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ABSTRACT: Polymer nanocomposites exhibit a heterogeneous
mechanical behavior that is strongly dependent on the interaction
between the polymer matrix and the nanofiller. Here, we provide a
detailed investigation of the mechanical response of model polymer
nanocomposites under deformation, across a range of temperatures,
from the glassy regime to the liquid one, via atomistic molecular
dynamics simulations. We study the poly(ethylene oxide) matrix with
silica nanoparticles (PEO/SiO2) as a model polymer nanocomposite
system with attractive polymer/nanofiller interactions. Probing the
properties of polymer chains at the molecular level reveals that the
effective mass density of the matrix and interphase regions changes
during deformation. This decrease in density is much more
pronounced in the glassy state. We focus on factors that govern
the mechanical response of PEO/SiO2 systems by investigating the distribution of the (local) mechanical properties, focusing on the
polymer/nanofiller interphase and matrix regions. As expected when heating the system, a decrease in Young’s modulus is observed,
accompanied by an increase in Poisson’s ratio. The observed differences regarding the rigidity between the interphase and the matrix
region decrease as the temperature rises; at temperatures well above the glass-transition temperature, the rigidity of the interphase
approaches the matrix one. To describe the nonlinear viscoelastic behavior of polymer chains, the elastic modulus of the PEO/SiO2
systems is further calculated as a function of the strain for the entire nanocomposite, as well as the interphase and matrix regions.
The elastic modulus drops dramatically with increasing strain for both the matrix and the interphase, especially in the small-
deformation regime. We also shed light on characteristic structural and dynamic attributes during deformation. Specifically, we
examine the rearrangement behavior as well as the segmental and center-of-mass dynamics of polymer chains during deformation by
probing the mobility of polymer chains in both axial and radial motions under deformation. The behavior of the polymer motion in
the axial direction is dominated by the deformation, particularly at the interphase, whereas a more pronounced effect of the
temperature is observed in the radial directions for both the interphase and matrix regions.

1. INTRODUCTION
Polymer nanocomposites (PNCs) have gained considerable
attention over the last few decades, as the addition of
nanoparticles in a polymer may drastically alter the properties
of the matrix, and in particular its mechanical behavior.1−10 For
example, an enhancement of the polymer stiffness and the wear
resistance in tire manufacturing, by adding nanofillers in a
polymer matrix, has been reported.11−14 A common character-
istic of all PNCs is that their mechanical properties change
dramatically within a relevant short, compared to other systems
like metals, range of temperature, due to their viscoelastic
behavior.15−22

Poly(ethylene oxide)/silica nanocomposites have demon-
strated significant potential in the domains of engineering and
nano(bio)technology, rendering them a subject of considerable
interest for ongoing research and development endeav-
ors.3,23,24 Poly(ethylene oxide) (PEO) is a multifaceted

polymer that exhibits a wide range of technical uses. PEO is
a nonionic, water-soluble, semicrystalline polymer that is
widely utilized in various applications mainly due to its
biocompatibility, hydrophilicity, high degree of crystallinity,
and its ability for ion conduction.25−27 Among the various
nanoadditives, silica (SiO2) nanoparticles have been utilized to
develop PEO/SiO2 nanocomposites. In this system, attractive
interactions exist between PEO and the silica surfaces, mainly
due to the formation of hydrogen bonds, which leads polymer
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chains to adsorb onto the nanofiller surface stabilizing the
system.28−30

Such changes in the mechanical response of the PNCs are
typically described as heat distortion,31,32 taking place over a
wide temperature range, which, for a variety of polymeric
materials and applications, lies between 300 and 450 K.33 This
temperature range includes, for several polymer-based nano-
structured systems, the transition from the glass state toward
the liquid (viscoelastic) one.
The temperature dependence of the mechanical behavior of

PNCs has been extensively studied through experiments in the
recent past. For example, Kontou and Anthoulis have used
different techniques, including scanning electron microscopy,
differential scanning calorimetry, dynamic mechanical analysis,
and tensile testing, to probe the mechanical properties of a
series of polystyrene (PS)/silica nanocomposites at three
different temperatures.34 The mechanical enhancement was
manifested through the response of tensile stress−strain, while
the temperature effect was found to shift the response from
brittle at 293 K to rubbery behavior at 358 K. Using a dynamic
mechanical analyzer, Liu et al.35 have shown that the Young’s
modulus of a thermoset SMP (shape memory polymer) epoxy
system reinforced with 20 wt % SiC (silicon carbide) at T =
299 K is approximately 2 orders of magnitude higher than that
at T = 391 K and the Young’s modulus for the nanocomposite
is higher than that of the SMP resin.
Unfortunately, accurate experimental investigation of

parameters related to physical mechanisms on the atomic
scale and consideration of temperature effects are generally
challenging, time-consuming, and cost-intensive. Moreover,
experimental investigations of the mechanical properties of
PNCs within the heat distortion temperature range are rather
challenging due to the complex and spatially heterogeneous
mechanical response of PNCs and the random dispersion of
nanoparticles within the polymer matrix.36,37 Noteworthily,
semiempirical approaches, to predict the effect of temperature
on global mechanical properties, have been proposed during
the last few decades.38−40 Such works are typically based on
robust physics-based models for the prediction of the rigidity
modulus for a wide range of temperatures below and above the
glass-transition temperature, Tg, and frequencies/strain rates.
Analysis of the parameters (e.g., the size and shape of the
nanoparticle, the agglomeration, as well as the interaction
between the matrix and nanofiller) allowed the introduction of
empirical equations to consider the time/temperature depend-
ence in the model.41−43

In addition to experiments, several theoretical models have
been developed to study the temperature dependence of
mechanical properties in PNCs. For example, Richeton et al.44

have developed a theoretical model for the elastic Young’s
modulus, which takes into account the effect of temperature.
The basis of this work is the statistical model for modulus
dependence on temperature, which was developed by Mahieux
and Reifsnider;32,45 in the latter, authors used Weibull moduli
(mi) to represent the activation bond breakage energy as a
function of temperature. The temperature dependence of
Young’s modulus has been further examined by theoretical
models, such as the semiempirical Vogel−Fulcher−Tammann
equation (VFT) and the mode coupling theory (MCT).46−49

These models suggest that the principle of temperature
superposition remains modestly above the glass-transition
temperature, in the viscoelastic region. It is also well known
that, in addition to temperature, strain rate, and thermal

history (e.g., cooling rate), it could strongly affect the
mechanical response of polymer chains and in particular
their shear modulus and the failure mechanism.50,51 The effect
of temperature variation on the thermo-mechanical properties
of PNCs, which contain spherical nanoparticles, was further
recently investigated using thermo-micromechanical models.52

