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Abstract 
The diagnosis of pneumoconiosis is complex and subjective, leading to inevitable variability in readings. This is especially true for 
inexperienced doctors. To improve accuracy, a computer-assisted diagnosis system is used for more effective pneumoconiosis 
diagnoses. Three models (Resnet50, Resnet101, and DenseNet) were used for pneumoconiosis classification based on 1250 chest 
X-ray images. Three experienced and highly qualified physicians read the collected digital radiography images and classified them from 
category 0 to category III in a double-blinded manner. The results of the 3 physicians in agreement were considered the relative gold 
standards. Subsequently, 3 models were used to train and test these images and their performance was evaluated using multi-class 
classification metrics. We used kappa values and accuracy to evaluate the consistency and reliability of the optimal model with clinical 
typing. The results showed that ResNet101 was the optimal model among the 3 convolutional neural networks. The AUC of ResNet101 
was 1.0, 0.9, 0.89, and 0.94 for detecting pneumoconiosis categories 0, I, II, and III, respectively. The micro-average and macro-average 
mean AUC values were 0.93 and 0.94, respectively. The accuracy and Kappa values of ResNet101 were 0.72 and 0.7111 for quadruple 
classification and 0.98 and 0.955 for dichotomous classification, respectively, compared with the relative standard classification of the 
clinic. This study develops a deep learning based model for screening and staging of pneumoconiosis is using chest radiographs. The 
ResNet101 model performed relatively better in classifying pneumoconiosis than radiologists. The dichotomous classification displayed 
outstanding performance, thereby indicating the feasibility of deep learning techniques in pneumoconiosis screening.

Abbreviations: ANN = artificial neural network, CAD = computer-aided diagnosis, CNNs = convolutional neural networks, 
DR = digital radiography, ECH3OA = enhanced Chimp-Harris Hawks optimization algorithm, GOA = Grasshopper optimization 
algorithm, ILO = International Labor Organization, IWOSSA = improved whale optimization salp swarm algorithm, PSO = particle 
swarm optimization.

Keywords: deep learning, diagnosis, mass screening and classification, pneumoconiosis, radiography

1. Introduction
Pneumoconiosis is a chronic occupational lung disease caused 
by the inhalation of productive mineral dust. It is incurable 
and irreversible, and is the leading occupational disease 

in China.[1] Chronic silicosis may develop or progress even 
after the cessation of occupational exposure; currently, there 
is no treatment other than a potential lung transplant.[2–4] 
This necessitates diagnosing and classifying the stage of 
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pneumoconiosis before its progress into an irreversible stage. 
To reduce complication rates and mortality, the International 
Labor Organization (ILO) recommends frequent pulmonary 
function tests and chest radiographs for people with occupa-
tional diseases.[5] Researchers have developed a standardized 
system for classifying imaging abnormalities in pneumoco-
niosis according to the presence of the following pulmonary 
parenchymal and pleural abnormalities: small round turbidity, 
small irregular turbidity, massive turbidity, and other imaging 
features.[6–8] X-ray imaging is the most common modality used 
in clinical settings worldwide.[9]

Currently, the clinical diagnosis of pneumoconiosis is 
principally based on the corrected interpretation of chest 
radiographs (X-ray images). Compared with standard 
radiographs, a radiologist assesses the concentration of 
small opacities on a chest X-ray image as category 0, I, II, 
or III.[10] While classifying pneumoconiosis, we followed the 
ILO classification guidelines; nonetheless, we used standard 
radiographs collected and defined by the Chinese Center for 
Disease Control and Prevention.[11,12] However, the diagno-
sis of pneumoconiosis remains challenging, is subjective, 
and varies among reviewers.[13,14] To improve the diagnos-
tic efficiency and accuracy among radiologists, researchers 
have developed computer-aided diagnosis (CAD) schemes 
for detecting pneumoconiosis using chest radiographs as a 
second opinion.

