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Integration mapping of cardiac fibroblast single-cell 
transcriptomes elucidates cellular principles of fibrosis 
in diverse pathologies
Ralph Patrick1,2,3*, Vaibhao Janbandhu1,2, Vikram Tallapragada1,
Shannon S. M. Tan1, Emily E. McKinna1,4, Osvaldo Contreras1,2, Shila Ghazanfar5,6,7, 
David T. Humphreys1,2, Nicholas J. Murray1,2, Yen T. H. Tran1, Robert D. Hume4,8,9, 
James J. H. Chong4,10, Richard P. Harvey1,2,11*

Single-cell technology has allowed researchers to probe tissue complexity and dynamics at unprecedented depth 
in health and disease. However, the generation of high-dimensionality single-cell atlases and virtual three-
dimensional tissues requires integrated reference maps that harmonize disparate experimental designs, analyti-
cal pipelines, and taxonomies. Here, we present a comprehensive single-cell transcriptome integration map of 
cardiac fibrosis, which underpins pathophysiology in most cardiovascular diseases. Our findings reveal similarity 
between cardiac fibroblast (CF) identities and dynamics in ischemic versus pressure overload models of cardiomy-
opathy. We also describe timelines for commitment of activated CFs to proliferation and myofibrogenesis, profi-
brotic and antifibrotic polarization of myofibroblasts and matrifibrocytes, and CF conservation across mouse and 
human healthy and diseased hearts. These insights have the potential to inform knowledge-based therapies.

INTRODUCTION
The single-cell revolution has prompted reevaluation of cellular and 
epigenetic mechanisms underpinning tissue development, homeo-
stasis, aging, disease, and regeneration, agnostic to previously held 
notions of cell origin and fate (1). One of the key goals of this field is 
to develop single-cell, high-dimensionality atlases for defining cell 
phenotypes that will form a new framework for understanding ani-
mal biology, with the promise of major clinical impacts (2, 3).

Cardiovascular (CV) disease represents the lead cause of death and 
disability worldwide. A consistent feature of CV disease is cardiac fibro-
sis, which leads to the excessive deposition of disorganized extracellular 
matrix (ECM) due to unrestrained or inappropriate activation of 
reparative pathways (4). The major drivers of cardiac fibrosis are acti-
vated fibroblasts and contractile myofibroblasts (MYOs). Cardiac fibro-
blasts (CFs) are highly plastic cells that act as sentinels and maintain 
tissue integrity through their roles as paracrine signaling hubs, lineage 
progenitors, and electrical and mechanical transducers (5–10). However, 
in disease, they morph into profibrotic cells acting as inflammatory 
and vascular modulators and ECM factories (4, 11–13). Although 
fibrosis may initially be protective and reparative (14, 15), an inability 
to resolve injurious stimuli leads to a self-perpetuating and amplifying 
fibrotic cascade, with heart failure as the end stage of progression (16). 

The notion of pathological fibrosis as dysregulated tissue repair presents 
a duality that has implications for how we understand and treat fibrosis, 
and the notable failure of antifibrotic drug discovery efforts to date has 
highlighted the inadequacy of our current models of fibroblast-to-MYO 
transition (12, 17).

Single-cell RNA sequencing (scRNA-seq) has revealed unexpected 
heterogeneity of cardiac cell populations (9, 18–24). However, the 
origins and three-dimensional (3D) spatial dynamics of identified 
populations remain poorly understood. One promise of this field is 
that proregenerative and pathological fibrosis become distinguishable 
at the cellular and molecular level and could be targeted selectively. A 
key hurdle to developing meaningful high-dimensionality single-cell 
tissue atlases and reconstructed 3D tissue spaces is that individual 
studies vary with respect to species, disease model, experimental de-
sign, time points, depth of cell and sequence coverage, bioinformatic 
pipelines, and cell taxonomies. A high priority, therefore, is to develop 
integration reference maps that overcome these hurdles and drive 
deeper interrogation of biology (25, 26).

Here, we report a comprehensive integration analysis of fibro-
blast states in cardiac ventricles in homeostasis and after ischemic 
and nonischemic injury in mice and humans. We confirm CF diver-
sity and reveal conservation of resting, activated, and differentiated 
states across mammalian species. We uncover insights that consoli-
date our understanding of cardiac fibrosis progression and resolu-
tion in diverse CV disease models, providing a stronger framework 
for knowledge-based therapeutics.

We created CardiacFibroAtlas, an enhanced ShinyCell web appli-
cation (27) as a public resource, enabling visualization and analysis of 
gene expression in both myocardial infarction (MI) and cross-disease 
integrated datasets (available at http://CardiacFibroAtlas.victorchang.
edu.au).

RESULTS
We first built a comprehensive single-cell transcriptomics map in-
corporating four foundation studies covering seven time points of 
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MI and associated uninjured/sham-operated controls (Fig.  1A). All 
studies were from dissected ventricles. Three studies used genetic lin-
eage tagging to enrich for CFs at single or multiple time points (8, 9, 
28), and in an additional study conducted on total cardiac interstitial 
(noncardiomyocyte) cells at days 1, 3, 5, 7, 14, and 28 after MI, CFs 
were selected in silico (Fig. 1A) (10). These datasets were processed 
uniformly incorporating initial clustering of CFs, with cell types manu-
ally annotated according to previously described CF subtypes defined 
in pioneering studies by Farbehi et al. (9) and Forte et al. (10) based on 
marker gene expression (Materials and Methods; fig. S1, A to F). In-
tegration was performed using common factor integration and trans-
fer learning (cFIT) (25), with Uniform Manifold Approximation and 
Projection (UMAP) visualization performed on the integrated low-
dimensional space returned by cFIT. We compared results from cFIT 
to other integration methods, including Seurat (26), Harmony (29), 
and Robust Integration of Single-Cell RNA-seq data (RISC) (30), and 
found that cFIT was best able to remove batch effects while retaining 
expected biological heterogeneity (fig. S2, A to H). For example, when 
overlapping cell types among experimental conditions, the expected 
segregation of MYOs and matrifibrocytes (MFCs) (see below) was 
strongest with cFIT as indicated by a nearest neighbor analysis (fig. S2E). 
Last, we used a k-nearest neighbors (kNN) approach to refine origi-
nal cluster identifiers (IDs) based on the majority 25 nearest cells 
(Fig. 1, A and B).

Thus far, CF nomenclature is neither systematic nor intuitive. To 
avoid further complexity, we have used nomenclatures aligned with 
foundation studies (9, 10), however, prioritizing our own labels for 
clarification of population complexity. Table 1 is a resource that shows 
study details and cross-references study-specific population taxono-
mies and top up-regulated markers.

Definition of major CF subpopulations in healthy 
and MI hearts
Following integration, we defined 11 CF subpopulations consistent 
with previous reports (Fig. 1, B to D) (9, 10). Subpopulations are 
summarized below.
F-SH and F-SL
Healthy hearts were characterized by five main CF subtypes (Fig. 1, B 
to F). The two largest populations—Fibroblast-​Sca1high (F-SH) and 
Fibrobast-​Sca1low (F-SL) expressed Pdgfra (5, 12) and are distin-
guished on the basis of high and low expression of Ly6a/Sca1 and 
other stem cell markers (9). We have previously shown that F-SH 
correlates to the PDGFRα+SCA1+ (S+P+) subfraction of adult CFs 
defined by flow cytometry and enriched for cardiac mesenchymal 
stem/stromal cell (MSC) colony-forming units (5). We anticipate 
that cardiac MSCs represent an immature reserve population for 
proliferation and generation of specialized CFs in homeostasis and 
after injury (6, 8, 31, 32), akin to the formation of fibro-adipocyte-
chondrocyte-osteocyte lineage derivatives from bona fide MSCs in 
other tissues (33–38). Cardiac S+P+ cells have also been referred to as 
cardiac fibro/adipogenic progenitors as they likely give rise to both 
fibrotic and adipose infiltrations in homeostasis and different disease 
states, as shown in mouse arrhythmogenic cardiomyopathy models 
(6, 39). The other major resting population, F-SL (Ly6a/Sca1low), is 
marked by higher levels of Cxcl14 and Hsd11b1 (Fig. 1E and Table 1) 
and may arise from F-SH in dynamic equilibrium (6).
F-WntX and F-Trans
The most transcriptionally distinct CF population was Fibroblast- 
Wnt–expressing (F-WntX) (Fig. 1, B to F) (9), present in both healthy 