Molecular simulations can shed light on the microscopic
mechanisms that affect mechanical reinforcement in PNCs, at
the atomic/molecular scale, by controlling and tuning the
rather complex set of parameters that can affect the mechanical
behavior of the hybrid materials. Such parameters are
associated with the type of nanofillers (e.g., their size, shape,
and morphology), the polymer matrix (e.g., molecular weight,
chemistry, and topology), and the concentration (loading) of
nanoparticles and the polymer−nanoparticle interaction
(attractive, neutral, or repulsive). All of the above factors
determine the dispersion state of the nanofillers and the
properties of the entire hybrid system. On these grounds, and
considering that in model systems the above system character-
istics can be relatively accurately controlled, it is not surprising
that the mechanical properties of polymer matrices embedded
with nanoparticles have been studied extensively in the past
years by molecular simulations using atomistic and coarse-
grained models.53−65 The effects of nanoparticle size and
properties, polymer−nanofiller interactions, chain cross-links
and entanglements and the temperature on the stress−strain
behavior, failure mechanism, and mechanical reinforcement of
PNCs are comprehensively investigated using molecular
simulations.37,66−69

Another important phenomenon that has been investigated
during the last decades concerns the nonlinear dependence of
the Young’s modulus on strain, derived from the stress−strain
curve; a behavior that is analogous to the nonlinear dynamic
viscoelastic one of the storage modulus, typically called the
Payne effect.69−72 The latter is of great significance in practical
applications such as the rolling and sliding resistance of
tires.73,74 Moreover, the Young’s modulus and Poisson’s ratio
of an amorphous linear polyethylene-like polymer have also
been examined via molecular simulation approaches under
different temperatures; the simulation predictions show good
agreement with experimental findings for the temperature and
strain rate dependencies of stress−strain curves.75
Typically, experimental and simulation studies of mechanical

properties in PNCs consider the effect of temperature on the
global (average) mechanical properties of glassy PNCs without
dealing with the role of temperature on their (spatial)
heterogeneous mechanical response. The distribution of local
mechanical properties of polymeric nanocomposites has been
investigated using Monte Carlo simulations, at equilibrium, for
a wide range of temperatures using generic bead spring
models.7 As expected, Young’s modulus decreased with
increasing temperature, reflecting structural changes in the
polymer matrix.
The works presented above unveiled a number of major

challenges in providing a fundamental understanding of the
mechanical behavior of PNCs, including the influence of
temperature on the local mechanical properties of the
subdomains, mainly the interphase and matrix regions, during
the increasing tensile test. It is also of great importance to
further elucidate the mechanism(s) of the effect of temperature
on the mechanical behavior of heterogeneous polymer-based
hybrid materials. Moreover, although some studies have
addressed the origin of the mechanical reinforcement observed
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in PNCs,76−81 to our knowledge, the coupling between spatial
variations of the mechanical properties of polymer chains in
nanocomposites as a function of temperature, in the transition
from the glassy state to the liquid (or rubbery) state, and the
mobility of chains under deformation, has been poorly
investigated. The latter is particularly interesting, as both
elastic moduli and load transfer through the nanofillers are
greatly influenced by temperature, especially when the latter is
close to or above the glass-transition temperature (Tg) of the
polymer matrix.82,83

In this work, we investigate the mechanical properties of
PNCs under deformation, via detailed atomistic simulations,
across a broad range of temperatures from the glassy to the
rubbery regime, focusing on the variation of the spatial
distribution of stress and strain fields at the polymer/nanofiller
interphase and matrix regions. We study poly(ethylene oxide)/
silica, PEO/SiO2, systems as a model PNC with a moderately
attractive polymer/nanoparticle interaction. The equilibrium
structural and dynamic properties of PEO/SiO2 systems have
been extensively examined by both simulations28,62,84−86 and
experiments.28,85,87,88 Our methodology for probing the
distribution of local mechanical properties is based on a
recent multiscale computational approach computing effective
(per atom) stress and strain fields within atomistic model
PNCs under an applied external field.65,89

In the rest of the paper, we provide in Section 2 details about
the model systems and the simulations focusing on the
deformation process and the way we compute the local stress
and strain fields. Then, in Section 3, we investigate the
structural (density) heterogeneities of the PEO/SiO2 model
systems at equilibrium and under deformation. Results
concerning the average, as well as the distribution of,
mechanical properties of hybrid systems across a range of
temperatures are presented and discussed in Sections 4 and 5.
In the same sections, on the basis of the global and local
stress−strain behavior, the elastic moduli are obtained as a
function of strain. A detailed investigation of the mobility of
polymer chains as a function of the deformation for the
interphase and matrix regions and for different temperatures is
presented in Section 6. Finally, in Section 7, we summarize our
findings and discuss current and future challenges.

2. MODEL AND SIMULATION DETAILS
Atomistic MD simulations are performed for model PEO/SiO2
nanocomposites with 33 wt % (12.7 vol %, = 12.7%SiO2

)
silica nanoparticles, that is a typical volume nanoparticle
fraction used in PEO/SiO2 hybrids.

28 All force field parameters
for PEO and silica are provided in Section S1 in the
Supporting Information. The Lorentz−Berthelot mixing rule
was used for the calculation of nonbonded interactions
between PEO atoms and silica atoms. The time step in all
MD simulation runs was 1 fs, and each elongation run was of
duration of at least 10 ns. Coulombic interactions were
evaluated using the particle mesh Ewald method, while a cutoff
point of 1 nm was used to calculate van der Waals interactions.
The polymer matrix consists of 48 unentangled PEO chains of
50 monomers each (the molecular weight is about 2.2 kDa),
terminated with methyl groups, while a silica nanoparticle, with
an almost spherical shape, of radius ≈2.0 nm, was dispersed in
the PEO matrix. The PEO chains correspond to unentangled,
Rouse-like, polymer chains well above the oligomeric regime.
PEO/silica systems with PEO of similar molecular weight have
been extensively studied experimentally in the recent past.90

On the basis of these works and given the limitations of
atomistic simulations with respect to high-molecular weight
chains, in the current work, we focus on investigating the role
of temperature and of the polymer/nanofiller interaction on
the global mechanical reinforcement of unentangled systems.
The potential coupling between mechanical behavior and
entanglements would require systematic coarse-graining
methodologies. Snapshots of the model PEO/SiO2 systems
before and after 0.3 deformation are shown in Figure 1. We
should note that PEO/SiO2 is a typical example of well-
dispersed nanofillers due to the attractive polymer/nanofiller
interaction. The silica NP was created following a procedure
that generates amorphous bulk silica and has been described by
a fully flexible all-atom force field.91 A methodology involving a
melt-quenching process for preparing amorphous silica given
by Vollmayr et al. is used as a precursor to nanoparticle
preparation.92

