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Abstract
Objective. Precise neuromodulation systems are needed to identify the role of neural oscillatory
dynamics in brain function and to advance the development of brain stimulation therapies tailored
to each patient’s signature of brain dysfunction. Low-frequency, local field potentials (LFPs) are of
increasing interest for the development of these systems because they can reflect the synaptic inputs
to a recorded neuronal population and can be chronically recorded in humans. In this
computational study, we aim to identify stimulation pulse patterns needed to optimally maximize
the suppression or amplification of frequency-specific neural activity. Approach. We derived DBS
pulse patterns to minimize or maximize the 2-norm of frequency-specific neural oscillations using
a generalized mathematical model of spontaneous and stimulation-evoked LFP activity, and a
subject-specific model of neural dynamics in the pallidum of a Parkinson’s disease patient. We
leveraged convex and mixed-integer optimization tools to identify these pulse patterns, and
employed constraints on the pulse frequency and amplitude that are required to keep electrical
stimulation within its safety envelope.Main results. Our analysis revealed that a combination of
phase, amplitude, and frequency pulse modulation is needed to attain optimal suppression or
amplification of the targeted oscillations. Phase modulation is sufficient to modulate oscillations
with a constant amplitude envelope. To attain optimal modulation for oscillations with a
time-varying envelope, a trade-off between frequency and amplitude pulse modulation is needed.
The optimized pulse sequences were invariant to changes in the dynamics of stimulation-evoked
neural activity, including changes in damping and natural frequency or complexity (i.e. generalized
vs. patient-specific model). Significance. Our results provide insight into the structure of pulse
patterns for future closed-loop brain stimulation strategies aimed at controlling neural activity
precisely and in real-time.

1. Introduction

Robust and precise neural control methodologies are
needed to characterize the role of neural activity in the
manifestation of brain conditions, and to advance the
development of neuromodulation technologies. Of
particular interest for the development of these tech-
nologies are the local field potentials (LFPs) recor-
ded chronically in humans using macro-electrodes
given the stability of these LFPs over time [1, 2].
Experimental and theoretical studies have shown

that LFP neural activity at low-frequency (<100Hz)
is dominated by synchronized synaptic inputs to
neuronal populations near the recording site [3, 4].
Therefore, these LFPs can be used as a feedback signal
in closed-loop systems to control synchronized syn-
aptic activity in a neuronal population and thereby
modulate information flowing into and out of the tar-
geted neurons.
In Parkinson’s disease, synchronized 11–35Hz (‘beta’
band) LFP oscillations in the subthalamic nucleus
(STN) or internal segment of the globus pallidus
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(GPi) are hypothesized to be associated with motor
dysfunction [5–10]. Deep brain stimulation (DBS) of
the STN or GPi, a surgical treatment for Parkinson’s
disease that yields therapeutic benefit via continu-
ous delivery of high-frequency (HF) ( 130Hz) elec-
trical pulses, can suppress the beta band oscilla-
tions. However, the mechanisms by which HF stim-
ulation produces these physiological or therapeutic
effects are not well understood [11]. Because HF
DBS is proven to improve motor function (depend-
ent variable), we cannot deductively infer whether
HF stimulation-induced suppression of beta oscilla-
tions (independent variable) precedes, succeeds, or is
simply unrelated (epiphenomenal) to the improve-
ments inmotor function. Clarifying whether the rela-
tionship of beta band oscillations with PD motor
signs is causal or epiphenomenon is a critical step to
better understand PD pathophysiology and advance
personalized DBS technology in PD and other condi-
tions. To clarify the role of frequency-specific neural
oscillations, we need tools to predictably control
them without introducing confounding factors (e.g.
high-frequency pulses). A recent study with the 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine nonhu-
man primate model of Parkinson’s disease showed
that amplification or suppression of beta band oscil-
lations in the STN could be achieved using STN
neural responses evoked by electrical stimulation in
the internal segment of the GPi [12]. The rationale
behind this approach, referred to as closed-loop
evoked interference deep brain stimulation (eiDBS),
is that synaptic-related neural responses evoked by
electrical pulses canmodulate spontaneous, synaptic-
related oscillations via synaptic summation when the
pulses are deliveredwith adequate amplitude and pre-
cise timing (phase) relative to the targeted oscilla-
tion’s phase [12]. Another study with rodent mod-
els of PD also supports the idea that stimulation
at precise phases of the STN oscillations can be
used to suppress or amplify beta oscillations in the
cortex [13]. More recently, the feasibility of using
eiDBS to suppress or amplify neural activity (16–
22Hz) in the human GPi using a single DBS elec-
trode array was demonstrated in a patient (human)
with Parkinson’s disease [14]. While the effectiveness
of eiDBS at restoring function in Parkinson’s disease
or other brain conditions remains to be determined,
its utility in characterizing how controlled suppres-
sion or amplification of neural oscillations relates to
brain function or disease is compelling. The current
implementation of eiDBS delivers electrical pulses of
fixed amplitude locked to the phase of frequency-
specific oscillations (i.e. phase-locked stimulation).
This approach can be effective in suppressing or amp-
lifying the mean amplitude of targeted neural activ-
ity, but it is sub-optimal to suppress neural oscilla-
tions because it does not account for dynamic changes
in the amplitude of spontaneous neural oscillations.