Several domestic and international scholars have stud-
ied the application of CAD technology in pneumoconiosis 
diagnosis.[15,16] However, these traditional machine learning 
methods rely on the effectiveness of feature extraction and require 
“hand-crafted” feature recognition, which is technically time- 
consuming and labor-intensive, particularly for complex tasks, 
such as pneumoconiosis diagnosis and staging.[17]

Currently, metaheuristic algorithms are highly capable in 
solving different optimization problems due to their strong 
performance and speed. Some of these excellent algorithms are 
Grasshopper optimization algorithm (GOA).[18] Particle swarm 
optimization (PSO)[19] improved whale optimization salp swarm 
algorithm (IWOSSA),[20] a hybrid of genetic algorithm and par-
ticle swarm optimization,[21] enhanced Chimp-Harris Hawks 
optimization algorithm (ECH3OA).[22] In addition in order to 
improve the metamorphic hair algorithm many learning tech-
niques are also applied.

With the rapid development of deep learning technology, 
convolutional neural networks (CNNs) plays an important 
role in the diagnosis of different diseases, such as the diagno-
sis of cardiovascular disease,[23] the detection of COVID-19,[24] 
etc. Artificial Intelligence is not confined to medicine, but has 
been developed to all walks of life, and the algorithms are 
getting more and more mature and more advanced, with the 
rapid development of a class of deep learning algorithms repre-
sented by CNNs as well as the breakthroughs they have made 

Figure 1.  The outline of the study design.

Table 1

Summarizes demographic information of the patients.

Dataset origin
No.

pneumoconiosis
No.

normal
File
type Women men Category 0 Category I Category II Category III

Institution 1 569 209 DICOM 35 743 209 190 187 192
Institution 2 234 59 DICOM 56 237 59 92 70 72
Institution 3 129 50 DICOM 33 146 50 40 42 47

There were a total of 1250 cases (932 cases positive for pneumoconiosis and 318 healthy controls). “Positive cases” refer to cases that were positive for pneumoconiosis.
DICOM = Digital Communications in Medicine.
All images are presented in digital radiography.
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in the task of computer vision,[25] which has a lot of algorithms 
achieved very advanced state-of-the-art results, and the dataset 
has also achieved a very promising accuracy.

The deep learning technique has emerged as a novel and 
promising approach for solving challenging problems. Its 
advantage is that it implicitly learns complex imaging features 
or patterns without recognizing and extracting image features, 
which may involve tens of millions of features and analyze them 
to obtain high-level features.[26,27] The deep learning network is 
an advanced technique that can study features and provide heat 
maps to visualize model decisions. This improves network reli-
ability and accurately represents the input image, addressing the 
problem of the “black box” principle.[28]

In this study, we developed an efficient deep learning method 
that eliminates the need for manual feature recognition, reduc-
ing the workload of diagnosing pneumoconiosis (the outline of 
the study design is given in Fig. 1). This method can not only 
screen for pneumoconiosis but also stage its severity, providing 
a valuable guide for clinical diagnosis and treatment. What is 
more, we used the heat map as a highly effective method for 
quickly identifying abnormalities in computer-assisted diag-
nosis. The heat map is considered the most representative and 
helpful visualization tool for radiologists. Finally, we demon-
strated the clinical usefulness of a deep learning model for 
classifying pneumoconiosis, following a comparative clinical 
analysis.

2. Materials and methods

2.1. Study population

All private information was de-identified. All participants 
were industrial workers with a history of DR screening of 

dust exposure for pneumoconiosis from 2016 to 2019. Of 
these participants, 932 were diagnosed with pneumoconiosis 
and 318 were healthy. The study comprised 124 women and 
1126 men, including 23 women and 295 men in the healthy 
category. Their experience of dust service ranged from 1 to 
40, with a mean duration of 20.56 ± 2.5 years. We did not 
exclude patients with emphysema, tuberculosis, bronchiecta-
sis, or other structural lung diseases. This is because patients 
with pneumoconiosis may simultaneously experience these 
diseases.

2.2. Data acquisition

We retrospectively collected 1250 cases of different stages of 
pneumoconiosis from 3 hospitals. The patients’ details are sum-
marized in Table 1.

Images were acquired using Siemens Axiom Aristors and 
Definium 6000 X-ray radiographers (General Motors). The dig-
ital radiography (DR) image settings were as follows: 120 kVp 
and automated mAs; 120 kVp and 250 mAs. The final digital 
images were generated using a DR workstation. Image pro-
cessing techniques, such as edge enhancement and noise reduc-
tion, were turned off in the post-processing software. These 
images were calibrated to comply with the Digital Imaging and 
Communications in Medicine standard.

