene expression programs
(Liu et al., 2020). Similar to a growing list of chromatin
regulators, KMT2D can stimulate nuclear biomolecular

condensate formation through a prion-like domain that
facilitates liquid–liquid phase separation (Fasciani
et al., 2020). These nuclear condensates may provide a
mechanism to compartmentalize active transcribing
regions in the nucleus. This property of KMT2D may also
impact nuclear mechanical stress and cellular properties
as deficiencies in KMT2D mutant chondrocyte differenti-
ation were alleviated by inhibition of ATR, a checkpoint
that responds to nuclear mechanical stress (Fasciani
et al., 2020). In summary, KMT2D and KDM6A have
been implicated in transcriptional activation by regulat-
ing transcription factor activity, RNA polymerase exten-
sion, and nuclear compartmentalization of active genes.

16 | NEXT STAGES FOR
RESEARCH ON CHROMATIN
REGULATION IN CRANIOFACIAL
DISORDERS

Chromatin-modifying enzymes perform multifaceted
functions in the pathogenesis of craniofacial and skeletal
developmental syndromes. These disorders feature over-
lapping clinical characteristics that can culminate in mis-
classification of causative genes within related disorders.
Therefore, substantial chromatin regulatory complexes
may cooperate and co-function within cellular lineages
critical for craniofacial and skeletal development. The
haploinsufficient nature of these syndromes indicates
that these cellular origins are particularly sensitive to
dosage of chromatin factors. Cellular differentiation
events are regulated by drastic alterations in gene expres-
sion, and as such, chromatin structure may provide vital
roles in fine-tuning transcriptional output to control
developmental decisions. Current research has demon-
strated the essential functions of Kabuki-dependent
KMT2D and KDM6A histone-modifying enzymes in reg-
ulating osteochondral cellular lineages critical for facial
and skeletal development. Although several organismal
and tissue-specific models have concentrated on cellular
pathogenesis that promotes Kabuki-like phenotypes, the
lack of genomic exploration in this field of research has
limited the understanding of broader KMT2D and
KDM6A mechanisms. Further complicating mechanistic
interpretation is the fact that catalytic function is not
required for KDM6A and may only partially contribute to
KMT2D function. A multitude of diverse genomic mech-
anisms are established for KMT2D and KDM6A in other
cell types to facilitate enhancer histone modifications,
chromatin accessibility, recruitment of transcription
factors and RNA polymerase, and regulation of
enhancer-promoter associations. These functions, cata-
lytic requirements, and coordination can vary depending
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on cell type. As chromatin states can be altered by thera-
peutic inhibition of regulatory proteins, a more compre-
hensive genomic inquiry in cell types relevant to
osteochondral development will create a foundation to
understand the mechanisms underlying craniofacial and
skeletal disorders, identify potential routes of treatment,
and, by extension, have important implications for our
understanding of Kabuki syndrome pathogenesis.
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