Because the stimulation pulse amplitude is set con-
stant, variations in the oscillation amplitude can res-
ult in unwanted amplification when the spontan-
eous oscillations are small relative to the stimulation-
evoked oscillations, or sub-optimal suppressionwhen
the spontaneous oscillations are large relative to the
stimulation-evoked oscillations. Identifying electrical
stimulation strategies to optimally modulate neural
activity is needed to address the shortcomings of the
present eiDBS implementation, perform more con-
trolled experiments to understand the causal role of
brain oscillations, and advance the development of
precise, patient-specific neuromodulation devices.
In this study, we identified pulse modulation pat-
terns that optimally suppress or amplify the 2-
norm of spontaneous neural activity. To discover
these pulse patterns, we employed optimization tools
together with generalized mathematical models that
describe the temporal dynamics of spontaneous and
stimulation-evoked neural activity. We considered
evoked response dynamics with distinct damping
coefficients and natural frequencies to understand
whether the structure of the optimal pulse patterns
remained invariant with changes in these dynamics.
We also derived optimal stimulation sequences using
a mathematical model of the evoked and spontan-
eous neural activity in the GPi of a Parkinson’s disease
patient to confirm that the structure of these pulse
sequences is preserved in neural dynamicsmore com-
plex than those described by the generalizedmathem-
atical model. Our methodology enabled us to con-
sider constraints on the pulse amplitudes and fre-
quencies to comply with devices currently cleared or
approved by the U.S. Food and Drug Administration
(FDA). Of note, our study focuses on identifying
the optimal value of the DBS pulse amplitude at
each sampling time and, thereby, the sequence of
pulse amplitudes that form the overall pulse pat-
tern. Therefore, our study is not aimed at finding
optimal values of constant hyperparameters such as
the stimulation frequency, pulse width, and amp-
litude. Additionally, this study aims to reveal the
optimized pulse sequences given complete knowledge
of the spontaneous neural activity time series, not
a closed-loop control law for causal implementation
onto a DBS device.
Our results indicate that a trade-off between phase,
frequency, and amplitude pulsemodulation is needed
to optimally minimize or maximize the 2-norm of
targeted neural activity. The pulse modulation pat-
terns identified in this study provide the rationale
to develop future closed-loop brain stimulation
strategies aimed at controlling neural activity in real-
time with minimum error. Optimizing these systems
could, in turn, enable us to characterize the role of
oscillatory dynamics in brain function and advance
the development of precise, personalized neuromod-
ulation technology.
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2. Methods

2.1. Mathematical models of neural dynamics
We employed mathematical models of spontaneous
and stimulation-evoked neural dynamics to identify
pulse sequences that minimize the 2-norm of
frequency-specific neural activity. The 2-norm of
a signal is equal to its energy, which is the integ-
ral of its instantaneous power with respect to time.
Therefore, by minimizing the 2-norm of a frequency-
specific signal, we are minimizing its overall energy.
The average power, typically used in neuroscience to
measure the size of neural signals, is not used in this
study because it is not a norm or used in established
optimization methods. We considered a generalized
mathematical model in which relevant parameters of
the stimulation-evoked responses (i.e. damping and
natural/resonant frequency) were varied in order to
understandwhether the identified pulses patterns can
be applied to distinct neural dynamics. To understand
whether our results with the generalized model could
be used to modulate more complex, neural dynam-
ics similar to those observed in-vivo, we identified
optimal pulse sequences for a mathematical model of
spontaneous and stimulation-evoked activity in the
GPi derived with data recorded from a PD patient
[14]. We considered electrical stimulation waveforms
that consist of a negative followed by a positive square
pulse. These two square pulses have the same amp-
litude and a constant pulse width (i.e. symmetric,
biphasic waveform). The pulse width is equal to the
sampling period used in the discretization of the
evoked response mathematical model.

The effect of stimulation pulses on the neural
evoked response temporal dynamics was character-
ized using a saturation nonlinearity (static) con-
nected to a system of linear equations of differ-
ences (discrete time approximation of differential
equations) as depicted in figure 1. This generalized
model structure has been shown to approximate the
linear response of neural circuitry to electrical stim-
ulation pulses [12, 14]. The saturation nonlinearity
takes a biphasic pulse and converts it into a mono-
phasic cathodal pulse (negative phase), which dom-
inates the neural response according to experimental
data [12]. Therefore, an alternative neural dynam-
ics model can replace the saturation nonlinearity
with pulses that are strictly monophasic. Of note,
the generalized model can be interpreted as a lin-
ear approximation (around equilibrium) of a mean-
field neural model, typically used in neuroscience
to study neuronal populations computationally or
characterize neural circuits based on data [15]. The
evoked response model is described by the following
equations of differences

ye [k] = C⃗z [k] +Du [k] (1)

z⃗ [k+ 1] = A⃗z [k] +Bu [k] (2)

where k= 0,1, . . .,n− 1 is the discrete time sample
associated with time kts; ts is the sampling time; z⃗
is the state vector; u[k]< 0 is the saturated, mono-
phasic input stimulus; ye[k] is the evoked response at
sample k; and A, B, C and D are constant matrices
that parameterize the equations of differences. In our
model, D= 0 since there is no feed-through gain
from the stimulus to the neural response. The satur-
ated,monophasic stimulation input is given by u[k] =
sat(û[k]− u), where u< 0 is an offset representing
the minimum size stimulation that evokes a neural
response, û is the biphasic pulse, and sat(∗) is the sat-
uration operator that converts any positive value to
zero. This operator is given by:

sat(p) =

{
p, if p< 0

0, otherwise.

The LFP measurement, which reflects the com-
bined spontaneous and stimulation-evoked neural
activity, is modeled as

y [k] = ye [k] + b [k] , (3)

where b[k] is the value of the spontaneous neural
oscillations at sample k. This linear model is a low-
order simplification of the interaction between the
spontaneous and stimulation-evoked neural activ-
ity that has been shown to be an approximation of
experimental data [12, 14]. However, of note, this
LFP model does not consider saturation effects asso-
ciated with the finite number of neurons in the
neuronal population beingmodeled, high-order non-
linear dynamics, or synaptic plasticity. The spontan-
eous oscillations (b[k]) were modeled using sinus-
oidal functions or synthetic LFP signals that match
the power spectral density (PSD) of LFPs recorded
from a PD patient.