2.3. Annotation

Following the ILO guidelines, 3 board-certified radiolo-
gists reviewed the images and classified them into 4 catego-
ries as follows: 0 (n = 318), I (n = 322), II (n = 299), and III 
(n = 311); during the diagnosis, the profusion, shape, and size 

Figure 2.  Schematic flow chart illustrating the procedure for the 4 classifications of pneumoconiosis.
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of pneumoconiosis lesions were considered the most import-
ant evidence for classifying pneumoconiosis.[29,30] All radiolo-
gists were qualified for diagnosing pneumoconiosis, with >10 
years of experience. In addition, 1 radiologist participated in 
the formulation of the latest diagnostic standard for pneumo-
coniosis in China, the “Diagnostic Standard for Occupational 
Pneumoconiosis GBZ70-2015.”[31] We followed the strategy 
used by other researchers and divided the patients into 2 cate-
gories, namely normal and pneumoconiosis, by combining the 
I, II, and III categories into 1 category.[32,33] The absence of dis-
agreement on the classification of an image required multiple 
rounds of discussion and adjudication until complete agree-
ment was reached.[34] The categories of pneumoconiosis are 
provided in Appendix E1, Supplemental Digital Content, http://
links.lww.com/MD/M857.

2.4. Deep learning models

Before training the CNNs, all images were processed, including 
down-sampling, histogram equalization, blank area removal, 
and down-sampling. Post-processing, the images were resized 
to a 256 × 256 pixel matrix, converted to a JPG format, and 
inputted to the server to build the dataset (Appendix E2, 
Supplemental Digital Content, http://links.lww.com/MD/
M858). In this study, deep learning models were built using 
3 CNN architectures as follows: ResNet50, ResNet101, and 
DenseNet. We use the original models without modification. 

The FLOPS(G) of these models were 3.8, 7.6, and 5.69, respec-
tively, with ResNet101 having the highest FLOPS parameter.

2.5. CNNs training and validation

Before CNN training, we randomly split all data into a 
training set (80%) and test set (20%). Remaining 20% of 
the images from the training set were extracted as the vali-
dation set.

During the training, the parameters were continuously 
adjusted followed by adding the validation set. We adjusted 
the network structure and training parameters until the train-
ing accuracy of the model and the number of training sessions 
were maximized. In the experimental process, categorical-cross- 
entropy was used as the loss function, whereas rectified linear 
activation unit was used as the activation function to adjust the 
network parameters and fit the training data. Indicators, such as 
accuracy curves and loss rate curves, were monitored to observe 
changes in each parameter and to understand the training situ-
ation. Post training, we evaluated the effectiveness of the model 
by relevant evaluation indexes using the test set. The model-
ing strategy also mimicked the clinical diagnostic procedures, 
thus allowing us to merge pneumoconiosis-related knowledge 
into the artificial intelligence model. In addition, we requested 3 
radiologists to independently read the images in the test dataset 
and compare the clinical diagnoses with that of the deep learn-
ing approach.

Figure 3.  The accuracy and loss rate of the training process. The abscissa represents the smooth times, and the ordinate distinguishes the accuracy (see image 
above) and the loss rate (see image below), respectively, which increases over time, the accuracy on the training set and the verification set will increase, and 
the loss rate will decrease. As expected, there is a reduction of loss over the course of training as accuracy improves. The loss on the validation is similar to the 
training, which indicates that there is no appreciable overfitting. These training curves are used for model selection. In this case, the best performing model at 
epoch 1000 was used on the test data for final assessment. Val = validation.

http://links.lww.com/MD/M857
http://links.lww.com/MD/M857
http://links.lww.com/MD/M858
http://links.lww.com/MD/M858


5

Zhang et al.  •  Medicine (2024) 103:25� www.md-journal.com

2.6. General scheme of the 4 pneumoconiosis 
classifications

Figure 2 depicts the general scheme of classification using a qua-
druple classification method. The network model was trained 
and supervised using the known labeled pneumoconiosis 
images. The backpropagation algorithm continuously adjusted 
the parameters of the network model to achieve the function of 
accurately classifying unknown images into 4 categories of DR 
images, that is, categories 0, I, II, and III.