First, we prepared well-equilibrated configurations of a small
system, containing a single silica nanoparticle, at 400 K, well
above the glass-transition temperature of PEO. For this, we
first inserted the polymer chains into a large simulation box

Figure 1. Typical snapshots of the initial equilibrium (left) and deformation in the x direction (ϵ = 0.3) configurations (right) of the PEO/SiO2
model systems at T = 400 K. The different colors in the representation of the polymer chains denote their relative positions along the X direction,
with respect the origin of the Cartesian coordinate system, O.
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containing a SiO2 nanoparticle. After energy minimization, a
several microsecond-long NPT equilibration run was per-
formed. To ensure full equilibration, its length (after the
density had reached its correct value) was several times longer
than the relaxation time of the end-to-end vector of the
polymer chains. After generating equilibrated structures, we
multiply the simulation boxes to obtain systems containing
several nanoparticles and further equilibrate the sample at a
high temperature (T = 400 K). A series of runs was conducted
at temperatures T = 220, 250, 270, 300, 330, 350, 370, and 400
K. The size of the simulation box changes from 59 Å at 400 K
to 57 Å at 220 K; this leads to a small decrease in volume
percentage. Note that the glassy transition temperature (Tg) of
the model PEO/SiO2 systems is around 280 K,28,86 while for
PEO bulk is around T = 250 K (for more information about
the determination of glassy transition temperature, see Section
S5 in the Supporting Information).93

The samples were then cooled to the desired temperatures
at a rate of 1−10 K/ns that is lower than typical cooling rates
reported in simulation literature. However, we should note that
in general, the cooling rates used in atomistic simulations are
very rapid (of the order of 1 K/ns) compared to the
experimental quenching rate that is approximately 1 K/s.86

Given the semiempirical observation that Tg is strongly
affected by the cooling rate of approximately 3−5 degrees
per decade, we expect differences between 30 and 50 K. Rapid
cooling can result in finer microstructures, and the atoms
within the molecular chains have less time to arrange
themselves into a more ordered structure, which often leads
to enhancing mechanical properties and making the material
more brittle. Last, before applying the deformation simulations,
we perform additional short MD runs for thermal and local
structure equilibration; for more information about the
thermodynamics equilibrium, see Section S2 in the Supporting
Information. All model atomistic PEO/SiO2 systems consid-
ered in the present work include 8 SiO2 nanoparticles and 384
PEO chains, whereas the size of the simulation cubic box at
equilibrium, in each direction, varies from 5.7 nm at 220 K to
5.9 nm at 400 K. More details on the molecular model of PEO
and silica nanoparticles can be found elsewhere.28,65 Finally,
during the discussion of the results, we also refer to data on the
mechanical properties of the same system deep in the glassy
regime (T = 150 K) taken from our previous work.65,81

After the preparation of the equilibrated PEO/SiO2 model
systems, the latter were uniaxially deformed with constant
strain rate = 10 fs5 1. Because the overall mechanical
behavior of the nanocomposite is expected to be isotropic
due to the presence of approximately spherical inclusions
(nanofillers), the rigidity matrix and the values of the Young’s
modulus and Poisson’s ratio can be determined from a single
axial tensile test across only one direction. We should note
here that comparing atomistic molecular dynamics simulation
results with experimental measurements is not a trivial issue
due to the different values of strain rates considered; usually,
tensile experiments are performed under low strain rates within
the range of 10° s−1,94−96 whereas MD simulations involve
much higher strain rates, greater than 106 s−1.97−99

The deformation is applied for strain values up to 0.8, but
here we focus mainly on the linear-like elastic regime, mainly
for strains up to 0.1. Tensile deformations are performed under
a specific statistical ensemble depending on the direction of
deformation, that is, assuming deformation in the x direction.
The deformations are performed under the NTLxσyyσzz

ensemble, i.e., constant temperature and normal stresses in y
and z directions are imposed, for a given deformation in x
direction, using the Nose−Hoover thermostat and Parrinello−
Rahman barostat, respectively (we do not impose any cubic
symmetry during the deformation). The uniaxial deformation
of the box respects the periodic boundary condition along the
axis of deformation; that is, each time the size or shape of the
box is changed, the atom positions are remapped to the new
box.
Here, we focus on the temperature dependence of a given

load during an incremental tensile test. Concerning the
dispersion of the nanoparticles in the polymer matrix, the
model PEO/SiO2 systems correspond to a well-dispersed
scenario, in which the silica nanoparticles are in a simple cubic-
like arrangement within the polymer matrix, i.e., there is no
aggregation of the nanoparticles. This is achieved by generating
systems comprising a single nanoparticle embedded in the
polymer matrix and replicating it twice along each Cartesian
direction to obtain the final model PNCs, as shown in Figure 1.
The methodology developed to evaluate mechanical proper-
ties, such as Young’s modulus and Poisson’s ratio, of the
atomistic systems was inspired by continuum mechanics,
utilized for the characterization of materials’ properties. In
continuum mechanics, Young’s modulus and Poisson’s ratio
are measured from the simple tension test by applying
incremental strain at a constant strain rate. The same concept
was extended and applied to the atomistic structures by
performing MD simulations in the NTLxσyyσzz ensemble, to
allow variations in the size and shape of the simulation box
during the deformations. To investigate the local distribution
of the mechanical behavior of the model PEO/SiO2 systems,
we need to probe the stress and strain field at the atomic level.
To do so, we use a per atom calculation of stress and strain
under an imposed global strain. Stress per atom can be directly
computed for each atom i, σi, via the atomic Virial formalism.
Concerning the local strain, here we use a recently proposed
methodology to directly probe the strain field in PNCs at the
atomic level.97,100 First, the deformation gradient for each
atom is calculated by solving a minimization problem related
to the position of the atom of interest in its neighboring atoms
within the cutoff radius rcut, allowing us to probe the
distribution of the strain fields in the atomistic model using
the definition of the Lagrange Green strain tensor with respect
to the reference coordinates. More details on the extraction of
mechanical properties through atomistic MD simulations can
be found in Section S3 in the Supporting Information and in
our previous work.65,81,89,97