2.1.1. Generalized, low-order model
Weused a second-ordermodel of the evoked response
to characterize optimal stimulation sequences that
suppress or amplify spontaneous oscillations. The
second-order model is given by equations (1) and
(2). The following matrices describe the parameters
of these equations [16]:

A=

[
1 ts

−tsω2
n −2tsζωn + 1

]
, (4)

B=

[
0

tskuω2
n

]
, (5)

C=
[
1 0

]
, (6)

D= 0, (7)

where ωn = 2π fn is the natural angular frequency
(rad/sec) of the evoked response, ζ is the damping
ratio, ku is a scalar gain, and ts (sec) is the sampling
period.
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Figure 1. A schematic of the model dynamics capturing the interaction between spontaneous and stimulation-evoked neural
activity in the targeted brain region. A biphasic stimulation pulse train, where each pulse is represented by a negative followed by
a positive pulse, which after saturation is reduced to just the negative square pulse train. The saturated pulse train is responsible
for evoking stimulation based oscillations, the dynamics of which can be mapped to a Toeplitz matrix (Te). The final model is the
summation of the matrix multiplication of the Te with the optimization variable vector (⃗x) and the vector containing the
spontaneous oscillations (Bs).

It’s important to mention that any high-order
mathematical model characterized by linear differ-
ential equations can be decomposed into multiple
first and second-ordermodels [17]. The second-order
models, as the one described above, provide a descrip-
tion of the oscillatory modes in the dynamics being
studied. Therefore, our analysis of a second-order sys-
tem provides insights into the DBS sequences that
need to be delivered to control neural dynamics driv-
ing oscillatory behavior. We considered two distinct
signals to characterize the spontaneous oscillations
(b[k]) in the generalized neural dynamics model. The
first signal type is given by a sinusoidal function of
frequency f 0:

b [k] = ab sin(2π f0kts) ,

where ab is a constant that defines the signal amp-
litude. The second signal type is a sinusoidal function
of frequency f 0 whose amplitude envelope is modu-
lated by a sinusoidal of lower frequency (fl). The fol-
lowing equation describes this signal:

b [k] = ab · (1+ cos(2π flkts)) · sin(2π f0kts) .

The nominal values of fn and ζ were set equal to
20Hz and 0.092, respectively. These parameters cor-
respond to the frequency and damping of the dom-
inant mode in the patient evoked response model
described below. Parameters ab, f 0, and fl were equal
to 10µV, 20Hz and 2Hz, respectively. The tem-
poral and time–frequency response to stimulation of
the neural circuit’s synthetic model with the above
nominal parameters are depicted in figures 2(a) and
(c). To understand whether the stimulation pulse
sequences derived with the nominal evoked response
model differed from those obtained with distinct
evoked response dynamics, we characterized how
deviations in ζ and fn impact the optimized stimula-
tion sequences. Parameters ζ and fn were varied from
0.1 to 1, and from 10 to 30Hz, respectively. The range

Figure 2. Stimulation-evoked responses (ER) for the
generalized and patient-specific models are presented in (a)
and (b), respectively. The patient-specific model
characterizes the neural response in the GPi evoked by
stimulation in the GPi in a PD patient. Wavelet scalograms
(time–frequency maps) of the stimulation-evoked
responses for the generalized mathematical model and
patient-specific model are presented in (c) and (d). Power
spectral density (PSD) of spontaneous LFP activity for the
generalized and patient-specific models are presented in (e)
and (f).

used for the damping ratio spans the neural evoked
dynamics from a lightly to a highly damped response
We selected a natural frequency range that deviates
+/− 50% from the spontaneous oscillations’ natural
frequency (f 0 = 20Hz).

2.1.2. Patient-specific model
A model of both spontaneous and stimulation-
evoked neural activity in the GPi of a Parkinson’s
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disease patient was used to assess whether the res-
ults obtained with the generalized, low-order model
can be applied to more complex and realistic neural
dynamics. The patient-specific model was presen-
ted in a previous publication in which the input-
output relationship between stimulation in the GPi
and evoked responses in the GPi was estimated
using instrumental variable system identification
[14]. Briefly, the equations of differences describing
the patient’s evoked response have two imaginary
pairs of poles (modes) with natural frequencies equal
to 14 and 20Hz, and corresponding damping ratios
equal to 0.22 and 0.092. The frequency response of
the evoked response mathematical model indicated
that the largest gain in the transfer function from
stimulation input to evoked response is at 19.2Hz,
near the mode with the lowest damping (f 0 = 20Hz,
ζ = 0.092). It is worth mentioning that the trans-
fer function gain does not peak where the domin-
ant oscillatory mode is located (i.e. 20Hz) because
the 14Hz mode is present, too. The time–frequency
response of the neural dynamics evoked by stimula-
tion are shown in figures 2(b)–(d) and amore detailed
description of the model is presented in [14]. Having
evoked response dynamics with their largest gain at
19.2Hz implies that periodic stimuli at 19.2Hz result
in the largest steady state, periodic evoked responses
at this frequency. Therefore, stimulation pulses can
be used to modulate neural activity near 19.2Hz with
minimum amplitude.

The spontaneous neural activity used in the
patient model was characterized by synthetic LFP sig-
nals that match the PSD observed in the GPi of a
Parkinson’s disease patient in the resting, awake state.
The patient’s evoked response model and PSD can be
found in [14]. In this model, the spontaneous oscil-
lations’ frequency matches the resonant frequency of
the stimulation-evoked responses. The synthetic LFP
signal is given by

q [k] = kβhβ [k] ∗ nw [k] + kpnp [k] , (8)

where ∗ is the convolution operator, hβ is a first-
order Butterworth filter with a pass-band in the 17–
21Hz range, nw is zero mean Gaussian white noise
with unitary power, np is a pink noise signal with
unitary power, and kβ = 12.6 and kp = 6 are con-
stant scalars that are adjusted to match the PSD of
the studied patient. The convolution between filter hβ
and the white noise nw is equal to the modeled beta
band oscillations. The filter’s pass-band is centered at
around 19HZ, matching closely the frequency where
the stimulation-evoked response model has its largest
gain (19.2Hz). The pink noise np is used to charac-
terize the 1/f background activity observed in LFP
neural recordings [3, 4].