and MI hearts (Fig. 1, C and F) and defined by high expression of WNT 
pathway genes (9) including secreted WNT signaling pathway inhibi-
tors WIF1, DKK3, and SFRP2 (Fig. 1, E and G). F-WntX expresses high 
levels of activation markers and lower levels of stem cell markers 
(Fig. 1G) (9, 10), and its signature has been noted to be similar to spe-
cialized fibroblasts present within cardiac valves (10, 40). Like valvular 
CFs, F-WntX may have an epicardial origin (10). Fibroblast-transitory 
(F-Trans), marked by up-regulation of Fgl2 and Igfbp3 (Table 1 and 
table S1), is also present in uninjured and MI hearts and appears to be 
an intermediary population between F-SL and F-WntX, although it is 
most related to F-SL (Fig. 1, B and D) (9).
IR
Integration analysis recovered injury response (IR) CFs (Fig. 1, C 
and F), initially found by Forte et al. (10) in MI hearts, peaking at 
MI-day 1 and persisting through MI-days 3 and 5 (representing 
~60, ~19, and ~16% of total CFs at these respective times). In our 
integration data, IR was more narrowly defined being limited prin-
cipally to MI-day 1 (Fig. 1F and fig. S2I), corresponding to the peak 
of neutrophil infiltration (41). IR expresses higher levels of metallo-
thionein antioxidant genes, Mt1 and Mt2 (10), which can modulate 
injury-induced oxidative stress and fibrosis in the heart (42), as well 
as neutrophil and monocyte/macrophage chemoattractants and ac-
tivators including CCL7, CCL2, CXCL5, and MIF (Fig. 1, E and G, 
and table S1) (10), suggesting that IR is a proinflammatory CF pop-
ulation, potentially related to those reported previously (43). Anal-
ysis of differential mRNA 3′ untranslated region (3′UTR) use with 
Sierra (44) revealed that IR at MI-day 1 shows global shortening of 
3′UTRs (fig. S3A), a feature of dividing cells (45) including cycling 
CF (44), indicating that IR has engaged a preproliferative transcrip-
tional state.
F-Act
Fibroblast-activated (F-Act) was found in moderate abundance in 
healthy hearts, expanding two- to threefold after MI, consistent with 
our previous report (Fig. 1, B to F) (9). F-Act overall shows increased 
expression of ECM and tissue development genes yet retains a tran-
scriptome signature reflecting multilineage priming (a feature of 
stemness), as found in the quiescent F-SH population (8). F-Act is 
seen throughout the MI time course (Fig. 1, C and F) (10), well be-
yond the CF proliferative window (12), potentially due to continuous 
induction. A key feature of F-Act, increasingly so in injured hearts, is 
the graded expression of canonical CF activation markers Postn, Cilp, 
Meox1, Col8a1, and others across UMAP space antithetical to diminish-
ing stem cell–related markers such as Ly6a/Sca1 (Fig. 1, C, E, and G) 
(9). However, F-Act segments as a distinct state from MYOs, showing 
limited expression of Acta2 [encoding α–smooth muscle actin (α-
SMA)] and the MYO signature gene Cthrc1 (9) and lower levels of 
ECM genes (e.g., Col1a1 and Fn1).
F-CI and F-Cyc
A previously described early injury–dependent subpopulation was 
Fibroblast-cycling intermediate (F-CI) (Fig. 1, B to F), present pre-
dominantly at MI-day 3 and diminishing thereafter. The time course 
of F-CI resembles that of proliferating CFs [Fibroblasts-cycling (F-
Cyc)], although they are proportionally more abundant than F-Cyc 
at the peak of proliferation at MI-day 3 (46), compared to later stag-
es. F-CI cells show a close transcriptional relationship to F-Cyc (9) 
and also global shortening of mRNA 3′UTRs, as found for IR and 
F-Cyc (44). Compared to resting fibroblasts, F-CI and F-Cyc show 
strong up-regulation of a protein biosynthetic gene program (9), also 
a signature of cell cycle engagement (44). Previous cell trajectory and 
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RNA velocity analyses suggest that F-CI represents preproliferative 
and postproliferative CFs (8, 9).
MYO and MFC
We identified MYOs from MI-days 5–7 and MFCs from MI-day 7, 
consistent with previous reports (Fig. 1, C and F, and fig. S2I) (9, 10). 
MYO is marked by the expression of Postn, Acta2, Cthrc1, Tgfb1, Scx, 

and other profibrotic genes and shows up-regulation of numerous 
collagen and ECM remodeling genes compared to other fibroblast 
states (Fig. 1, E and G, and table S1) (9). MFCs are a recently described 
CF population, which persist within MI scar in mouse, likely partici-
pating in its remodeling (46), although the function of MFC is un-
known. Lineage tracing shows that MFC arise from MYOs during MI 
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Fig. 1. MI integration of CFs. (A) Schematic and table of datasets used and workflow for integrative analysis. Created with BioRender.com. (B) UMAP plot showing an 
aggregate of CFs across conditions. (C) UMAP plot showing CFs according to condition. (D) Dendrogram of CF subtypes determined by average batch-corrected expres-
sion in populations. (E) Heatmap of top 5 marker genes per CF population [MAST testing; Padj < 1 × 10−05; log2(fold change) > 0.5]. (F) Percentage of cells in each popula-
tion according to experimental condition. (G) Expression of select genes in different CF populations as visualized on UMAP coordinates.
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Table 1. Cross-comparison of major CF subpopulations in healthy and diseased mouse hearts. Fibroblast abbreviations—Farbehi et al. study (9): F-SH, 
Fibroblast-Sca1high; F-SL, Fibroblast-Sca1low; F-Trans, Fibroblast-transitory; F-IFNS, Fibroblast-interferon stimulated; F-WntX, Fibroblast-Wnt expressing; F-Act, 
Fibroblast-activated; F-CI, Fibroblast-cycling intermediate; F-Cyc, Fibroblast cycling; MYO, myofibroblast. Fibroblast abbreviations—Forte et al. study (10): PLS, 
progenitor-like state fibroblast; HEpiD, homeostatic epicardial-derived fibroblasts; IFNr, interferon response; EndD, endocardial-derived fibroblasts; LR, 
late-resolution fibroblasts; IR, IR fibroblasts; ProlifMyofb, proliferating myofibroblasts; Myofb, myofibroblasts; MFC, matrifibrocytes. Other abbreviations: aCSC, 
activated cardiac stromal cells; AngII, AngII-induced heart failure model; CSC, cardiac stromal cells; ns, not specified; RCF, reparative CF.

Study Farbehi et al. 
(9)

Forte et al. 
(10)

Janbandhu 
et al. (8)

Ruiz-Villalba 
et al. (28)

Hesse et al. 
(62)

McLellan 
et al. (63)

Alexanian 
et al. (51)