3. STRUCTURAL PROPERTIES OF PEO/SIO2
NANOCOMPOSITES
3.1. Density Heterogeneities in PEO/SiO2 Nano-

composites at Equilibrium. The first part of our analysis
concerns the identification of the PEO/SiO2 interphase
(denoted also as interface in literature) for different temper-
atures. In general, it is well known that the width of the
polymer/nanoparticle interphase depends on the property
under study.55,101−103 Here, we investigate the mechanical
properties of the hybrid systems by computing the stress and
strain fields at the local (atomic) level. When a reference atom
is assumed, the per-atom values of local stress and strain fields
are expected to depend strongly on its neighboring atoms.
Therefore, we define the interphase region on the basis of
structural heterogeneities (density) within the model nano-
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composite systems. For this, we probe the density of the atom
mass of the PEO chains, ρ(r), as a function of the radial
distance from the center of mass of the SiO2 nanoparticle, r.
For this, polymer configurations are analyzed as a function of
the radial distances from the center of mass of the silica
nanoparticle, using a binning of 0.6 Å. The density profile of
the PEO chains is calculated as an average on all PEO/SiO2
interphases (here 8), within a given configuration, and over all
configurations. Data for ρ(r) for different temperatures are
shown in Figure 2a. It is clear that the density of the PEO

chains exhibits (on average) a maximum at distances of around
4−5 Å, followed by a minimum at distances of around 7 Å
from the surface of the silica nanoparticle (around 2.5 nm from
its center of mass). The maximum in the density profile is due
to the attractive, dispersive (van der Waals), and Coulombic
PEO/SiO2, polymer/nanoparticle interaction. Then, a second,
smaller, maximum at the PEO density is observed at distances
around 9−10 Å from the SiO2 outer surface. As expected, the
density reduces as temperature increases; nevertheless, the
polymer density in the region of the first maximum and

minimum of the profile is less sensitive to temperature changes
than the density at longer distances from the nanoparticle.
Based on the position of the minimum in the density profile,

and considering a fairly spherical shape of the SiO2
nanoparticle, we define the width of the PEO/SiO2 interfacial
region within the region of 5.5 Å from the outer surface of the
nanoparticle, shown with dashed line in Figure 2a. To exclude
the effect of temperature on the density profile, we present in
the inset of Figure 2a, the radial density scaled with the bulk
value, ρ/ρbulk, for each temperature. It is clear that the position
of the first peak remains relatively constant with temperature,
whereas the second peak shifts closer to the outer surface of
the nanoparticle at lower temperatures; the latter is expected
due to the increase of density as temperature decreases.
Overall, the density of the interfacial region, which is also
denoted in the literature as a “bound layer” for systems with
attractive polymer/filler interactions, seems to be less sensitive
with a decrease of temperature compared to that of the matrix
region. Last, the above definition of the interphase region,
which is on the order of one molecular layer, is used for the
subsequent analysis of all model PEO/SiO2 systems.
Interestingly, despite the peak in the polymer density profile

observed in the interphase region in Figure 2a, the average
mass polymer density of the interphase, shown in Figure 2b, is
found to be lower than that of the matrix at all temperatures
investigated. This is mainly due to the excluded volume
interaction effects of atoms that belong to either the
nanoparticle or the narrow (2D-like) adsorbed polymer layer,
which creates low-density regions around the maximum peak.
Moreover, as expected, a decrease in the polymer mass density,
averaged over the matrix and interphase regions, is observed
with increasing temperature. The mass density profile for the
matrix region is close to the PEO bulk system for all
temperatures investigated, as can be shown in Figure 2b.
We shall note that, not surprisingly, the average density of

the interphase depends strongly on its exact definition, i.e., on
the region over which averages are computed. More
specifically, if the interphase is defined by the region that
does not include the free volume region (between 22 and 25 Å
from the center of the NP), the density at T = 220 K is found
to be higher than that of the bulk region, 1.26 g cm−3. On the
other hand, the density of the region close to the NP (between
18.5 and 22 Å) is found to be lower, namely, 0.35 g cm−3. A
detailed discussion on the effective mass density of interphase
and matrix regions within the PEO/SiO2 systems in the glassy
regime (well below Tg) as a function of the silica volume
fraction can be found in our previous work.81

3.2. Density of the PEO/SiO2 Hybrids during
Deformation. Next, we investigate the density and structure
of polymer chains, focusing on the PEO/SiO2 interphases, as a
function of the deformation. To this end, Figure 3 presents the
evolution of the average density of the entire polymer matrix,
as well as the interphase (see Figure 2) and the matrix regions
normalized over the density of each region at equilibrium.
Note that the term “polymer region” includes both the
“interphase” and the “matrix” regions, whereas the bulk term
concerns the homogeneous PEO system. Density data are
presented as a function of deformation; data at ϵxx = 0
correspond to PEO/SiO2 systems at equilibrium.
An interesting first observation based on the data shown in

Figure 3 is that during deformation, the average density of the
polymer chains and the overall hybrid material, at a given
temperature, decreases. This density decrease is much more

Figure 2. (a) Interfacial atomic density profiles of PEO chains, ρ(r),
as a function of the distance from the center of the SiO2 nanoparticle.
The interfacial density profiles were calculated by measuring the
density of PEO atoms in thin spherical shells of thickness 0.06 Å
around the silica NP. The red arrow indicates the thickness of the
interphase. (Inset) Normalized density on the bulk values ρ/ρbulk
focusing on the two peaks in the density profile and (b) effective mass
density for the interphase, matrix, and polymer region as a function of
temperature. For reference, we add the density in the bulk PEO
system for different temperatures.
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pronounced at temperatures below Tg (T = 220 and 250 K)
but also occurs in the higher temperature range. In other
words, as discussed below, the Poisson’s ratio is below 0.5,
even at temperatures well above Tg. For example, when the
strain increases from 0.0 to 0.45, the effective density of the
polymer chains drops from 1 to 0.92 at 330 K and from 1 to
0.96 at 400 K. At the same time, the effective density of the

interphase drops from 1 to 0.92 at 330 K and from 1 to 0.98 at
400 K. The same behavior is also observed for the matrix
region at all temperatures examined. We should note that the
density of the SiO2 nanoparticles during the deformation
remains, as expected, almost constant. The above findings
indicate a potential drawback for computational works in the

Figure 3. Evolution of the average density normalized over the density at equilibrium ρ(ϵxx,T)/ρ(ϵxx0 ,T) of (a) polymer, (b) matrix, and (c)
interphase regions as a function of the deformation for PEO/SiO2 systems at temperatures ranging from 220 K up to 400 K. The polymer region
contains both the interphase and the matrix ones.