The signal targeted for modulation (b[k]) was
obtained by filtering the synthetic LFP (q[k]) in the

Figure 3. Examples of two different stimulation pulse
patterns considered in this study and the corresponding
evoked responses (ER) computed with the generalized,
low-order model. A sequence of three pulses with
adjustable amplitude and corresponding evoked response
are presented in (a) and (b), respectively. A sequence of
pulses with binary amplitude values and corresponding
evoked responses are shown in (c) and (d).

14–24Hz band using a second order Butterworth fil-
ter. See the PSD of the synthetic LFP in figure 2(f).

2.2. Stimulation constraints
We considered stimulation sequences subject to two
distinct sets of constraints in our analysis and optim-
ization algorithms. These stimulation constraints are
described below.

(i) Stimulation pulses with adjustable amplitude:
this class of stimulation sequences consists of
pulses whose amplitude and timing are freely
selected by the optimization. An example of
a stimulation sequence with varying timing
and amplitude is shown in figure 3(a) and its
corresponding evoked response is shown in
figure 3(b). For the mathematical formulation
of our optimization problem, we employed the
instantaneous normalized stimulation input
x[k] = 1

as
u[k] as the free optimization variable.

This variable can take any value in the continu-
ous compact interval [−1,0]. as is a constant
equal to the maximum allowed stimulation cur-
rent. The input x[k] =−1 corresponds to stim-
ulation pulse with the largest allowed amplitude
and x[k] = 0 corresponds to the stimulation cur-
rent that does not evoke a neural response. The
values of the stimulation variable are negative or
zero because the negative phase of the stimula-
tion pulse (cathodal stimulation) was assumed
to evoke the neural response [12].

(ii) Stimulation pulses with binary amplitude values:
the second class of stimulation sequences con-
sists of pulses whose amplitude can be equal to
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either zero or a non-zero constant. This con-
straint on the stimulation pulse amplitude was
studied only because present closed-loop neur-
ostimulation systems allow us to deliver these
sequences in humans [14], but not pulses whose
amplitude can be adjusted in real-time. An
example of a stimulation sequence with bin-
ary pulse amplitudes is shown in figure 3(c)
and its corresponding evoked response is shown
in figure 3(d). We used the instantaneous nor-
malized stimulation input x[k] = 1

as
u[k] as the

optimization variable. x[k] can take a value equal
to eitherminus one or zero.Hence, as is the stim-
ulation pulse amplitude when x[k] =−1.

2.3. Optimization approach
The goal of the optimization is to discover stimulation
pulse sequences that maximize suppression or ampli-
fication of frequency-specific neural activity given the
constraints described above. The mathematical func-
tion we aim to minimize is the 2-norm of the differ-
ence between the spontaneous neural activity and a
reference signal to be tracked. This cost function is
given by

J= ∥ y⃗− y⃗ref ∥2 =

(
n−1∑
k=0

(y [k]− yref [k])
2

)1/2

, (9)

where ∥ · ∥2 represents the 2-norm and y⃗ref is the ref-
erence signal. The cost function J has the same unit as
the LFP signal amplitude, which in our case is micro-
volts (µV). The reference signal is set equal to zero
when we want to suppress the spontaneous oscilla-
tions (i.e. y⃗ref[k] = 0 for all k). When we want to amp-
lify the targeted neural activity, we set the reference
signal equal to a sinusoidal with the same frequency
and phase as the spontaneous oscillations but with a
larger amplitude.

We considered electrical stimulation sequences
with pulses delivered at samples k (i.e. samples at
times kts). A sampling period ts = 1/180 sec was used
in the optimization routines to ensure that stimula-
tion pulses were generated with a frequency smal-
ler than or equal to the sampling frequency (fs =
180Hz). This frequency is smaller than the max-
imum frequency allowed in commercial DBS systems
approved by the FDA for the treatment of neuro-
logical conditions [18]. This sampling frequency is
also large enough to capture the neural dynamics
associated with spontaneous and stimulation-evoked
oscillations with a frequency below 30Hz. To for-
mulate the optimization problem using convex or
mixed-integer tools, we represent the solution to the
equations of differences (1) and (2) using a matrix
multiplication:

y⃗e = asTe⃗x. (10)

Vector y⃗e ∈ R2n−1 represents the evoked response
samples, vector x⃗= {x(0), . . . ,x(n− 1)} ∈ Rn is the

optimization pulse pattern that represents the nor-
malized amplitude of the stimulation pulses, and
Te is a R(2n−1)×n Toeplitz matrix that maps the
stimulation sequences to the evoked response vector
[19]. The above matrix multiplication performs the
convolution between the stimulation pulse pattern
and the evoked response mathematical model to
obtain the evoked response time series. The combined
stimulation-evoked and spontaneous neural activ-
ity represented in vector form (⃗y= {y[0], . . . ,y[n−
1],0,0, . . . ,0} ∈ R2n−1) is given by

y⃗= asTe⃗x+Bs. (11)

Vector Bs = {b[0], . . . ,b[n− 1],0,0, . . . ,0} ∈ R2n−1

represents the zero-padded spontaneous neural
activity. This vector is padded with zeros to match
the dimensions of the Toeplitz matrix Te, which is
R(2n−1)×n.