2.7. Evaluation metrics

The accuracy, precision, and recall were used to evaluate the 
performance of the model. The evaluation indicators are pre-
sented in Appendix E3, Supplemental Digital Content, http://
links.lww.com/MD/M859.

A cross-validation approach was used to evaluate the per-
formance of the proposed deep learning model, and 4 expected 
results for true positive, true negative, false positive, and false 
negative were obtained.

A multi-categorization task necessitates the use of macro-P, 
macro-R, macro-F1, and macro-averages evaluation indexes. 
Data used in this study were divided into 4 categories. The 

4-category problem was transformed into 4 binary problems, 
followed by the calculation of the check-all rate of the confusion 
matrices. The evaluation indicators are listed in Appendix E3, 
Supplemental Digital Content, http://links.lww.com/MD/M859.

2.8. Statistical analyses

We used the ROC analysis and AUC to measure the diagnos-
tic effectiveness of the classifier. We conducted a nonparamet-
ric ROC[35] analysis on an independent test dataset to evaluate 
the performance of the predictive models. Each point on the 
ROC curve represented a sensitivity/specificity pair correspond-
ing to a specific decision threshold. In addition, we invited 3 
radiologists (R1, R2, and R3) with >10 years of experience in 
pneumoconiosis diagnosis and familiarity with pneumoconio-
sis diagnostic criteria. These certified radiologists independently 
read the images in the test dataset in a double-blinded manner 
and classified them into categories 0, I, II, and III.

We evaluated the performance of the reader using the ROC 
analysis and compared it with that of the deep learning algo-
rithm. Moreover, we conducted statistical analyses to evaluate 
the consistency between model classification and clinical evalu-
ation using Kappa coefficients. We determined the model classi-
fication accuracy using IBM SPSS V.20 software.

3. Results

3.1. Experimental results

As observed from the curves, the accuracy rate increased and 
the loss rate decreased in the validation and training sets until 
the network converged with the highest accuracy rate and the 
lowest loss rate (Fig. 3).

Figure 4.  Evaluation metrics of 3 deep learning models for each category of pneumoconiosis. (A) ResNet50 convolution neural network. (B) Evaluation index of 
ResNet101 convolution neural network. (C) Evaluation index of DenseNet convolution neural network.

Table 2

Overall indicators of the model.

Macro-P Macro-R Macro-F Accuracy

ResNet50 0.80 0.80 0.80 0.80
ResNet101 0.80 0.78 0.78 0.78
DenseNet 0.77 0.77 0.77 0.77

http://links.lww.com/MD/M859
http://links.lww.com/MD/M859
http://links.lww.com/MD/M859
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Figure 4 and Table 2 present the classification results of 
each dataset for patients with pneumoconiosis in ResNet50, 
ResNet101, and DenseNet CNNs.

To evaluate the CNN performances, we plotted ROC curves. 
Figure 5A to C depicts the ROC curves of the 3 CNNs, which 
were subsequently summarized. The trained ResNet101 model 

demonstrated the best performance. The AUC values of Resnet101 
micro-average and macro-average were 0.93 and 0.94, respec-
tively, with AUC values of 1.0, 0.90, 0.89, and 0.94 for category 
0, category I, category II, and category III, respectively.

3.2. Diagnostic performance compared with that of 
radiologists

The inconsistency rate between the model and the clinical 
assessment of pneumoconiosis classification was principally dis-
tributed in assessments for categories I/III and II/III, whereas the 
rate was lower for 0/I and other categories (0.016 and 0.033, 
respectively). Table 3 provide the distribution of inconsistent 
rates between ResNet101 and clinical assessment.

The model assessed pneumoconiosis classification with high 
accuracy and good agreement, with an overall accuracy and 
kappa values of 0.72, 0.98, 0.711, and 0.955 for the quadruple 
classification, dichotomous classification, quadruple classifica-
tion Kappa value, and dichotomous classification Kappa value, 

Figure 5.  Receiver operating characteristic (ROC) curve of different CNNs. (A) ROC curve of ResNet50. (B) ROC curve of ResNet101. (C) ROC curve of 
DenseNet. CNNs = convolutional neural networks.

Table 3

The distribution of inconsistent rates between ResNet101 and 
clinical assessment.