Figure 4. (a) Mass density profile of PEO as a function of the radial distance from the center of the SiO2 nanoparticle for different strain values (T
= 330 K) and (b) comparison between the mass density profile (inset: normalized density profile over the bulk values) for two different strains (ϵxx
= 0.05 and ϵxx = 0.45) and two temperatures (T = 330 K and T = 400 K).
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literature involving nonequilibrium (deformation) simulations
under constant volume, i.e., assuming a Poisson’s ratio of 0.5.
The decreasing of the effective mass density of the polymer

in Figure 3 is naturally related to the increase in the
corresponding volume of the simulation box; the latter can
be observed by examining the size of its edges during
deformation (evolution of Lx, Ly, and Lz). The decrease rate
in the polymer mass density for T = 220 K is much higher than
for T = 400 K. As expected, such changes directly correlate
with the evolution of Poisson’s ratio (the ratio between the
lateral to the longitudinal deformation); as the temperature
increases, the Poisson’s ratio increases (more details will be
provided in the next section). Lower Poisson’s ratio indicates
the smallest contraction in the lateral direction Ly and Lz,
leading to an increase in volume during deformation.
Next, we investigate the mass density of the polymer as a

function of the distance from the SiO2 nanoparticles and for a
given strain ρ(r,ϵxx); data for ρ(r,ϵxx) are presented in Figure 4
(system at T = 330 K). Note that the data for ρ(r,ϵxx) are

shown up to distances that correspond to about half the
distance between the nearest nanoparticle. The first peak in the
density profile shown in Figure 4a,b corresponds to atoms
belonging to the interphase. As the strain increases, the density
profiles keep this first peak more constant for the strains
corresponding to elastic behavior. The decrease of the second
peak in the effective mass density of the polymer upon
increasing the deformation is naturally related to the increase
of the corresponding volume of the simulation box; this can be
observed by probing the size of its edges during deformation. A
slight decrease in the first peak (interphase region) is observed.
Figure 4b presents the density profiles for the model as a

function of temperature and for two specific strains, one in the
linear elastic region (ϵxx = 0.05) and another in the plastic
region (ϵxx = 0.45). Regimes of high and low monomeric mass
densities are observed at small distances (around 5 Å from the
outer surface of the silica nanoparticle) similar to the
equilibrium profile discussed above. Interestingly enough, the

Figure 5. Average (global) stress−strain curves for PEO/SiO2 nanocomposites for different temperatures. (b) Lateral deformation in the y
direction as a function of the applied tensile strain in the x direction. (c,d) Temperature dependence of the average elastic Young’s modulus and
Poisson’s ratio computed for strain values up to 0.1, respectively, as a function of temperature.
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first density peak is independent of the strain and temperature
for the range of the examined strains and temperatures.
Similarly to the data shown in Figure 2, an interfacial regime

is defined for distances of up to 5−6 Å, from the outer surface
of the SiO2 nanoparticle, for the system under investigation. At
longer distances, bulk density is attained. The mass density is
mainly affected by deformation, and a slight influence of
temperature is observed in Figure 4b. Data for both
temperature (330 and 400 K) at equilibrium (ϵxx = 0) are
presented in Figure 2. We attribute this change to the dilation
of the box volume. Note that the second peak in the density
profile of PEO chains, which is observed at distances of about
10 Å, gradually decreases with temperature and during
deformation. Normalization of the density over the bulk
values (inset of Figure 2b) shows the independence of the
density profile on temperature (excluding the effect of the
temperature), and the deformation effect remains unchange-
able.
Overall, the data shown in Figures 3 and 4 demonstrate that

due to the rather strong density heterogeneity’s in the specific
PEO/SiO2 nanocomposites, it is necessary to describe
separately the interfacial behavior in the nanocomposite
mechanical response under external deformation. More
specifically, in any three-phase micromechanical model, the
elastic properties of the matrix and the interphase region
should depend on the temperature under consideration.81

4. OVERALL MECHANICAL PROPERTIES OF THE
PEO/SIO2 NANOCOMPOSITES

We continue to analyze the mechanical response of the model
PEO/SiO2 systems under deformation by investigating the
temperature dependence of their mechanical properties. The
simulation results for the effective elastic properties, i.e.,
Young’s modulus E and Poisson’s ratio ν, are extracted from
the stress−strain and longitudinal−transverse strain data,
within the low-strain regime for strain values up to about
0.1. Data about E and ν are shown in Figure 5. The strain is
calculated as the global engineering one (average). As the
temperature increases from 220 to 400 K, the material
becomes, as expected, softer, as demonstrated in Figure 5a,b.
As shown in Figure 5a,c, the elastic Young’s modulus decreases
monotonically with temperature, from 3.5 GPa at 220 K to
0.48 GPa at 400 K, while Poisson’s ratio increases, from a value
of approximately 0.3 at 220 K to 0.45 at 400 K. The above
behavior is in good agreement with experimental results for the
PS/SiO2 nanocomposite, where a drop in Young’s modulus
from 2.5 GPa at 293 K to 0.45 at 358 K was reported.34 In
addition, as the temperature increases from 220 to 400 K, the
yield strain shows a downward trend, while the yield stress
shows an upward trend. The above data are in qualitative
agreement with experimental data for carbon fiber-reinforced
vinyl ester polymer37 and predictions of micromechanical
models for PS and PMMA with silica nanoparticles.52 We shall
note that similar PEO/SiO2 systems at a lower temperature
(150 K) exhibit a Young’s modulus of about 4.2 GPa.65

The above changes in the mechanical behavior of the
nanocomposites as the temperature increases (that is, the
reduction of strength and the appearance of a rather broad
plastic-like region) are consistent with the one observed when
decreasing the strain rate.65 The analysis of the results
presented in Figure 5 shows that both the peak of the yield
and the strain yield vary as the temperature increases. The
yield strain decreases with temperature, implying that the

material becomes softer, whereas the yield strain increases as
the temperature rises. In the case of yield stress dependence,
this behavior has also been reported in coarse-grained
homopolymer simulations using generic bead spring models.68

From a theoretical point of view, the temperature depend-
ence of the mechanical properties of polymeric systems is
usually described via semiempirical relations or MCT. The
latter predicts a temperature dependence for the elastic
modulus and the Poisson’s ratio in the melt region via a
power law divergence defined as

= × = ×E E T T T T( ) ( )0 c 0 c (1)

where Tc is the transition temperature of the nanocomposite
and γ is considered as the activation energy needed to activate
the process of relaxation and the breakage of secondary bond
energy (van der Waals interaction).48