The optimization problem for stimulation pulses
with adjustable amplitude is described by the
expression

min
x⃗

∥asTe⃗x+Bs − y⃗ref∥2

subject to

x [k] ∈ [−1,0] , k= 0, . . . ,n− 1. (12)

In the above optimization problem, as is set equal
to the maximum allowed stimulation current. This
optimization problem is convex. Therefore, if a solu-
tion exists, it is unique and the global minimum [20].
We denote the solution to this optimization problem
as x⃗∗.

For stimulation pulses with binary amplitude val-
ues, the optimization problem is

min
x⃗,as

∥asTe⃗x+Bs − y⃗ref∥2

subject to

x [k] ∈ {−1,0} , k= 0, . . . ,n− 1

as ∈
[
0,A
]
. (13)

In this case, the constant scalar as becomes an optim-
ization variable. A is the maximum value that as is
allowed to take (i.e. maximum stimulation current).
The optimal values for this optimization problem are
denoted as x⃗∗ and a∗s . This optimization problem
is not convex. Therefore, a minimum solution, if it
exists, is not guaranteed to be unique or global [20].
We used mixed-integer optimization algorithms to
compute solutions to the optimization problem (13).

2.3.1. Optimization algorithms and implementation
All the simulations and optimization algorithms were
implemented in Matlab (MathWorks, Natick, MA,
USA) and a computer equipped with an Intel Core
i7-8700 K CPU processor (3.7 GHz) and a 32GB
RAM memory. For the optimization, we integrated
the CVXpackagewithMatlab [20] and solutionswere
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obtained using the Gurobi solver. This solver was
chosen because it has the capability of solving both
convex and mixed-integer optimization problems
[21, 22].

The optimization routines applied to both the
low-order and patient-specific models were imple-
mented with 2 s long LFP time series (n= 360
samples). This period was sufficient to determine the
steady-state stimulation patterns needed to modulate
the targeted oscillations. It also enabled us to attain
a solution to the mixed-integer optimization prob-
lem with a desired gap and within a reasonable time
(< 20 s). At each step, the solver internally calculates
the best known objective function value for a feasible
solution and the objective function lower bound. The
optimal objective value is always between these two
values. When the relative gap between these objective
bounds is smaller than the ‘MIPGap’ parameter of the
solver, the optimization terminates. TheMIPGap was
set to 0.1 for our optimization.

2.4. Assessment of neural modulation
We quantified the degree of modulation achieved by
pulse sequences with adjustable or binary stimulation
amplitudes using the optimal value of the optimiza-
tion cost function J= ∥asTe⃗x+Bs − y⃗ref∥2.

3. Results

3.1. Phase modulation of stimulation pulses
mediate optimal suppression and amplification of
oscillations with a constant amplitude envelope
The stimulation sequences derived with the nominal
generalized model (nominal damping and natural
frequency) that optimally suppressed or amplified
spontaneous oscillations with constant amplitude
consist of pulse trains locked to a specific phase of
the oscillations. Figure 4 shows the wavelet scalo-
grams (time–frequency maps) of the modulated sig-
nal and the temporal evolution of the targeted oscil-
lations, modulated signal, and stimulation pulses for
the following scenarios: suppression of targeted oscil-
lations using pulses with an adjustable amplitude
(max. amplitude as = 2.5mA), suppression of tar-
geted oscillations using pulses with an adjustable
amplitude (max. amplitude as = 0.4mA), suppres-
sion of targeted oscillations using pulses with the
binary amplitude constraint, and amplification of
targeted oscillations using pulses with an adjustable
amplitude (max. amplitude as = 2.5mA). For brev-
ity, we do not show the patterns for pulses with the
binary amplitude constraint when amplification was
the optimization goal.
The phase locking pattern was observed for pulses
with both an adjustable amplitude (figures 4(a)–(d))
and the binary amplitude constraint (figures 4(e)

and (f)) when the optimization goal was either sup-
pression or amplification of the targeted oscilla-
tions. Nonetheless, the optimal cost for stimulation
sequences with an adjustable amplitude (J = 23.4 for
suppression and J = 49.3571 for amplification with
as = 2.5mA) is smaller than the cost for sequences
with the binary amplitude constraint (J = 410.2 for
suppression and J = 687.986 for amplification). The
values of J can be compared between pulse types
(adjustable vs. constant amplitude) when the same
objective (e.g. suppression) is considered. One should
not compare values of J in the amplification vs. sup-
pression objectives because the reference vector y⃗ref is
different in these two scenarios.

We considered two constraints on the maximum
stimulation amplitude (as = 2.5mA and as = 0.4mA)
for the pulses with an adjustable amplitude. The
relative effect of using a maximum current as =
2.5mA vs. as = 0.4mA helped us to understand
how a decrease in the maximum allowed stimula-
tion amplitude impacts the optimal pulse patterns.
Constraints on the stimulation amplitude may be
needed when the maximum electrical current cannot
exceed a threshold in order to keep the electric charge
within safe limits or when side effects due to stimula-
tion need to be avoided. For targeted oscillations with
a constant amplitude envelope, a decrease in themax-
imumallowed stimulation results in an increase in the
number of pulses in each train aligned with the phase
of the oscillations. See scalograms and pulse patterns
in figures 4(a)–(b) vs. (c)–(d). The greater number of
pulses in each train results in an increase in the amp-
litude of the evoked responses (temporal summation)
and thereby an enhanced ability to create construct-
ive or destructive interference. It is worth mention-
ing here that the pulse frequency is limited by the
sampling rate used in the mathematical models (i.e.
180Hz).

3.2. Pulse frequency, amplitude, and phase
modulationmediate optimal suppression and
amplification of oscillations with a time-varying
amplitude envelope
The stimulation sequences that optimally suppress
or amplify oscillations with a time-varying amp-
litude envelope exhibit a combination of phase, fre-
quency, and amplitude pulse modulation for the case
in which the pulse’s normalized amplitude is allowed
to take any value in a continuous range between 0 and
1 (maximum current as =2.5mA). Pulse sequences
with a higher frequency and amplitude are gener-
ated at specific phases of the spontaneous oscillations
to increase the amplitude of the evoked responses
and thereby achieve optimal destructive or construct-
ive interference between the spontaneous and evoked
oscillations (figures 5(a) and (b)).