Model Sham + MI* Uninjured + 
MI†

Uninjured + 
sham + MI‡

Uninjured + 
MI§

Sham + IRI Untreated + 
Saline + AngII

Sham + 
TAC

CF enrichment Pdgfra-GFP+ In silico from 
nonmyocytes

Pdgfra-lineage+ 

CD31−CD45−−
Col1a1-GFP+ In silico from 

CD31−CD45− 
nonmyocytes

In silico from 
myocytes and 
nonmyocytes

In silico 
from non-
myocyte

After injury 
days

3, 7 1, 3, 5, 7, 14, 28 3 7, 14, 30 5 14 62

Total cells 
integrated

16,375 19,339 8504 13,950 26,828 14,046 9477

Male/female Male Male and 
female

Male ns Male Male and 
female

ns

Strain C57Bl/6J C57Bl/6J C57Bl/6J C3H/C57B1¶ C57Bl/6J C57Bl/6J ns

Top enriched  
markers**

Populations F-SH PLS# F-SH Cluster D# CSC-4 and 
aCSC-4#

Fibroblast-6# ns# Ly6c1;Pi16;Ly6a(S-
ca1);Cd248;Gfpt2

F-SL HEpiD F-SL Cluster A/C CSC-1 and 
CSC-2

ns ns Cxcl14;Hsd11b1;Lpl;D-
pep1;G0s2

F-Trans ns F-Trans Cluster H CSC-5 Fibroblast-2 ns Igfbp3;Apoe;Ccl19;F-
gl2;Inmt

F-IFNS IFNr F-IFNS Cluster I CSC-9 and 
aCSC-8

Fibroblast-9 ns Ifit3;Isg15;Ifit1;Cx-
cl10;Ligp1

F-WntX EndD F-WntX Cluster H CSC-11 and 
aCSC-11

Fibroblast-
Wif1

ns Wif1;Prg4;Dkk3; 
Cytl1;Clu

F-Act LR F-Act Cluster F CSC-3 Fibroblast-
Clip

ns Meox1;Cst6;Co-
l8a1;Cilp;Ckb

F-CI ns F-CI ns ns ns ns Timp1;Spp1;Acta2;Cx-
cl5;Tmp2

ns IR ns ns ns ns ns Mt2;Ccl2;Timp1;Cx-
cl5;Angptl4

F-Cyc ProlifMyofb F-Cyc ns aCSC-7 and 
aCSC-10

ns ns St-
mn1;Cks2;H2afz;Cen-

pa;Hmgb2

MYO Myofb ns Cluster B (RCF) aCSC-1, 
aCSC-2, and 
aCSC-3

Absent ns MYO: Cthrc1;Fn1,Pt-
n;Col1a1;Acta2

MYO-1 ns ns ns ns ns MYO-1: Wisp2;Sfrp2;S-
frp1,Ccn5,Fbln1

MYO-2 ns ns ns ns ns MYO-2: Tgf-
b1;Thbs4;Crlf1,Co-

l15a1

ns MFC ns Cluster B (RCF) 
day 14/30

ns Fibroblast-
Thbs4

ns Comp;S-
frp2;Ecrg4;Angptl7;Eln

*Uninjured and MI mice were on a heterozygous PdgfraGFP background.    †Uninjured and MI mice were on a TgWt1IRES-EGFP-Cre;RosaZsGreenf/+ 
background.    ‡Uninjured, sham and MI mice were on conditional (PdgframerCRE-mer) heterozygous Hif1a knockout background.    §Uninjured and MI mice 
were on a TgCol1a1GFP background.    ¶Transgene background strain not specified in the Ruiz-Villalba et al. study(28); original background cited as C3H/
C57B1.    #CF sub-populations were inferred by comparison with reported marker gene lists where available.    **Top 5 enriched markers taken from 
integrated data (see Fig. 1F and table S1). See text for MYO-1 and MYO-2 markers.
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repair and they are unable to proliferate after an additional stimulus, 
with molecular profiling suggesting that they acquire a less activated, 
noncontractile (α-SMA−) state, however, emphasizing chondrogenic 
and osteogenic ECM gene signatures (46). Figure  1F indicates that 
MFCs first appear in small numbers at MI-day 7, increase substan-
tially by MI-day 14, and persist at diminished levels out to MI-days 
28/30, times at which MYOs have completely resolved. Overall, 
MFCs are distinguished by up-regulation of antifibrotic genes in-
cluding Comp and Sfrp2 (Fig. 1, E and G, and table S1).
F-IFNS
Our integration analysis also recovered the rare inflammatory CF 
population, Fibroblast-interferon stimulated (F-IFNS) (9, 18). F-IFNS 
show a strong type I interferon–responsive signature. Interferon 
signatures have also been seen in endothelial cells and pericytes in a 
pressure overload model (47). The low abundance, interferon signa-
ture, and presence throughout the MI time course distinguish F-IFNS 
from IR (also inflammatory), which shows a sharp peak at MI-day 1 
(Fig. 1, D and F).

Trajectory analysis
We applied partition-based graph abstraction (PAGA) (48) to infer 
cell differentiation trajectories across our integrated MI time course. 
We performed analyses in healthy hearts as well as at early and late 
time points of MI as aggregates (MI-days 1 to 5 and 7 to 14) to help 
resolve transition points to MYO and MFC, respectively (Fig. 2A). 
Trajectories between different stages of CF activation, proliferation, 
and differentiation were nonlinear, as previously predicted (9). There 
were several notable features. For example, multiple direct intercon-
nections existed between all major resting CFs in healthy hearts, 
apart from F-WntX. At MI-days 1 to 5, the strongest connection to 
proliferating CFs (F-Cyc) was from F-CI, which was also strongly 
connected to IR (present earlier at MI-day 1). Collectively, this sup-
ports F-CI as a key stepping stone from IR and F-Cyc and other 
states at early phases. Although the strongest connection to MYO 
was from F-CI, F-Cyc could also directly connect, suggesting that 
MYO can arise via nonproliferative and proliferative routes, also 
evident at MI-days 7 to 14. The strongest connection to MFC came 
from MYO, as expected (Fig. 2A). We observed similar trajectory 
trends based on analysis with Monocle 3 (fig. S3B) (49).

Differential gene expression analysis
To further understand the differences between the four main early 
activated CF subpopulations (F-Act, IR, F-CI, and F-Cyc), we calcu-
lated differentially expressed genes (DEGs) [Model-based Analysis 
of Single-cell Transcriptomics (MAST) testing (50); Padj < 1 × 10−05; 
log2(fold change) > 0.5] between these and the main resting popula-
tions from healthy hearts (F-SH and F-SL combined) and calculated 
Gene Ontology (GO) biological process (BP) terms (Fig. 2B). Early 
injury–dependent populations IR, F-CI, and F-Cyc all up-regulated 
genes overrepresented for protein biosynthesis terms (Fig. 2B), as re-
ported previously (9, 10), aligning with the dendrogram analysis 
(Fig. 1D). F-Act did not show this signature, highlighting its unique 
identity. The top GO BP terms characterizing F-Act were ECM orga-
nization and collagen fibril organization, terms overlapping with F-CI 
and F-Cyc (Fig. 2B). As expected, F-Cyc was uniquely characterized 
by GO BP terms related to mitotic cell cycle progression. These data 
and trajectory analyses reinforce the close relationship between IR 
and F-CI with respect to protein biosynthetic state and commitment 
to proliferation.

We also calculated DEGs and GO BP terms between activated states 
(F-Act, IR, F-CI, and F-Cyc) at MI-days 1 to 3, comparing each to the 
remainder (Fig. 2C and fig. S3, C and D). In contrast to the protein 
biosynthetic signature observed for IR when compared to resting fibro-
blasts, the unique GO BP signatures for IR were predominantly related 
to regulation of apoptosis, including high overlap with negative regula-
tion of cell death and responses to stress terms (Fig. 2C and fig. S3C), 
as well as diverse prosurvival, growth, and metabolic genes, including 
Tgfb, Igfbp3, Ncl, Eif4a1, and Tomm40 (table S2), suggesting that IR 
up-regulates transcriptional programs that protect against apoptosis 
and stress. Cell death, wound healing, and cell migration terms were 
shared between IR, F-Act, and F-CI (Fig. 2C), indicating broader acti-
vation of these programs. Several terms related to nucleotide/nucleo-
side synthetic pathways were overrepresented in F-CI, consistent with 
its close relationship to proliferating CF.

To assess the temporal dynamics of the above states more broad-
ly, we created Seurat module scores for DEGs covering the most sig-
nificant GO BP terms relevant to the four early activated populations 
(IR, F-CI, F-Cyc, and F-Act) discussed above. The module score for 
regulation of programmed cell death, primarily associated with IR 
(Fig. 2C), increased from healthy hearts to a peak at MI-day 1, be-
fore decreasing to near healthy levels at later MI time points (Fig. 2D 
and fig. S3E). Scores for protein biosynthesis/translation terms, fea-
tures of IR, F-CI, and F-Cyc (Fig.  2B), showed a similar pattern, 
peaking at MI-day 1 (Fig. 2D). By contrast, module scores for ECM 
organization and tissue development, most strongly associated with 
F-Act and F-CI (Fig. 2C and fig. S3F), showed a gradual increase to 
MI-day 7 (after the peak of MYO) followed by a decline (Fig. 2D). 
The tissue development term, mostly containing genes for ECM 
(Col1a1, Col1a2, Cthrc1, Tnc Lox, Loxl3, Timp1, Sdc1, and Fn1), cy-
toskeleton (Acta2, Palld, Actg1, Tpm1, and Tagln), and secreted fac-
tors (Spp1, Cxcl12, and Ptn), showed a similar trend.

Origin and fate of IR
In our integration study, IR was limited principally to MI-day 1. 
However, in their original study, Forte et al. (10) found persistence of 
IR at MI-days 3 and 5 (~19 and 16% of total CFs, respectively) and 
expressing progressively higher levels of MYO genes including Acta2 
and Cthrc1. It was inferred that IR rapidly transitions to MYOs at 
MI-day 3. However, our previous work and this integration study 
have shown that differentiated MYOs do not substantially accumu-
late until MI-day 5 (Fig. 1F) (8, 9).