Besides the above, the Vogel−Fulcher−Tammann (VFT)
equation was also proposed to describe the temperature
dependence of the Young’s modulus and the Poisson’s ratio, as
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where TC is the temperature at which the system viscosity
diverges and β is the activation energy.68 We should note here
that both the MCT and VFT models are expected to be more
accurate for describing the behavior of polymeric systems
above the Tg.
In Figure 5c, the Young’s modulus is plotted as a function of

T−Tc, where the divergence of the power law should appear in
an exponential form, and the critical temperature is obtained
by fitting the data using the law mentioned above. The fitting
parameters for both Young’s modulus and Poisson’s ratio are
presented in Table 1. It is clear that the values of Young’s

modulus and Poisson’s ratio closely follow the dependence of
VFT and MCT over the examined temperature range, thus
implying that the principle of time−temperature superposition
holds on the short time scale of the elastic response. For the
modeled PNC, the critical temperature extracted from Young’s
modulus is found to be slightly lower than the glass-transition
temperature, Tg = 280 K, and also lower than the critical
temperature of pure PEO (Tg = 270 K). However, TC is found
to be 220 K from the VFT theory extracted from the Poisson’s
ratio, as we can see from Table 1.
An important phenomenon in polymeric nanocomposites

containing inorganic fillers is their nonlinear dynamic
viscoelastic behavior for T > Tg; for nanofiller’s filled rubbers,
the latter is usually described as the Payne effect or the Mullins
effect.68−72,104 To investigate such a nonlinear behavior, the
elastic modulus of the PEO/SiO2 systems is further computed
as a function of strain. To obtain a smooth elastic modulus−
strain curve, we first fit the stress−strain curve with the
following expression derived from the well-known nonlinear
stress−strain relations of polymer elasticity1,105−107

Table 1. Fitting Parameters from MCT and VFT Models

E (GPa) ν

E0 (GPa·K) Tc (K) γ ν0 (K) Tc (K) γ
MCT 14 267 −0.65 0.11 259 0.28
VFT 0.47 259 51 0.58 220 −50
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where all ci are fitting parameters, σxx is the tensile stress, and λ
− 1 is the tensile strain, εxx. The Young’s modulus was
computed subsequently via the derivative of stress with respect
to the strain. The above equation is expected to be valid for
systems at T ≥ Tg, as it is inapplicable for low temperatures
due to the existence of strain hardening and softening regimes.
The results on the dependence of the elastic modulus on the

strain rate are shown in Figure 6. As expected, the elastic
modulus drops dramatically with increased strain, especially at
small deformations to reach a plateau in the case of the PNC
system, which is analogous to the change of dynamic storage
modulus with the shear amplitude reported in previous
works.68,69,104 Such strain-induced nonlinear behavior of elastic
modulus can serve as an indirect indicator of the Payne effect.
As the temperature increases, the elastic modulus reaches the
plateau faster, indicating a less distinct nonlinearity of elastic
modulus with the strains, as well as mirroring high prominent
nonlinear dynamic viscoelasticity. The Payne effect for bulk

PEO systems is weaker compared to the PEO/SiO2 hybrids for
all temperatures studied here.

5. DISTRIBUTION OF MECHANICAL PROPERTIES IN
PEO/SIO2 NANOCOMPOSITES

In this part, we examine the spatial distribution of mechanical
properties in heterogeneous PEO/SiO2 systems, as defined at
the “local” level, by independently analyzing the polymer
chains at the polymer/nanoparticle interphase and in the
matrix region. To investigate the spatial distribution of the
mechanical properties of the model PNC systems, in addition
to the global stress and strain calculations discussed above, the
stress and strain are calculated at the atomic level resolution as
discussed in Section 2.97

To further investigate and visualize the typical error related
to the heterogeneous distribution of local strain fields for the
model PEO/SiO2 under deformation as a function of
temperature, we perform a 3D domain decomposition in the
simulation domain, into small cubic boxes of length 5 Å, and
compute the average strain, within each box, for a given
applied global deformation ϵxx = 0.05 and ϵxx = 0.1 (values in
the linear-like region). Data about the probability density

Figure 6. Elastic modulus of PNCs as a function of strain for different temperatures: (a) PEO/SiO2 hybrids and (b) bulk PEO systems.

Figure 7. Probability density function of the local strain for the overall PEO/SiO2 hybrids at different temperatures for (a) ϵxx = 0.05 and (b) ϵxx =
0.1 (elastic region).
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function of the strain, P(ϵxx), are shown in Figure 7. As
expected, in the linear regime, symmetric distributions are
shown with values around the globally applied one. As we can
observe from the data shown in Figure 7, P(ϵxx) exhibits a clear
peak exactly in the global value (0.05 or 0.1). A second small
peak appears close to 0 corresponding to the strain in the rigid
silica nanoparticle regions where, due to the higher stiffness,
the deformation is almost negligible. The narrow peaks in the
distributions shown in Figure 7 indicate that most atoms
reproduce the applied global strain, while the broader
distribution at high temperatures indicates a more heteroge-
neous strain field within the model PNCs.
To examine in more depth the local strain values in

subdomains for a given global applied strain, ϵxx = 0.1, we
present in Figure 8 the probability density function of strain,
P(εxx), for the nanoparticle, interphase, and matrix regions.
First, as expected, P(εxx) for the nanoparticle region (SiO2
atoms) exhibits a clear peak around zero due to its higher
rigidity for the three investigated temperatures. In the glassy
state (T = 220 K), symmetric distributions with values around
the globally applied one are shown for the matrix region. In the
interphase region, P(εxx) is much broader, reflecting the high
heterogeneity of the strain in this region. The broad P(εxx)

distribution in the interphase region reflects the strong
variations and fluctuations as well of the local strain around
the global one due to the increase of the thermal fluctuation
effect. As the temperature increases (T = 330 K and T = 400
K), P(εxx) for both regions (interphase and matrix) exhibits a
wide distribution around the global applied strain. The
distribution of strain in the matrix and interphase regions is
close at T = 400 K.
The distribution of local stress is also quite broad for all

regions, as shown in Figure 9. We attribute this strong variation
of P(σxx) to the part of the nonbonded interaction of the
atomic Virial expression of stress (partly related to Lennard-
Jones interactions). Virial stress depends on the attraction
forces between the atoms, taking into account the average
within a distance of rcut which is very sensitive to distance r.
The stress probability distribution function, P(σxx), after the
decomposition of the simulation domain into small cubic
boxes of length 5 Å qualitatively and quantitatively follows the
same behavior of the local stress distribution in the different
subregions.
Figure 10 shows the average local strain in the interfacial and

matrix regions, as a function of the global strain applied
(deformation steps), focusing on the linear regime, for the

Figure 8. Probability density function of local strain, P(ϵxx), in three different regions (matrix, interphase, and silica nanoparticle) at (a) T = 220 K,
(b) T = 330 K, and (c) T = 400 K.