For the pulses with an adjustable amplitude,
our results indicate that pulse frequency modulation
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Figure 4. Effect of stimulation pulses on oscillations with constant amplitude envelope. Targeted oscillations (−), modulated
(suppressed/amplified) oscillations (−), reference signal for amplification (- -), optimal stimulation sequence (–) Targeted signal,
modulated signal, and Wavelet scalograms of the modulated signal during a transition from off- to on-stimulation are shown for
sequences with the following characteristics: (a), (b) pulses of adjustable amplitude (max. amplitude as = 2.5mA) that suppress
the targeted oscillations; (c), (d) pulses of adjustable amplitude (max. amplitude as = 0.4mA) that suppress the targeted
oscillations; (e), (f) pulses with the binary amplitude constraint that suppress the targeted oscillations; (g), (h) pulses of
adjustable amplitude (max. amplitude as = 2.5mA) that amplify the targeted oscillations.

becomes more predominant than pulse amplitude
modulation to maximize the suppression or ampli-
fication of the targeted oscillations as the value of the
maximum allowed pulse amplitude (as) is reduced
from 2.5 to 0.4mA (figures 5(c) and (d) vs. (a)
and (b)).

The solution to the optimization problem with
the binary amplitude constraint on the pulses con-
sists of sequences exhibiting a combination of pulse
frequency and pulse phase modulation. When sup-
pression was the optimization objective, these pulses
were delivered only when the amplitude envelope of
the oscillations was above a threshold. See figures 5(f)
vs. (b) at time 2.1 s and after. This threshold-based
strategy ensures that oscillations evoked by stimula-
tion pulses with a fixed amplitude do not amplify the
spontaneous oscillations when these oscillations are
small compared to the evoked responses.

The optimization cost associated with the pulses
with adjustable amplitude was smaller than the cost
associated with the pulses with the binary amp-
litude constraint (J = 22.7 vs. 353.8 for suppres-
sion and J = 54.2147 vs. 912.569 for amplification).
Therefore, pulse sequences with adjustable amp-
litude can achieve greater suppression or amplifica-
tion than pulses with a binary amplitude constraint.
The optimization results and cost function values for
the studied pulse amplitude constraints and general-
ized model are summarized in table 1.

3.3. Changes in the evoked response natural
frequency and damping affect the degree of
modulation but not the structure of the pulse
sequences
The degree by which the optimized stimulation pat-
terns modulate the targeted oscillations depends
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Figure 5. Effect of stimulation pulses on oscillations with time-varying amplitude envelope. Targeted oscillations (−), modulated
(suppressed/amplified) oscillations (−), reference signal for amplification (- -), optimal stimulation sequence (−). Targeted
signal, modulated signal, and wavelet scalograms of the modulated signal during a transition from off- to on-stimulation are
displayed for sequences with the following characteristics: (a), (b) pulses of adjustable amplitude (max. amplitude as − 2.5mA )
that suppress the targeted oscillations; (c), (d) pulses of adjustable amplitude (max. amplitude as = 0.4mA) that suppress the
targeted oscillations; (e), (f) pulses of constant amplitude that suppress the targeted oscillations; (g), (h) pulses of adjustable
amplitude (max. amplitude as = 2.5mA) that amplify the targeted oscillations.

Table 1. Summary of optimization results for the nominal generalized neural dynamics model.

Oscillations with a constant
amplitude envelope

Oscillations with a time-varying
amplitude envelope

Stimulation pulses with an
adjustable amplitude (max. as =
2.5mA)

Frequency, phase, and amplitude
modulation (J= 23.4 for suppression
and J= 49.35 for amplification)

Frequency, phase, and amplitude
modulation (J= 22.7 for
suppression and J= 54.2147 for
amplification)

Stimulation pulses with binary
amplitude values (max. as = 2.5mA)

Phase modulation (J= 410.2 for
suppression and J= 687.986 for
amplification)

Phase modulation (J= 353.8 for
suppression and J= 912.569 for
amplification)

on the damping and natural frequency of the
stimulation-evoked responses. The optimization cost
is a monotonically increasing function of the damp-
ing ratio. Figures 6(b) and (e) show the optimization
cost (J) as a function of the damping ratio (ζ) for
targeted oscillations with constant and time-varying

envelope, respectively. When the natural frequency of
the evoked response matches the frequency of the tar-
geted oscillations, the lowest value of the optimiza-
tion cost function is attained. The optimization cost
increases as the natural frequency moves away from
the targeted oscillations’ frequency. Figures 6(c) and
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Figure 6. The surface plots in (a) and (d) illustrate the optimal cost function value (J) as a function of the damping ratio (ζ) and
natural frequency (fn) when the targeted oscillations are suppressed via pulse sequences with adjustable amplitude (as = 2.5mA).
Targeted oscillations with a constant envelope are considered in (a), and with a time-varying envelope in (d). The curves in (b)
and (e) show the optimal value of J as a function of ζ when fn = 20Hz (nominal value) for targeted oscillations with a constant
and time-varying envelope, respectively. These curves illustrate the optimal cost function values for pulse sequences with
adjustable amplitude whose maximum allowed amplitude (as) was set equal to 2.5mA ( ◦ ), and 0.4mA ( + ). The curves in (c)
and (g) show the optimal value of J as a function of fn when ζ = 0.092 (nominal value) for targeted oscillations with a constant
and time-varying envelope, respectively. Examples of pulse sequences and modulated signals for evoked responses with a
damping ratio ζ = 0.5 (different from its nominal value) and fn = 20Hz (nominal) are shown in (g) and (h) for targeted
oscillations with a constant and time-varying envelope, respectively. The plots in (i) and (j) show examples of pulse sequences and
modulated signals for evoked responses with ζ = 0.092 (nominal) and fn = 30Hz (different from nominal) when the targeted
oscillations have a constant and time-varying amplitude envelope, respectively.