To explore IR origin and fate in greater depth, we extracted cells 
originally classified as IR from our unbiased reclustering of the 
Forte et al. data (10) and regenerated a UMAP plot with cell identities 
based on integration analysis. This revealed two well-separated popu-
lations (Fig. 2E) with segment 1 (larger; left) comprising primarily 
cells that retained the IR identity and minor proportions of F-SH, 
F-SL, F-Trans, and F-Act. Segment 2 (smaller; right) comprised cells 
reclassified here as F-CI, F-Cyc, or MYO, with only rare IR cells. 
Segment 1 (mostly IR) contained cells from MI-day 1, whereas seg-
ment 2 was specific to MI-days 3 and 5 (Fig. 2F and fig. S3G). Cells 
at MI-day 3 were mostly F-CI, whereas MYO cells were generated 
predominantly at MI-day 5. Early IR-enriched markers including 
Mt2 and Angptl4 were up-regulated in segment 1 and substantially 
down-regulated in segment 2, whereas ECM and MYO-related 
markers, including Cthrc1 and Fn1, were absent in segment 1 and 
up-regulated in segment 2 (Fig. 2G). Thus, our integration approach 
can more accurately assign CF states. In our refined data, IR is 
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Fig. 2. Trajectory analysis of the MI time course. (A) PAGA graphs of cells from healthy hearts, MI-days 1 to 5, or MI-days 7 to 14. Shown are (left) PAGA trajectories be-
tween cell types and (right) the force atlas (FA) layout of cells with top 10 nearest neighbor connections. (B) Sankey plot of top 6 GO BP terms among up-regulated genes 
[MAST testing; Padj < 1 × 10−05; log2(fold change) > 0.5] per population at MI-days 1 and 3 in comparison to resting (F-SH and F-SL) fibroblasts from uninjured hearts. 
(C) Sankey plot of top 6 GO BP terms comparing each of the indicated activated populations to the remainder at MI-days 1 and 3. (D) Module scores for DEGs within select 
GO terms across the MI time points. * indicates a statistically significant difference (Bonferroni-adjusted P < 0.05) according to a two-sided Wilcoxon rank sum test. 
(E) UMAP of IR cells as identified by initial clustering of the Forte et al. data, with updated cell labels following the kNN analysis incorporating all MI datasets. (F) Population 
proportion breakdown of (E) according to time point. (G) Expression of indicated genes on the UMAP coordinates of the IR cells from the initial clustering.
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largely restricted to MI-day 1, corresponding to the peak of neutro-
phils (41), and is clearly distinct from MYO. Cells classified as IR on 
MI-day 3 corresponded mostly to CFs primed to undergo prolifera-
tion, represented by F-CI and F-Cyc in our data. MYO appeared 
predominantly at MI-day 5, consistent with the larger time course 
and trajectory analyses (Figs. 1C and 2A).

Commitment to MYO differentiation
Given the complex transitions between resting and early activation 
states, we next asked if proliferative phase cells (IR, F-CI, and F-Cyc) 
have committed to an MYO fate or if they act as transit amplifying 
cells. To address this, we explored the dynamics of markers for fibro-
blast activation (Meox1) and myofibrogenesis (Acta2, Cthrc1, Col1a1, 
and Scx) across multiple MI time points in our integrated data (fig. S4 
and table S3). Meox1, although known as a key early driver of CF ac-
tivation (51), was expressed across different resting and activated CF 
populations (fig. S4, A and B) and was therefore uninformative. Scx, 
encoding the profibrotic transcription factor (TF) Scleraxis (52), was 
lowly expressed in the integrated data. However, a notable finding 
was that Acta2 and Cthrc1 were expressed at much higher levels in 
F-CI and F-Cyc compared to resting CFs and F-Act, from MI-days 3 
to 7 [fig. S4A and table S3; MAST testing; Padj < 1 × 10−05; log2(fold 
change) > 0.5]. This was also not apparent in IR. Cthrc1 was expressed 
in 88 and 68% of F-CI and F-Cyc, respectively, and Acta2 in 90 and 
79%, respectively (table S2). Col1a1 expression was also higher in F-
CI and F-Cyc than in resting CF and F-Act and was even lower in 
IR. Peak mean levels of Acta2 in F-Cyc at MI-day 5 were almost as 
high as in MYO at the same time point, although levels had declined 
by MI-day 7 in both F-Cyc and MYO. Levels of Cthrc1 in F-Cyc also 
peaked at MI-day 5 before declining by MI-day 7; however, overall 
levels in F-Cyc remained lower than in MYO. We conclude that most 
F-CI and F-Cyc cells show hallmarks of commitment to myofibro-
genesis at the single-cell level, a feature not shared by IR. Commitment 
was apparent at MI-day 3, prior to the appearance of substantial 
numbers of MYO (Fig. 1, C and F). These findings are consistent with 
previously documented ACTA2/α-SMA immunostaining in lineage-
traced CFs as early as MI-day 3, correlating with peak CF prolifer-
ation (46).

TF networks regulating CF states and transitions
To infer TFs that regulate CF states and state transitions, we per-
formed TF network analysis on the integrated MI data using decou-
pleR (53) and identified the top predicted factors for populations and 
time points of interest. A heatmap of weighted TF activity scores at 
early MI time points (days 1 to 3) (fig. S5 and table S4) showed notable 
segregation of injury-related CF populations (IR, F-CI, and F-Cyc) 
from homeostatic CFs. Injury-induced populations were highest for 
TFs related to cell proliferation, self-renewal, and cancer involving 
both intrinsic (E2F family, MYC, and ZFX) and extrinsic (HIF1a, 
EPAS1/HIF2a, NFYB, LEF1, GLI2, VDR, and SMAD1/3/5) pathways. 
Nontypical examples included ZFX, a self-renewal TF, which is highly 
expressed in tumors and binds across the genome to thousands of 
CpG island promoters, many of which regulate cell cycle and cancer-
related genes (54, 55). NFY proteins, which contain a histone-like do-
main, bind to CCAAT motifs, also found commonly in promoters, 
allowing scaffolding of many cofactors to regulate a host of genes im-
portant for cell cycle transitions (56, 57). IR, F-CI, and F-Cyc each 
showed a unique pattern of TF regulon activity—some in common 
(MYC, GLI2, VDR, and ZFX), others higher in F-Cyc (KLF5, LEF1, 

and E2F1/3) or IR (WT1, MBD1, and SNAPC4), with others such as 
E2F2/4, TFDP1, and NFYB showing a graded pattern (F-Cyc > F-
CI  >  IR). This heterogeneity reinforces the different commitment 
states of early injury populations with respect to cell cycle and myofi-
brogenesis, as described above. The vitamin D receptor (VDR) path-
way was observed in all injury-related CFs with evidence from liver 
showing that it may function as part of a negative feedback loop limit-
ing fibrosis by repressing genomic SMAD3 targets (58). HIF1α and 
HIF2α/EPAS1 signatures, in contrast, were high in IR and F-CI but 
low in F-Cyc, consistent with our findings that HIF1α provides a 
strong braking mechanism for CF proliferation at MI-day 1 through 
regulation of antioxidant pathways (8). KLF5 activity was highest 
in F-Cyc and is known to be involved in multiple CV disease pro-
cesses and associated lineages, including pressure overload–related 
fibrosis (59).

TF regulons showing higher activity in homeostatic fibroblast 
populations (F-SH, F-SL, F-Trans, F-WntX, and F-Act) were variously 
related to stem cell and cancer states, chromatin regulation, epithelial-
mesenchymal transition, multilineage differentiation and morpho-
genesis, signaling, and metabolism. The lower activity of these factors 
in injury-related CFs (IR, F-Cyc, and F-CI) may limit their differen-
tiation into MYOs and alternative cell fates. The analysis of resting CF 
populations also revealed pathways for the less characterized F-WntX 
and F-Trans (figs. S5 and S6), reinforcing their separate albeit related 
identities (Fig. 1B).

Network analysis of populations present at late MI time points 
(days 7 to 30; fig. S6 and table S4) revealed profibrotic pathways 
higher in MYO and diminished in MFC, including those for SMAD3, 
MYCN, GLI2, TEAD4, and GATA3. It is noteworthy that transcripts 
for most TFs highlighted above are expressed at very low levels and 
not enriched in any specific CF subpopulations. Therefore, these TF 
analyses reveal levels of network control not apparent from gene ex-
pression alone and highlight a host of TF regulons controlling CF 
cell states and transitions.