Figure 9. Probability distribution of the local average stress in three different regions (NP, interphase and matrix for a global strain ϵxx = 0.1) at (a)
T = 220 K, (b) T = 330 K, and (c) T = 400 K.
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PEO/SiO2 systems at different temperatures. The data are
obtained by averaging the local strain data within each region.
In particular, during the deformation process, an almost affine
strain field is produced in the bulk (homogeneous) sample
(data not shown here), but, in PNCs, the presence of highly
stiff nanofillers leads to a nonaffine strain field in the sample.65

Thus, for the strain values studied here, nanoparticles
practically do not experience any strain, but their presence
alters the local strain within the polymer chains located in the
vicinity of the nanoparticle. We should mention that a rather
broad distribution of strain field within the interphase region is

observed, due to different responses of different parts of it
which cannot be captured in the average data.89,97,108 As
shown in Figure 10, the average value of local deformation in
the far-field matrix region of the PEO/SiO2 nanocomposites is
slightly higher than the corresponding value at the interphase,
mainly at lower temperatures. These findings indicate that the
interphase is less deformed and exhibits a reduced mobility
during deformation compared to the matrix, for all but very
high temperatures. When the temperature is increased, the
deviation between the strain in the matrix and the interphase
region decreases. The increase in local deformation within the

Figure 10. Local strain field in the interphase and matrix region at different temperatures as a function of the global applied engineering strain,
focusing in the liner regime (up to 0.1 strain).

Figure 11. Local stress−strain field at the interphase and matrix regions at different temperatures.
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interphase and the matrix region reflects the softening of the
material during heating.
Next, we directly examine the spatial distribution of the

mechanical properties of the PO/SiO2 hybrids by computing
the stress and strain fields in the two investigated regions.
Figure 11 displays local stress versus local strain data, which
can be used to calculate the engineering constant for each
region as a function of temperature. As expected, the stress−
strain behavior of both the matrix and interphase PEO regions
tends to decrease as the temperature increases. Interestingly
enough, the polymer/silica interphase region is more rigid than
the primary matrix because of the high stresses. A clear linear
elastic region (ϵxx = 0.1) is observed for the interphase and
matrix regions when the temperature is below Tg (220 and 250
K). This linear region starts to disappear as the temperature
increases, reflecting the increase of the nonlinear stress−strain
dependence in the melt state. This is not surprising, as the
viscoelastic behavior of the polymer matrix dominates that of
polymer chains at high temperatures.

Young’s modulus for each region is calculated through the
slope of the stress−strain data in the low-strain, linear like
regime (up to 0.1 strain values), where the stress is linear
depending on the strain; results are shown in Figure 12. In the
inset of Figure 12, we present the variation of Young’s modulus
for both regions normalized over Young’s modulus for the bulk
(homogeneous) PEO system. For reference, the Young’s
modulus of the matrix region drops from 1.9 GPa at 220 K to
0.51 at 400 K. The interphase region shows a similar drop from
2.62 GPa at 220 K to 0.56 GPa at 400 K. The interphase and
matrix regions show an increase in Young’s modulus with
respect to the bulk value when T is higher than Tg of the pure
bulk PEO system (around 150 K), while it remains constant at
T < Tg. The normalized Young’s modulus for the interphase
region shows an increase of up to T = 330 K, while in the
matrix region, it increases to T = 370 K and then drops (inset
of Figure 12). These findings indicate that the macroscopic
properties of the PNC depend strongly not only on the bulk
and nanoparticle properties of their constitutive components
but also on the nature of the polymer/fill interactions and the

Figure 12. Temperature dependence of the Young’s modulus for the interphase and matrix regions in PEO/SiO2 nanocomposites. Data about the
bulk PEO systems are also shown. Error bars are computed over several (here five) uncorrelated configurations. The inset shows E(T)/Ebulk(T) for
interphase and matrix regions. The dashed line in the inset denotes the Tg of the bulk model PEO chains.

Figure 13. Elastic modulus of PEO/SiO2 hybrids as a function of strain for different temperatures. (a) Interphase and (b) matrix regions.
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behavior of the matrix region where the rigidity can be greater
up to 1.5 times than the normal bulk material at a specific SiO2

. We should note that the rigidity of the PEO/SiO2 interphase,
deep in the glassy state (e.g., T ≃ 150 K well below Tg), is
about 2.5 times higher than that of the PEO matrix.81,97

Using the MCT model (via eq 1) for the different regions,
the critical temperature extracted from Young’s modulus is

found to be around 269 K for all regions, close to the one
found if we consider the average data over the entire PEO/
SiO2 system. The value of the critical exponent, γ, is
approximately equal to 0.12 in the interphase, 0.08 in the
matrix, and 0.115 in the bulk region. As expected, the
activation energy for the interphase region is much higher than
that for the matrix region, indicating the high rigidity of the

Figure 14. Evolution of the components of the mean-squared displacement for interphase and matrix regions as a function of the strain at different
temperatures.

Figure 15. Evolution of the parallel (x) and average of the perpendicular (y and z) curves to the deformation components of the mean-square
displacement of polymer atoms in the PEO/SiO2 interphase and matrix regions as a function of the strain and for different temperatures.
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interphase compared to that of the matrix region. However,
contrary to our expectations, the bulk region presents an
activation energy higher than that of the matrix in the
nanocomposite, probably due to the high heterogeneity of
local mechanical behavior in the pure polymer region.81

In Figure 13, the dependence of the elastic modulus on the
tensile strain for the interphase and matrix regions is plotted
for low strain values up to about 0.1. Data are obtained by
fitting using equation eq 3. The elastic modulus for the
interphase drops slowly when the system is subjected to
deformations at different temperatures but drops more
abruptly in the matrix region with a further increase in the
temperature and reaches an asymptotic value at relatively large
strains. Consequently, the viscoelastic behavior of the
interphase region is different from that of the matrix and
deserves further investigation. In particular, the initial elastic
modulus, which gives the indication of mechanical reinforce-
ment, is seen to be higher for the interphase region.
Furthermore, the asymptotic elastic modulus is also seen to
be higher in the interphase region compared to the matrix
region. Interestingly enough, the Payne effect for local regions
(interphase and matrix) is less dominant compared to
nanocomposite and bulk systems (Figure 6) and for all
temperatures under investigation where the elastic modulus
decays slower and does not reach the plateau at higher systems.