Model versus Clinical

Absolute inconsistency rate 0.72 (86/120)
0/I Inconsistency rate 0.016 (2/120)
I/II Inconsistency rate 0.083 (10/120)
II/III Inconsistency rate 0.083 (10/120)
Two-degree Inconsistency rate 0.033 (4/120)
Total 1 (120/120)
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respectively. Table 4 provide the accuracy and consistency of 
ResNet101 evaluation.

3.3. Visual heat map analysis

The aforementioned network could present visualization 
results, and generate the visualization result map of the 
ResNet101 model classification output, that is, the category 
activation visualization heat map. Different stages of pneu-
moconiosis and their corresponding category activation visu-
alizations are presented in Figure 6A to D. We evaluated the 
learning ability of the model using a heat map and the over-
lay presentation of original images. For relevant features of 
pneumoconiosis images, brighter the color, higher the pos-
sible value of the predicted pneumoconiosis lesion. The red 
area represented the closest value to which the network pre-
dicted relevant features of the pneumoconiosis image. This 
corresponds to the staging of pneumoconiosis given by our 
radiologists.

4. Discussion
According to ILO standards, pneumoconiosis diagnosis and stag-
ing is determined by the degree of filling in small opacities, the 
presence of large opacities, and the aggregation of small opac-
ities on Dr. This conventional diagnostic process is subjective 
and time-consuming, leading to misclassification and unreliable 
results. The problem mentioned above becomes more severe and 
occurs more frequently during pneumoconiosis screening pro-
grams in underdeveloped areas. We developed a deep learning 
approach that automatically evaluates pneumoconiosis on chest 
Dr. Our approach provides screening results and identifies the 
stages of pneumoconiosis. Additionally, it offers a detailed visual 
interpretation of the predictions, which helps increase confidence 
in the classifier’s ability to solve black box problems.[36]

Our proposed deep learning-based pneumoconiosis screen-
ing model differs from other models in that it directly extracts 
features from the input image, reducing the workload of feature 
extraction and human intervention. Additionally, we not only 
screened participants for pneumoconiosis but also performed 4 
classifications to guide diagnosis and treatment. Furthermore, 
this study improved the reliability of pneumoconiosis classifica-
tion by offering a visual interpretation of the model, thus increas-
ing transparency. Our findings may also serve as a roadmap for 
unlocking the “black box” principle of artificial intelligence for 
image analysis tasks in other medical fields. Eventually, through 
a comparative analysis of the model and clinical assessment, this 
study further confirmed the clinical utility of the model in pneu-
moconiosis classification.

We employed 3 convolutional neural models to screen and 
stage pneumoconiosis, which was categorized into 4 levels (0–
III). Among the models, ResNet101 proved to be the most suit-
able for pneumoconiosis screening and classification. It achieved 
AUC values of 1.0, 0.90, 0.89, and 0.94 for categories 0, 1, 2, 
and 3 respectively. ResNet101 also outperformed models used 
in previous studies. Okumura et al[37] developed a CAD system 
based on the rule of ILO and an artificial neural network (ANN) 
power spectrum analysis of pneumoconiosis. The results of clas-
sifying normal pneumoconiosis with abnormal pneumoconiosis 
demonstrated mean AUCs of 0.93 and 0.72 on chest X-ray films 
in the highest category (severe pneumoconiosis) and lowest 

category (early pneumoconiosis), respectively. Subsequently, 
Okumura et al[38] developed a CAD system based on ANN 
classification of the textural features of pneumoconiosis chest 
films. The image database consisted of 36 chest films divided 
into 4 categories, ranging from 0 to 3. The AUC values for cat-
egory 3 pneumoconiosis and category 0 pneumoconiosis were 
0.89 ± 0.09 and 0.84 ± 0.12, respectively. We compared the 
accuracy and consistency of deep learning models with those 
of the relative gold standard, where that the model classifica-
tion accuracy was 0.80, compared with the clinical standard 
classification. The kappa value and accuracy of the quadruple 
classification were 0.733. The accuracy and kappa value of the 
2 classifications were 0.98 and 0.931, respectively. Wang et al[39] 
explored the potential of deep learning in assessing pneumoco-
niosis, as revealed by digital chest radiographs, and compared 
their performance with radiologists. They used the inception-V3 
Network. The model’s AUC was 0.878, whereas that of the 2 
radiologists were 0.668 and 0.772, respectively. Moreover, the 
readers displayed moderate agreement (κ = 0.423, P < .001). 
However, Wang et al only screened patients for pneumoconiosis. 
Only few researchers have performed a quadruple classification 
of pneumoconiosis,[40] where our proposed model performed 
better.