Profibrotic and antifibrotic MYOs and MFCs
We have previously reported that MYO at MI-day 7 can be subdi-
vided into populations that exhibit profibrotic or antifibrotic tran-
scriptional signatures, which we referred to as MYO-2 and MYO-1, 
respectively (9). In our integrated data, we asked if the ratio of pro-
fibrotic and antifibrotic subsets changed over time in a way that 
might illuminate their relationship. We first interrogated data for the 
top previously defined marker genes that discriminate profibrotic 
versus antifibrotic subsets (9), which, for profibrotic cells, included 
Tgfb1, Thbs4, Crlf1, and Col15a1 and, for antifibrotic cells, Ccn5/
Wisp2, Sfrp2, Gucy1a1, and Fbln1. Notably, UMAP plots suggested 
the existence of profibrotic and antifibrotic components within both 
MYO and MFC (Fig. 3, A and B). Profibrotic MYO-2 markers were 
expressed across the junction of MYO and MFC in UMAP space 
and at comparable levels in each compartment, as well as over MI 
time (Fig. 3A). Antifibrotic markers Ccn5/Wisp2 and Sfrp2, previously 
suggested to be up-regulated in MFCs (10), were higher in MFC 
versus MYO in the integrated data [table S5; MAST testing; Padj < 
1 × 10−05; log2(fold change) > 0.5], albeit that they were expressed in 
all MI time points (Fig.  3B), also true for other MYO-1 markers 
Gucy1a1 and Fbln1.

To clarify the dynamics of MYO-1 and MYO-2 further, we used 
the predefined MYO-1 and MYO-2 subsets from the original Pdgfra-
eGFP+ (enhanced green fluorescent protein–positive) MI-day 7 CF 
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data of Farbehi et al. (9) to train a Random Forest (RF) classifier to 
predict MYO-1 and MYO-2 on the integrated data (Fig. 3C). We 
confirmed a comparable proportion of predicted MYO-1 and MYO-
2 substates as early as MI-day 5 (Fig. 3C), when MYO first accumu-
lated in substantial numbers (Fig. 1C), through to MI-days 28/30 
when MFCs were dominant, and MYOs were almost completely 
resolved (Fig. 3C). Thus, profibrotic and antifibrotic substates may 
exist within both MYO and MFC (Fig. 3, A to C).

After time point–specific comparisons, 71 and 79 DEGs, respec-
tively, distinguished MYO-1 and MYO-2 states across MYO and MFC 
subtypes (table S5). Expression of these genes changed over time, 
although 33 of the MYO-1 signature genes were expressed in at least 
two time points, and 47 of MYO-2 signature genes (Fig. 3D). Canonical 
genes for MYOs, such as Acta2, Cthrc1, and Col1a1 were not differen-
tially expressed between MYO-1 and MYO-2 states, reinforcing their 
essential MYO identity. However, other ECM-related genes including 
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Fig. 3. Profibrotic versus antifibrotic MYOs and MFCs. (A and B) Expression of marker genes for MYO-2 [(A) profibrotic] or MYO-1 [(B) antifibrotic] on an aggregate UMAP 
or as visualized in box plots comparing MYO and MFC or an aggregate of MYO and MFC across the relevant MI time points. (C) Percentage of MYO/MFC cells across the 
indicated MI time points predicted with a RF classifier corresponding to either antifibrotic versus profibrotic subtypes. Shown are the percentage of cells predicted in ei-
ther category (left) or the location of the predicted pro/antifibrotic cells on UMAP coordinates according to time point (right). (D) Venn diagrams representing flux of 
MYO-1 and MYO-2 differentially expressed signature genes [MAST testing; Padj < 1 × 10−05; log2(fold change) > 0.5] across treatment conditions. (E) Top 10 predicted TFs 
for MYO-1 or MYO-2 cells for MI-days 5 to 30 cells. Shown are the average weighted mean decoupleR scores across the cells for each indicated population.
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Cilp, Eln, Fbln1, Timp1, Col15a1, Col4a1, and Col4a2 were differen-
tially expressed at most time points (table S5), suggesting functional 
differences between these states (see Fig.  3, A and B). The up-
regulation of Eln (encoding elastin) in MYO-1 states suggests that 
these cells generate a more elastic matrix.

Last, we compared TF pathways defining the antifibrotic MYO-
1 and profibrotic MYO-2 subpopulations found within MYO and 
MFC (Fig.  3E). Regulon patterns were largely overlapping; how-
ever, profibrotic MYO-2 showed higher activity scores for VDR, 
GLI2, and SMAD3 pathways, whereas antifibrotic MYO-1 was de-
pleted of these and elevation of ESR1 (estrogen receptor) and 
SMAD1/5 pathways. As mentioned, VDR may be part of a negative 
feedback loop limiting SMAD3-mediate fibrosis (58), and the GLI2 
pattern likely reflects activation of the canonical hedgehog path-
way, which has pleiotropic cardioprotective effects (60). Although 
the cardioprotective roles of estrogens in women are well known, 
studies in ESR1 knockout mice also demonstrate CV protective ef-
fects in males (61). Our data suggest estrogens and the balance of 
bone morphogenetic protein and transforming growth factor–β 
(TGFβ) SMADs as positive drivers in the resolution of MYO and 
MFC to antifibrotic states.

Integration of cross-disease CF datasets
Although differentiated CF states including MYO and MFC have 
been characterized in MI, it remains unclear to what extent these 
exist in different disease contexts. To address this, we expanded our 
MI map to include available CF scRNA-seq data from three additional 
disease models comprising single late-disease time points for ischemia-
reperfusion injury (IRI) (day 5) (62), as well as angiotensin II (AngII)–
induced and trans-aortic constriction (TAC)–induced hypertension 
associated with cardiac hypertrophic cardiomyopathy (days 14 and 
62, respectively) (51, 63)—in humans, chronic disease states reflecting 
heart failure with reduced ejection fraction (HFrEF) (Fig. 4A). Again, 
we used cFIT to transport these diverse experiments into an integrated 
space and generated UMAP plots using the low-dimensional coor-
dinates returned. To interpret these models in the light of defined 
MI subtypes, we trained an RF classifier on the integrated gene ex-
pression data using cell type labels determined above and applied it 
to the IRI, AngII, and TAC datasets (Fig. 4, B to D, and fig. S7, A to 
C). We confirmed these identities in the AngII, TAC, and IRI experi-
ments using Seurat label transfer analysis (26) as a complimentary 
approach (fig. S7, D to F). Cells from IRI-day 5 showed high similar-
ity to MI-days 1 to 7, with a predominance of MYO followed by F-
Act (Fig. 4, C and D), confirmed by dendrogram analysis (Fig. 4E). 
IRI-day 5 showed a much higher relative prevalence of MYO than 
any MI stage (Fig. 4D and fig. S7C).

In contrast, very few MYO cells were predicted at late stages of 
AngII or TAC models (Fig. 4, C and D), consistent with previous 
observations (63). MYOs were similarly absent in a separate TAC 
study at days 14 and 28 after surgery (47). Rather, we found that the 
AngII and TAC profiles showed similarity to late stages of MI 
(Fig. 4E), with induced populations corresponding to MFCs and 
an expansion of F-Act (Fig. 4, C and D). In the initial report on the 
AngII model using scRNA-seq (63), the Thbs4-high population cor-
responds to MFC and the Cilp-high population corresponds to F-
Act in the integrated data. Expression of MYO markers Cthrc1 and 
Acta2 were down-regulated in AngII and TAC hearts compared to 
MI-days 5 and 7, whereas Comp, a highly specific marker of MFC, 
and another enriched MFC marker, Cfh (encoding complement 

factor H), were up-regulated [Fig. 4F and table S6; MAST testing; 
Padj < 1 × 10−05; log2(fold change) > 0.5]. Thbs4 and Cilp encode 
ECM proteins with diverse roles in ECM structure and remodeling 
(64, 65). In our integrated data, Cilp was expressed in a complex and 
graded patterns across F-Act, MYO, and MFC (fig. S8, A and B). 
Thbs4 expression was restricted to F-Act in IRI and a subset of 
MYO and MFC cells (fig. S8, A and C), the latter corresponding to 
the profibrotic compartment described above (Fig. 3A). Thus, these 
markers are suggestive but not diagnostic of CF subtypes, whereas 
our integration approach has allowed us to identify the specific sub-
populations induced by pressure overload.