(f) show the optimization cost (J) as a function of the
natural frequency (fn) for targeted oscillations with a
constant and time-varying envelope, respectively.

The structure of the pulse patterns (i.e. pulse
phase, amplitude, and frequencymodulation) did not
change when the damping or natural frequency were
varied. Figures 6(g) and (h) illustrate examples of
optimal pulse sequences with adjustable amplitude
for evoked responses with a damping ratio equal to
0.5 and natural frequency equal to 20Hz. While this

damping ratio significantly departs from the nominal
value (0.092), pulse phase modulation is preserved to
suppress the targeted oscillations with constant amp-
litude, and a combination of phase, amplitude, and
frequency modulations is preserved to suppress the
targeted oscillations with time-varying amplitude.
See figures 6(g) vs. 4(b) and 6(h) vs. 5(b). When
the nominal natural frequency (20Hz) is increased
to 30Hz, the pulse phase modulation is preserved
to suppress the targeted oscillations with constant
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Figure 7. Effect of stimulation pulses on patient-specific GPi neural dynamics. Targeted oscillations (−), modulated
(suppressed/amplified) oscillations (−), reference signal for amplification (- -), optimal stimulation sequence (−). Targeted
signal, modulated signal, and wavelet scalograms of the modulated signal during a transition from off- to on-stimulation for
sequences with the following characteristics: (a), (b) pulses of adjustable amplitude (max. amplitude as − 2.5mA ) that suppress
the targeted oscillations; (c), (d) pulses of adjustable amplitude (max. amplitude as = 1.25mA) that suppress the targeted
oscillations; (e), (f) pulses of constant amplitude that suppress the targeted oscillations; (g), (h) pulses of adjustable amplitude
(max. amplitude as = 2.5mA) that amplify the targeted oscillations.

amplitude, and the combination of phase, amp-
litude, and frequency modulations is preserved to
suppress the targeted oscillations with time-varying
amplitude. See figures 6(i) vs. 4(b) and 6(j) vs. 5(b).

3.4. Stimulation sequences for patient-specific
neural dynamics model matched those obtained
with the generalized model
Stimulation pulse sequences with adjustable amp-
litude employed frequency, phase, and amplitude
pulse modulation to attain maximum suppres-
sion or amplification of targeted oscillations in the
patient-specific model of the GPi neural dynam-
ics (figures 7(a) and (b)). As we reduced the max-
imum allowed stimulation amplitude from 2.5mA
to 1.25mA, frequency modulation rather than amp-
litude modulation dominated the pulse patterns to
achieve maximum suppression (figures 7(c) and
(d)). Stimulation pulses with the binary amplitude
constraint used phase and frequency modulation to

modulate the targeted oscillations (figures 7(e) and
(f)). The reduction in the 2-norm of the modulated
signal was greater for the adjustable amplitude pulses
(J = 23.4 for suppression and J = 49.3571 for amp-
lification) than for the binary amplitude pulses (J =
410.2 for suppression and J = 687.986 for amplific-
ation). These results agree with those obtained with
the generalized neural dynamics model.

Figure 8 shows the PSD curves of the modulated
signal when the optimization goal was to suppress or
amplify the targeted neural activity. These PSD curves
show that stimulation pulses with both adjustable
and binary amplitudes can effectively modulate the

mean power of frequency specific neural oscillations
in the targeted frequency band (14–24Hz). They also
indicate that the mean power reduction attained via
pulses with adjustable amplitude is comparable to the
reduction achieved via pulses with the binary amp-
litude constraint, even though the difference in the
cost function values was more notable.
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Figure 8. Power spectral density (PSD) curves of neural
activity in the internal segment of the globus pallidus
from a patient-specific mathematical model. PSD
curves shown in the figure are associated with periods
in the off-stimulation condition (−) and when
stimulation pulses with adjustable amplitude (−) and
the binary amplitude constraint ( ) were delivered. (a)
and (b) show PSD curves during periods of suppression
and amplification of frequency-specific neural activity,
respectively.

4. Discussion

In this study, we identified electrical pulse patterns
to effectively modulate spontaneous neural oscilla-
tions using stimulation-evoked neural responses. We
leveraged mathematical optimization tools to dis-
cover pulse patterns that minimize (or maximize via
reference tracking) the 2-norm of frequency-specific
neural oscillations. To identify these pulse patterns,
we employed neurophysiologically-inspired math-
ematical models of spontaneous and stimulation-
evoked oscillations. We considered stimulation-
evoked response models with distinct natural
frequency and damping coefficient as well as a
subject-specific GPi model of a Parkinson’s dis-
ease patient. The distinct neural dynamics studied
here enabled us to assess whether optimized pulse
sequences preserve their structure. Our analysis
revealed that, across the studied neural dynamics,
a combination of phase, amplitude, and frequency
modulation of the electrical pulses results in optimal
suppression or amplification of the targeted oscilla-
tions. These pulse modulation strategies provide the
rationale for the development of future closed-loop
neuromodulation systems that employ stimulation-
evoked responses and pulse modulation strategies to

effectively control neural activity in real-time. These
closed-loop neurostimulation systems could, in turn,
be key to characterize the role of neural activity in
brain function and ultimately advance personalized
neuromodulations therapies.