6. MOBILITY OF POLYMER CHAINS UNDER
DEFORMATION

In the last part of our study, we investigate the correlation
between the mechanical response of PEO/SiO2 systems and
their mobility by directly probing the mean-square displace-
ment (MSD) of polymer atoms for a specific deformation
(value of strain, ϵ), ΔR(ϵ(t)), defined as ΔR(ϵ(t)) =
⟨(R(ϵ(t)) − R(ϵ(0))2⟩, for different temperatures. The affine
deformation x0mϵxx is removed from the MSDs along direction
“x” (deformation), while νy0mϵxx and νz0mϵxx are removed from
the MSDs in “y” and “z” directions, with x0m, y0m, and z0m being
the initial positions of atom m at equilibrium and ν is the
Poisson’s ratio at the actual temperature (Figure 5). In the
above relation, R(ϵ(t)) and R(0) are the positions of the
atoms at time t and 0, respectively, and the brackets denote a
statistical average over all polymer atoms and all possible time
origins. ΔR(ϵ(t)) can be decomposed into axial (X direction,
ΔRx) and radial (Y, Z directions, ΔRyz) components and
calculated for the different temperatures. Moreover, we further
investigate the motion of the polymer chain in the interphase
and matrix regions.
As presented in Figure 14, the behavior of the polymer

mobility is influenced by changes in temperature during the
uniaxial deformation process for the interphase and matrix
regions. A nonmonotonic change occurs for different temper-
atures in chain motion in both regions, as observed in Figure
14. As the temperature increases, the MSD in both regions
increases, reflecting the softening of the subdomains upon
heating the system. The MSD in the matrix region is higher
than in the interphase region, which is consistent with the local
deformation results found in Figure 10. We can correlate the
preceding to the fact that, due to the attractive filler, the bound
(interfacial) layer is less mobile than the matrix.
To further investigate the temperature dependence of the

local mechanical properties, we decomposed the motion of
polymer chains into axial and radial motions under different
temperatures. Then, we probe the parallel (x) and

perpendicular (averages of y and z) curves to the imposed
deformation components of PEO MSDs that can serve as a
reference for the evolution of the rigidity during axial
deformation. To this end, in Figure 15, the axial (x-
component) and radial (average of y- and z-components)
directions of the MSD are presented. It is clear from the above
data that the polymer motion behavior in the axial direction in
the interphase regions has nearly no significant effect by
temperature changes during the uniaxial stretching process, as
indicated by the almost coincident axial MSD curves for
different temperatures. However, a more pronounced effect is
observed in the radial directions for both regions. In this case,
the axial deformation of polymer chains in the interphase
region is controlled and limited by the presence (entropic
term) of the silica nanofiller and their strong attraction
(enthalpic term) to it.
Furthermore, the radial MSD curves presented by the

average y and z components of MSD show that the range of
chain motion increases dramatically with increasing temper-
ature from 220 to 400 K. If the two ends of the PEO chain are
fixed at the NP surface (bridge or loop chains), the distance of
the PEO chain motion that increases with temperature in the
radial direction would result in a larger angle, which would
form a peak between the chain and the axial direction. Higher
mobility implies that the PNC model becomes softer at higher
temperatures. These findings are in agreement with the
mechanical properties found in Figure 5. With increasing
temperature, the rigidity of both regions decreases, as well as
the disparity between the values of the radial deformation
components of the mean-square displacement of the polymer
in the interphase and matrix regions. This behavior can be
ascribed to changes in the conformation within the matrix
region upon increasing the temperature. A detailed inves-
tigation of such effects will be the subject of a future study.

7. DISCUSSION AND CONCLUSIONS
Atomistic simulations can be a valuable tool to elucidate the
mechanical behavior and mobility of polymer chains in
nanostructured polymer materials. In the present work, we
studied the (heterogeneous) mechanical behavior of nano-
composites consisting of PEO chains with silica nanoparticles,
and particularly its temperature dependence, via atomistic MD
simulations under tensile deformation. PEO/SiO2 is a model
nanocomposite system of well-dispersed nanofillers due to
attractive polymer/nanoparticle interactions. We probe the
mechanical response of the model systems by investigating the
variation of the effective mechanical properties, the evolution
of the radial mass density, and the mobility of polymer chains
at temperatures across a range of temperatures in the transition
from the glassy toward the melt regime. To investigate spatial
heterogeneities, we directly probed the response of the PEO/
SiO2 model systems in the interphase and matrix regions by
computing stress and strain fields at a local, per atom, level.89,97

The behavior of the model PEO/SiO2 systems changes
dramatically as we increase the temperature to reach
approximately the liquid state at 400 K where the Poison’s
ratio at this temperature is close to the liquid case (around
0.45). As expected, the mechanical behavior of both the
interphase and matrix regions, in the PEO/SiO2 systems,
strongly depends on the temperature. The rigidity at the
interphases is larger than that in the matrix region across the
entire range of temperatures studied here; however, with
increasing temperature, the rigidity at the interphase
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approaches that in the matrix region. Furthermore, we
emphasize that the mass density is mainly affected by
deformation and a slight influence of temperature is observed,
(see data in Figure 4 a,b); that is, the conformations of the
polymer chains remain unaffected by the temperature, which
can be observed in the radial mass density profiles. To further
explore the effect of temperature on the mobility of polymer
chains in PEO/SiO2 systems, we calculated the mean-square
displacement in the interphase and matrix regions. In general,
the mobility of chains in the matrix region is higher than that
in the interphase, and this difference increases with temper-
ature. Furthermore, the chain motion in the axial direction in
the matrix region is marginally affected by changes in
temperature during the uniaxial stretching process. On the
contrary, a more pronounced effect is observed in the
interphase region. Consequently, the decrease of the axial
mechanical properties (Young’s modulus) is due to the
softening of the interphase region as the temperature rises.
However, the radial motion (represented by the Y components
of MSD) shows a profound increase in both regions; hence, we
can deduce that both regions influence the global Poisson’s
ratio. Finally, we should state, we expect that the behavior of
the model nanocomposites will be different during plastic
deformation, where the stress does not depend linearly on the
applied strain. The mechanism of heterogeneity of mechanical
properties is also expected to be different in the plastic region.
On these grounds, the effect of polymer conformations on the
mechanical reinforcement of PNCs in the plastic region at
different temperatures is a subject worth detailed investigation.
For example, future work could focus on capturing the
deformation and mobility of polymer chains in the plastic
regime, as well as their relaxation back to equilibrium after
cessation of the imposed loading.
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