Origins of MFC in the AngII model
The presence of abundant MFC in the absence of MYO in AngII 
and TAC models (days 14 to 62) begs the questions of whether 
MYO are generated at earlier time points or whether there are dis-
tinct cell trajectories to MFC (Fig. 2A). Although the presence of 
collagen deposition in pressure overload–mediated hypertrophic heart 
failure is well established (4, 66), evidence supporting substantial 
focal MYO formation using α-SMA or other markers, is less con-
clusive (43, 47, 67–71). It has been reported that CF activation and 
collagen deposition in diabetic and pressure overload cardiomy-
opathy occurs in the absence of MYO differentiation (32, 47, 63, 
72). Here, we confirmed that, using genetic lineage tracing, AngII 
hearts show early focal but transient myofibrogenesis. To mark CFs, 
we crossed PdgfraMCM/+ tamoxifen-dependent Cre driver mice 
with Cre-dependent tdTomato reporter mice (8) and introduced 
AngII via mini-pump in young adults, with analysis at 7 and 14 
days (Fig. 5A). Increased heart weight/body weight ratio and tdTo-
mato+ cells and influx of CD45+ immune cells at early and late 
time points confirmed induction of cardiomyocyte hypertrophy 
and chamber remodeling (Fig. 5, B to D). Using immunofluores-
cence on mid-ventricular sections, fibrosis manifested at day 7 as 
the presence focally of large tdTomato+α-SMA+ CFs in interstitial 
and periarteriolar locations associated with collagen deposition 
(Fig. 5E and fig. S9). Large tdTomato+ fibroblasts were also present 
at interstitial and periarteriolar locations at day 14; however, these 
were α-SMAlow-negative, consistent with an MFC identity. These data 
demonstrate that there is a transient wave of myofibrogenesis in AngII 
hearts around day 7, which is resolved by day 14. We hypothesize that 
MFCs present at late stages of pressure overload cardiomyopathy derive 
principally from MYOs present at earlier stages, as in MI. Although the 
angiotensin stimulus was delivered constantly over 14 days, MYO 
was nonetheless resolved in favor of MFC, suggesting that MYO is 
self-limiting in vivo.

DEGs and transcript isoform use in MFC across different 
disease models
Because MFCs are predicted to accumulate in both ischemic (MI/
IRI) and pressure overload (AngII and TAC) models, we explored if 
molecular signatures discriminate MFC states in different injury 
settings. Unbiased dendrogram analysis showed that the two late MI 
time points representing peak MFC accumulation (days 14 and 
28/30) clustered together, however, separately from AngII and TAC 
MFC (Fig. 6A).

We calculated DEG and differential transcript usage (DTU) 
[Sierra (44); Padj < 0.05 and log2(fold change) > 0.5] genes for each 
condition by comparing MFC states to resting F-SH of respective 
healthy controls (Fig. 6, B and C, and table S7). There was a strong 
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overlap of DEGs for MFC between conditions, with 28% (103/368) 
common to all four conditions and 43% common to at least three 
conditions (Fig. 6B). Relatively few genes (~4 to 15%) were unique 
to one condition. Correlating expression fold changes (comparing 
MFC versus F-SH) revealed that the transcriptomes of MFC in 
the AngII model were highly positively correlated to those in MI 

(P = 0.86; Fig. 6D). We conclude that the identity signature of MFC 
is highly stable between MI and hypertrophic disease models.

In contrast, there were a greater number of DTU genes unique 
for each condition, with only 1.7% (15/873) found in common 
(Fig. 6C). For example, for the AngII model, 57% (133/232) of DTU 
genes were unique, in contrast to 10% (18/172) unique DEGs (Fig. 6B). 
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Although the highest similarity was between MI time points, with 
280/651 (43%) of total MI DTU genes shared between MI-days 14 
and 28, most of these (70%) were unique to the MI condition 
(Fig. 6C).

Supporting the above, GO term analysis showed consistency of 
BPs for MFC DEGs across conditions but more divergence for DTU 

genes (Fig. 6, E and F, and fig. S10, A and B). Top DE terms included 
extracellular matrix organization, extracellular structure organiza-
tion, collagen fibril organization and ossification, and skeletal system 
development (Fig. 6E), mirroring previously observed osteogenic 
and chondrogenic signatures in MFC (46). These terms were relatively 
consistent in fold enrichment and adjusted P value across conditions. 
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In contrast, top GO terms for DTU genes reflected time- and/or 
model-dependent network changes (Fig. 6F and fig. S10B). Among 
DTU genes was Fbln1, encoding fibulin 1, an ECM glycoprotein in-
volved in cell migration, proliferation, and differentiation, and es-
sential for heart morphogenesis (73). The long Fbln1 isoform 
uniquely contains a conserved fibulin-specific domain of unknown 
function and is up-regulated in MFC compared to F-SH (Fig. 6G). 
Another DTU gene, Pabpc1, encodes polyadenylate [poly(A)]–binding 
protein cytoplasmic 1, which promotes ribosome recruitment and 
translation initiation, and poly(A) tail shortening (74) and is impor-
tant for the increased translation seen during cardiac hypertrophy 
(75). Pabpc1 expresses multiple annotated transcript isoforms, which 
showed massively different usage across conditions (Fig.  6H). In 
summary, the MFC cell state is stable across disease models and 
time points, albeit that they respond uniquely to the specific injury 
environments through differential isoform use.

Molecular signatures of F-Act across disease states and 
time points
We asked if F-Act, present throughout the injury time courses, also 
adapts to the injury environment in different disease models, as for 
MFC. In dendrogram analysis of F-Act cells across conditions, MI-
days 14 and 28/30 showed the highest similarity; however, F-Act 
cells in AngII and TAC models were not aligned with each other, 
rather with MI-day 7 and MI-day 5, respectively (Fig. 6I). We again 
performed DE and DTU analysis comparing F-Act to F-SH of cog-
nate healthy controls (table S8). Compared to MFC, there were rela-
tively fewer DE and DTU genes for F-Act versus F-SH across 
different states, reflecting their closer relationship. Nonetheless, 
there was a similar trend with more overlapping DEGs and more 
unique DTU genes (Fig. 6, J and K). For example, in the AngII mod-
el, only 11% (10/94) of the F-Act DEGs were unique to MI, whereas 
46% (21/45) of DTU genes were unique. Combining time points, 
31% (70/219) of DEGs were unique to MI, compared to 52% 
(341/651) unique DTU genes. Rhoa, encoding ras homology family 
member A, implicated in the progression of pathological hypertro-
phy in TAC (76), exhibited preferential expression of a shorter 
3′UTR in F-Act (fig. S11A).

GO BP analyses of F-Act genes at different time points across 
conditions revealed a large shift in terms of the transition from 
healthy hearts to disease states (fig.  S11B). MI-day 1 showed the 
more unique disease profile, consistent with the dendrogram analy-
sis (Fig. 6I). F-Act at MI-day 1 showed increased expression of IR 
markers such as Mt1, Mt2, and Angptl4 (fig. S11, C and D). Consis-
tently, DEGs for IR and F-Act at MI-day 1 were highly correlated 
(P = 0.81; fig. S11E). These data likely reflect the proposed dynamic 
flux between F-Act and IR states. F-Act GO BP terms were relatively 
unchanged between MI-days 3, 5, and 7, indicating that this popula-
tion remained stable thereafter and did not progress toward MYO 
with time.

CF states in heart failure with preserved ejection fraction
Heart failure with preserved ejection fraction (HFpEF) is the most 
common form of heart failure, showing heterogeneous clinical fea-
tures, high burden of common comorbidities such as advanced age, 
cardiometabolic stress, hypertension, and multiorgan fibrosis (77). 
However, to what degree fibrosis correlates with adverse outcomes 
or is causative in HFpEF remains unexplored (4). To examine this, 
we used a recently described two-hit HFpEF model in C57Bl/6J 

mice over 15 weeks, involving high fat diet (HFD) with concomitant 
induction of hypertension by delivery of a selective inhibitor of ni-
tric oxide synthases, Nω-nitro-​l-arginine methyl ester (1+) (l-
NAME) (fig. S12A) (78, 79). We confirmed increased blood pressure, 
preserved left ventricular ejection fraction, diastolic dysfunction 
(increased E/e′), and decreased global longitudinal strain by echo-
cardiography, as well as increased lung weight and cardiomyocyte 
hypertrophy without changes in vessel density (fig. S12, B to H, and 
fig. S13A). Furthermore, tandem mass tag-based proteomics of HF-
pEF versus chow-fed ventricle samples confirmed significant up-
regulation of PDK4 and PERILIPIN5 (PLIN5) and overall changes 
indicative of decreased utilization of glucose, amino acids, and ke-
tone bodies for energy and increased lipid accumulation (fig. S13, B 
and C), consistent with a study on murine and human HFpEF (79).