The deep learning-based model proposed in this study has 
few differences compared to other models for pneumoconiosis 
screening. First, we utilized the heat map method of result visual-
ization, which is considered the most representative and helpful 
method for readers to identify abnormalities through comput-
er-assisted diagnosis quickly. This method also provides intuitive 
information about the confidence level of the test. Furthermore, 
it has been demonstrated that using heat maps significantly 
improves the detection rates of lesions found in individual 
abnormalities.[41] Second, our study eliminates the need for man-
ual annotation, reducing the workload of feature extraction 
and manual intervention. Our deep learning model achieves 
a higher screening accuracy compared to other studies. Our 
model achieves an accuracy of 0.98, which is higher than pre-
vious studies: 0.92,[16] 0.94 to 0.95,[32] and 0.97.[40] Additionally, 
Yang et al[42] study also reported an accuracy of 0.92. Although 
our results are only slightly higher than Zhang study, we have a 
larger sample size with more stage II and III cases, making our 
findings more accurate and comprehensive. Table 5 constructs a 
comparative table between the current study and other state-of-
the art studies. The evaluation indexes of our model are slightly 
different from other scholars” studies, probably due to the dif-
ference in sample size, the dataset of our study is the largest, so 
the results are more precise, and the evaluation indexes of our 
study are broader and more comprehensive.

Our study had some limitations. First, the dataset only 
included chest X-ray images. Despite chest radiography being 
the standard method for pneumoconiosis diagnosis, X-ray 
chest films have other characteristics, such as insufficient reso-
lution, overlap effect, and factors with skeletal (noise) images. 
The next step involved designing a network structure and data 
preprocessing process that was suitable for the aforementioned 
characteristics. CT usually provides details of shadowed areas 
within the lungs. Some countries have introduced regulations 
for high-resolution CT as a diagnostic criterion for pneumoco-
niosis. Considering this future trend, shadowed areas should be 
tested in future studies as patients with pneumoconiosis can-
not undergo pathology tests and open-chest examinations. The 

Table 4

The accuracy and consistency of ResNet101 evaluation.

Classification accuracy 
(quadruple classification)

Classification accuracy 
(dichotomous classification)

Kappa value (quadruple 
classification)

Kappa value (dichotomous 
classification)

Model versus Clinical 0.72 0.98 0.711 0.955
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criteria used in this study were relatively subjective gold stan-
dards. We selected patients with pneumoconiosis and healthy 
individuals for model training. The diagnosis of patients with 

pneumoconiosis should be combined with relevant dust recep-
tion history and laboratory tests to provide a definite diagnosis. 
However, it is not possible to distinguish pneumoconiosis from 

Figure 6.  Different stages of pneumoconiosis and their corresponding category activation visualizations. (A) X-ray images and the corresponding heat maps: (a) 
pneumoconiosis stage 0 of X-ray image, (b) heat map of (a). (B) X-ray images and the corresponding heat maps: (a) pneumoconiosis stage I of X-ray image, (b) 
heat map of (a). (C) X-ray images and the corresponding heat maps: (a) pneumoconiosis stage II of X-ray image, (b) heat map of (a). (D) X-ray images and the 
corresponding heat maps: (a) pneumoconiosis stage III of X-ray image, (b) heat map of (a).
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other lung diseases with similar imaging signs. This will be the 
next research direction to open new horizons.

5. Conclusions
In conclusion, this study proposed a deep learning-based model 
for detecting and classifying pneumoconiosis cases using DR 
images. We proposed a fully automated end-to-end architecture 
model that did not require manual feature extraction. It could 
perform binary and multi-classification tasks with accuracies of 
98% and 72%, respectively. This model could further simulate 
the diagnostic behavior of the radiologists. The system can be 
used in remote areas of pneumoconiosis-affected countries to 
overcome the shortage of radiologists. In addition, these models 
can be used to diagnose other diseases associated with the chest, 
including tuberculosis and pneumonia. Therefore, it is worth-
while to develop further deep learning solutions for pneumoco-
niosis screening and classification in clinical practice.
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