4.1. Mechanisms underlying optimized neural
modulation
The optimized stimulation sequences identified in
this study take advantage of phase, frequency and
amplitude pulse modulation to achieve optimal sup-
pression or amplification of targeted oscillations.
Phase modulation (or time alignment) of the pulse
trains relative to the targeted oscillations’ phase is
required to effectively achieve either destructive or
constructive interference between the spontaneous
and evoked oscillations. We showed that when the
amplitude envelope of the spontaneous oscillations
is constant over time, phase modulation (or lock-
ing) is sufficient to achieve optimal suppression or
amplification of the targeted oscillations. However,
the envelope of real in-vivo spontaneous oscillations
is not constant over time [12, 14]. Our results show
that adjustments in the stimulation pulse frequency
and amplitude are needed to create precise destruct-
ive or constructive interference between stimulation-
evoked responses and spontaneous oscillations whose
amplitude envelope varies over time. Pulse frequency
modulation results in changes in the evoked response
amplitude because of the principle of superposition
(or temporal summation) observed in responses to
stimulation trains [23–25]. For this superposition
or temporal summation to be effective, the intra-
burst period of the pulse trains must be greater
than the refractory period of the neuronal popula-
tion being stimulated with the electrical pulses. If
the inter-pulse period is smaller than the refractory
period of the neural circuitry being activated, a tem-
poral summation of evoked responses is not expec-
ted to occur [24, 26, 27]. Pulse amplitude modula-
tion can be employed, in addition or instead of fre-
quency modulation, to adjust the evoked responses’
amplitude and suppress the spontaneous oscillations.
Because the pulse amplitude (voltage or current) is
limited in FDA-cleared or -approved neurostimula-
tion devices tominimize the likelihood of tissue dam-
age, we studied the effect of constraining the pulse
amplitude on the pulse patterns. Our results indic-
ate that when the maximum allowed pulse amplitude
(upper bound) is reduced, frequency pulse modu-
lation becomes more predominant than amplitude
pulse modulation in order to achieve optimal sup-
pression or amplification of the targeted oscillations.
This trade-off is important for the implementation of
closed-loop neuromodulation systems since they can
use a combination of amplitude and frequency pulse
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modulation to attain a desired modulation perform-
ance given the device constraints and safety envelope.

4.2. Generalization of results
We employed a generalized, low-order mathemat-
ical model of stimulation-evoked neural dynamics
to characterize optimal pulse sequences that sup-
press (or amplify) spontaneous neural oscillations.
The low-order model was characterized by a single
natural frequency and damping coefficient. We stud-
ied the effect of varying these two parameters on
the optimized pulse sequences to understand how
invariant are the pulse modulation strategies across
distinct neural dynamics. We also used a model of
spontaneous and stimulation-evoked neural activity
in the GPi of a Parkinson’s disease patient to identify
the optimal pulse sequences in a more realistic scen-
ario. Our results indicate that the structure of the
optimal pulse patterns (phase, amplitude, and fre-
quency pulse modulation) did not change when the
stimulation-evoked neural dynamics were varied or
when using the patient-specific model. This con-
sistency across models indicates that pulse modula-
tion strategies can be applied to suppress or amplify
neural activity in distinct brain circuits and condi-
tions, whenever spontaneous and stimulation-evoked
responses of comparable magnitude are generated
in the targeted neuronal population. For example,
underdamped neural responses in the hippocampus
CA1 area evoked by stimulation of the endopiriform
nucleus [28] could be employed, together with our
pulse modulation strategies, to control hippocampal,
frequency-specific neural activity.

4.3. From optimal pulse sequences to real-time
closed-loop neuromodulation
How to embed the optimal pulse sequences studied in
this article onto closed-loop stimulation devices is yet
to be investigated. A foreseeable approach is to take
the pulse sequences from a subject-specificmodel and
embed them onto a closed-loop control system that
adjusts the phase, amplitude, and frequency of the
pulses based on real-time measurements of the oscil-
lations’ amplitude and phase. A major challenge to
implement this approach is that pulse sequences cal-
culated using the proposed optimization are obtained
based on knowledge of all the spontaneous oscilla-
tions samples (from k= 0 to k= n). Therefore, pulses
delivered at time k depend on future values (k+ 1,k+
2, . . .) of the spontaneous oscillations. This strategy is
not possible to implement in a real-time systemunless
a prediction of future neural activity is available.
Delivering the optimized pulse sequences based on
present and past values of themodulated neural activ-
ity (i.e. delayed version of the optimal pulse sequence)
may provide greater neuromodulation performance
than phase-locked stimulation alone, but likely a

reduced performance compared to the optimal stim-
ulation sequences identified in this study because
of the time delay introduced in the feedback loop.
Future studies need to assess the performance of
closed-loop systems with phase, amplitude, and fre-
quency pulse modulation in order to optimize neural
control technology. These technology advancements
will be key to characterize how controlled changes in
neural activity relate to brain function in the healthy
and disease states, and to develop therapies tailored to
each patient.

4.4. Limitations
To characterize the optimal pulse modulation
sequences, we used models of the stimulation evoked
responses that consist of a linear dynamical system
with stimulation inputs constrained to be square
pulses. This model does not consider limits in the
amplitude of the evoked and spontaneous neural
oscillations and other nonlinearities present in neural
circuits. Not including the nonlinear dynamics into
the mathematical models can lead to inaccuracies in
the pulse sequences calculated via the optimization
routines. Nevertheless, our results are valid when
considering neural dynamics operating in the linear
region. Additionally, introducing a nonlinear ele-
ment into the mathematical model of the evoked and
spontaneous oscillations can result in a non-convex
optimization problem whose solution is not guaran-
teed to be global.

This study is also limited to stimulation sequences
optimal when measuring the 2-norm of the tar-
geted oscillations. We selected the 2-norm because it
enables us to formulate a convex optimization prob-
lem and is intuitive mathematically. Yet, other norms
(e.g. 1-norm and∞-norm) and other cost functions
may bemore relevant for particular problems in neur-
oscience and to test specific hypotheses. For example,
one may want to use the ∞-norm to determine the
pulse sequences needed to minimize the peak amp-
litude that oscillations can attain.
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