We performed scRNA-seq of total cardiac ventricular interstitial 
cells from HFpEF and chow-fed mice at 10 and 15 weeks (n = 2). 
This revealed no significant changes in CF or other cell type propor-
tions (fig. S12, I and J) and no MYO was evident. MFCs occurred in 
small numbers, although they were not increased in the HFpEF 
hearts. Consistently with lack of fibrosis, there was no evidence of 
increased fibrillar collagen deposition in the ventricles or atria using 
picrosirius red staining in the C57Bl/6J model (fig. S13D). The num-
ber of DEGs between conditions [Padj < 0.05; log2(fold change) > 
0.5] was modest and were found mostly in CFs at 15 weeks (fig. S13E 
and table  S9). Notably, although fibrosis was not evident, several 
fibrosis-related genes including Il1b, Postn, Fn1, Tgfb1, Acvr1b, 
Ccn2, Runx1, and Runx2 were slightly up-regulated at 15 weeks in 
resting fibroblasts (F-SH and F-SL), with the antifibrotic gene Igf1 
down-regulated (fig. S13F), suggesting early stages of an emerging 
fibrotic phenotype. Top GO terms for DEGs related to signal trans-
duction and regulation of reactive oxygen species (table S9), the lat-
ter specific to F-SH cells and involving up-regulation of Nox4, Pdk4, 
FoxO3, CD36, Trim30a, and Ccn2 (table  S9). We conclude that 
metabolic dysregulation is the major driver of HFpEF in the 
C57Bl/6J model.

Conservation of mouse CF states in human hearts
We asked if CF states defined in murine models are conserved in 
human hearts by comparing our mouse integrated map to a recent 
single-nuclei RNA-seq (snRNA-seq) dataset on left ventricles of 
three healthy (donor) human hearts (80). After quality control (QC) 
filtering and clustering, we selected fibroblasts for in silico analysis. 
Reclustering yielded four abundant healthy (H) populations (H-1 to 
H-4) and one minor proliferative population (H-5) (Fig. 7, A and B). 
We calculated marker genes [table  S10; MAST testing; Padj  < 
1 × 10−05; log2(fold change) > 0.5] for each cluster and compared 
them to state-specific markers from integrated data of healthy mu-
rine hearts. Human heart cluster H-3 showed a strong correlation 
with mouse F-SH, which, as noted above, is the major quiescent CF 
population enriched in stem cell markers. Cluster H-4 (and H-3) 
showed a significant relationship to mouse F-Act, albeit with a lower 
Jaccard score (Fig. 7C). We could discriminate clusters H-3 and H-4 
on the basis of differential expression of top F-SH and F-Act mark-
ers genes—cluster H-3 up-regulated mouse F-SH markers including 
SCARA5, CD248, ACKR3, and GFPT2 (Fig. 7D) (9, 10, 81), whereas 
cluster H-4 up-regulated top mouse F-Act markers including 
POSTN, MEOX1, CILP, and COL8A1 (Fig. 7E). A SCARA5+ popu-
lation (H-3) has also been seen in human infarcted hearts (21). Pro-
liferating CFs from mouse and human hearts were also highly 
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correlated. The significance of associations was confirmed by Fisher’s 
exact tests (fig. S14A). In summary, two of the main murine CF 
populations, F-SH and F-Act, and proliferating CFs (F-Cyc) show 
cognate cell populations in healthy human hearts, suggesting con-
servation of both progenitor-like and activated CF states. Specific 
human homologs for other mouse CF populations (F-SL, F-WntX, 
and F-Trans) were not found in these data (fig. S14B).

In a recent single-cell multiorgan and mouse-human compari-
son, two fibroblast clusters were proposed as “universal” (common 
across organs in mice and humans) (82). The universal Pi16high clus-
ter appears homologous to the mouse F-SH clusters based on the 
shared expression of Pdgfra, Ly6a/Sca1, Pi16, Dpp-4, Ly6c1, Cd34, 
Cd55, Scara5, and other markers (9, 82). This cluster has been pro-
posed to be related to vascular adventitial cells. The other universal 
cluster reported (Col15a1high) was assigned as basement membrane–
secreting parenchymal CFs, expressing higher levels of Col15a1 and 
Penk. We displayed relevant cognate markers in UMAP plots of 
healthy mouse heart ventricle integrated data (Fig. 8A). The common 
feature of F-SH/Pi16high cluster was graded expression of discerning 
markers across UMAP space with highest levels in F-SH; however, 
these markers were also expressed more sparsely and at lower levels 
in other CF populations including F-Act, F-SL, and F-Trans. The 
Col15a1high cluster markers (Col15a1 and Penk) were also graded 

but antithetically to F-SH/Pi16high markers, with lowest levels in F-
SH. To spatially localize F-SH cells in mouse hearts, we chose DPP4 
as one of the most selective F-SH markers (Fig. 8A). DPP4 was re-
ported previously to be expressed in multilineage adipofibrogenic 
mesenchymal progenitors in subcutaneous periadipogenic and adven-
titial connective tissue (83). Using immunofluorescence, we detected 
DPP4 in a subset of Pdgfra-eGFP+ reticular dermal fibroblasts, as ex-
pected (83), as well as Pdgfra+ dermal papilla fibroblasts, a hair follicle 
stem cell population (84) (fig. S14C). In mid-ventricular adult heart 
sections (Fig. 8, B to D), DPP4 was evident in a subset of adventitial 
Pdgfra+ fibroblasts of mid-to-small caliber coronary vessels but rarely 
around larger coronary arteries. Expression was also seen sparsely in 
Pdgfra+ CFs within the myocardial interstitium. Robust DPP4 ex-
pression in endocardium and epicardium was also detected (Fig. 8D), 
noting, however, that these populations are not efficiently captured 
in scRNA-seq pipelines (9, 10). Our data are consistent with F-SH 
being equivalent to the Pi16high cognate population in the mouse 
hearts localized principally to mid-to-low caliber coronary vascular 
adventitial niches, with some also within the interstitium. Quantifi-
cation using flow cytometry showed that the DPP4+ population in 
healthy hearts represented 24% of live Pdgfra-eGFP+ ventricular CF, 
compared to 77% for SCA-1+, 51% for CD90+, and 96% for CD55+ 
cells, respectively (Fig. 8E and fig. S14, D and E). We have shown 
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Fig. 7. Cross-species comparison of CFs between human and mouse. (A) UMAP of human CFs with identified subclusters. (B) Dendrogram of human CF clusters deter-
mined by average integrated expression in populations. (C) Jaccard coefficients for the overlap of human and mouse CF marker genes [MAST testing; Padj < 1 × 10−05; 
log2(fold change) > 0.5] from uninjured hearts. (D and E) Gene expression as visualized in box and UMAP plots comparing human (top) and mouse (bottom) fibroblasts 
for (D) F-SH markers and (E) F-Act markers.
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previously that selection for the PDGFRα+SCA-1+CD90+ CF sub-
fraction enriches for MSC colony-forming units (5, 9).

CF subtype-specific responses to COVID-19
CV complications of SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2) (COVID-19) infection are thought to be largely second-
ary to severe pulmonary disease, although a minor patient group shows 
myocarditis (85). Nonetheless, COVID-19 infection leads to gene ex-
pression perturbations in heart, including changes to immune, prolif-
erative, and fibrotic pathways (86, 87). In reported studies, however, CF 
substate changes were not delineated. Angiotensin-converting enzyme 
2 (ACE2) is a key intermediate in the renin-angiotensin pathway and 
the main receptor protein for the COVID-19 virus, and ACE2 has been 
recently reported to be expressed in human CF and pericytes (19). We 
asked if human CF states exhibit identifiable changes after severe 
COVID-19 infection. We used data from Delorey et al. (88), which 
compared cardiac snRNA-seq dataset from deceased individuals 
with severe COVID-19 infection to that of healthy donors, however, 
noting that donors varied with respect to age, ethnic background, 
disease, and treatment trajectories and likely comorbidities. We used 
Seurat label transfer to assign corresponding cluster labels in each data-
set. Differential proportion testing using Propeller showed that there 
were no significant differences in CF cluster proportions with COVID-
19 infection (fig. S15A). We did not see up-regulation of an MYO cluster 
as reported previously in COVID-19–infected lung (82). We evaluated 
DEGs between COVID-19–infected and healthy hearts, which revealed 
a total of 813 unique up-regulated and 880 down-regulated DEGs 
[adjusted P < 0.05; log2(fold change) > 0.5]. These were distributed 
across all CF subpopulations to different degrees (fig. S15B). Up-
regulated DEGs were overrepresented for GO terms related to cell 
junction and focal adhesion assembly and cell differentiation themes 
(fig. S15C), consistent with previous reports (86–88). Notably, down-
regulated genes were overrepresented for multiple terms relating to 
RNA processing and splicing (fig. S15D), a finding suggesting that 
RNA splicing is repressed in CFs during severe COVID-19 infection. 
Notably, this is also a tactic used by other viruses to favor replication 
and evade immune responses (89, 90). Widespread dysregulation of 
transcript and protein isoform use has also been described in lungs 
of patients infected with COVID-19 correlated with disease se-
verity (89, 90).

Human CF subtypes in hypertrophic heart disease
To probe human CF states in chronic CV disease, we used a recent 
snRNA-seq dataset of left ventricle biopsies taken from patients with 
severe aortic valve stenosis (AS) with pressure overload–related car-
diac hypertrophy (22). We identified four CF clusters (AS-1 to AS-4; 
Fig. 9A). Jaccard comparisons between human AS and healthy heart 
markers [table S10; MAST testing; Padj < 1 × 10−05; log2(fold change) 
> 0.5] showed that cluster AS-1 was highly correlated with H-3 (ho-
mologous to mouse F-SH) (Fig. 9B). Both AS-3 and AS-4 correlated 
to healthy H-4 (similar to mouse F-Act). Comparisons were highly 
significant by Fisher’s exact tests (Padj < 1 × 10−75; fig. S16A).

We next compared discriminating marker genes for human AS 
clusters to those from our mouse integration map filtering for AngII 
or TAC (pressure overload) disease conditions. Consistent with 
above, Jaccard coefficients revealed that AS-1 showed correspon-
dence to mouse F-SH. Notably, AS-4 showed highly significant cor-
respondence to MFC (Padj < 1 × 10−25; Fig. 9C and fig. S16B) and 
up-regulated activation marker POSTN, as well as COMP, THBS4, 

and CILP, also up-regulated in mouse MFC (Fig. 9D). Additional 
MFC markers up-regulated included FMOD and PRELP (fig. S16C). 
MYO markers including CTHRC1 and ACTA2 were not up-regulated 
in AS-4 or any other clusters (fig. S16C), likely because of the ad-
vanced state of disease. In healthy human CFs, MFC markers were 
not up-regulated in any population (fig. S16D).

GO term analysis (Fig. 9E and fig. S16E) revealed that AS-4 was 
associated with BP terms related to ossification, including skeletal 
system development and cartilage development, as well as extracel-
lular matrix organization and collagen fibril organization, highly 
similar to MFC in mouse (Fig. 6E), supporting functional conserva-
tion of MFC between murine and human diseased hearts.

Spatial identification of MYO and MFC-like cells in human 
MI samples
Last, we used existing matching snRNA-seq and 10x Genomics Visium 
spatial transcriptomics datasets from human MI hearts (21) to assess if 
human MYO and MFC could be discriminated at different disease 
stages and their spatial relationship. After selecting previously assigned 
CF, clustering revealed seven distinct subclusters (H-1 to H-7) (Fig. 9, F 
and G, and fig. S17, A to E). Jaccard analysis revealed the strongest cor-
relation between human MI subcluster H-2 and mouse F-SH (Fig. 9G), 
within which F-SH/Pi16high cluster signature genes were enriched 
(fig. S17, B and C), confirming human-to-mouse conservation of this 
subtype as detailed above. Subcluster 4 showed the highest correlation 
with F-SL and F-Act, albeit at a lower Jaccard scores.

Subclusters H-1 and H-6 both exhibited strong correlations with 
MYO and MFC, and both showed overrepresentation of GO terms 
relating to extracellular matrix, collagen, cell adhesion, and vascular 
development (fig. S17, F and G). While a unique identity for H-1 
and H-6 could not be clearly assigned from Jaccard scores, H-1 
showed higher expression of FN1, POSTN, COL1A1, COL3A1, and 
CTHRC1, aligning with an MYO identity, whereas H-6 showed 
higher expression of COMP, ITGBL1, and CFH, aligning with an 
MFC identity (fig. S17, D, E, and H). Furthermore, the H-6/MFC 
gene signature showed partial overlap with all other CF clusters (ex-
cept for MYO-like H-1), consistent with H-6/MFC adopting a less 
mature and deactivated state compared to MYO, as in mice (46). We 
next examined the degree of representation of H-1/MYO and H-6/
MFC subclusters among MI patient clinical subgroups (21), finding 
that H-1/MYO was more enriched in ischemic zones of hearts with 
less advanced disease, whereas H-6/MFC was more enriched in fi-
brotic zones found uniquely associated with advanced fibrosis (Fig. 9I). 
This pattern aligns with the known lineage and spatiotemporal rela-
tionships between MYO and MFC in mice, including their respec-
tive early and late peaks following MI (Fig. 1, B, C, and F) (46). In 
contrast, other subclusters including H-2/F-SH and H-4/F-SL were 
associated with preserved myogenic regions consistent with being 
resting populations.

We next exploited these transcriptomics data to examine the spa-
tial relationship between H-1 (MYO-like) and H-6 (MFC-like) in 
MI hearts (21). In Visium “spots” (average four nuclei per spot) (21), 
we generated MYO and MFC scores as a weighted sum of the ex-
pression of top H-1 and H-6 markers specific to fibroblasts, respec-
tively (fig. S17H and table S10) (see Materials and Methods). First, 
we confirmed that MYO and MFC scores were high in spots labeled 
Fibroblast (fig.  S17I) (21). We next documented distributions of 
spots with high MYO and MFC scores among clinical samples and 
heart anatomical regions (figs.  S18 and S19). As expected, highly 
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Fig. 9. Analysis of CFs in human hearts from patients with AS and MI. (A) UMAP of human AS CFs with identified subclusters. (B and C) Jaccard coefficients for (B) the 
overlap of AS fibroblast population markers with markers from fibroblasts from healthy (H) hearts and (C) the overlap of human and mouse CF marker genes from AngII 
and TAC hearts [MAST testing; Padj < 1 × 10−05; log2(fold change) > 0.5]. (D) Gene expression as visualized in box and UMAP plots comparing human AS fibroblasts (top) 
and mouse (bottom) AngII/TAC fibroblasts. (E) Representative GO BP terms overrepresented among AS fibroblast clusters. (F) UMAP of snRNA-seq–resolved human MI 
fibroblast populations colored by unbiased clusters. (G) Heatmap of Jaccard indices of marker genes for human MI fibroblast population clusters with mouse CF popula-
tions. (H) Dot plot displaying relative proportion of human MI fibroblast populations within each patient sample. Color and size of dots corresponds to relative proportion 
among the four clusters within each patient sample. (I) Spatial coordinates of Visium-resolved human MI samples, colored using bivariate color scheme corresponding to 
MFC and MYO scores. Only spots corresponding to the majority Fibroblast percentage are displayed. Patient samples are organized by control (left), ischemic (middle), 
and fibrotic (right).
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scoring spots were sparse in controls. Among diseased hearts, high-
est ranked scores for MYO and MFC were found mostly in ischemic 
and fibrotic zones, respectively (fig. S18, A and B). Notably, there 
was considerable variability in the degree of spatial overlap between 
spots with high MYO and MFC scores (fig. S18C). For example, in 
samples with the greatest density of high-scoring spots, mostly in 
fibrotic and ischemic zones as expected (fig. S19), there were regions 
of high spatial concordance as well as neighboring clusters of MYO-
only or MFC-only spots (Fig. 9I). In summary, F-SH, F-SL, MYO-
like, and MFC-like cells could be distinguished in human MI hearts 
(21). There was focal clustering of spots with high MYO and MFC 
scores in fibrotic and ischemic zones with high although variable 
spatial overlap, likely reflecting both the heterogeneity in disease 
timing and mechanism in samples analyzed, and conservation of a 
dominant lineage relationship between MYO and MFC in human as 
in mouse hearts.

DISCUSSION
Here, we report integration mapping of CFs states in homeostasis 
and disease in mouse and human ventricles. Our data extend initial 
integration mapping on cardiac cell types (21, 47, 82, 91, 92), reveal-
ing insights into ventricular CF identities, conservation, and fates 
and the underlying biology of CV disease pathogenesis.

Integration of early resting CF subtypes
We confirmed the presence of resting F-SH cells (Pdgfra+;Ly6a/Sca1high) 
(Table 1) in different mouse disease models. F-SH cells are enriched 
in stem/progenitor cell markers (5, 6, 8), reside in a hypoxic niche 
(8), and potentially show preferential proliferation after cardiac in-
jury (5, 6, 8, 32). In vivo lineage tracing suggests considerable flux 
between SCA1high and SCA1low CF populations, even in healthy hearts, 
over a time frame of weeks (6), supporting a dynamic equilibrium 
between CF cell states. We show that F-SH cells are homologous to 
the Pi16high cluster found conserved across different mouse and hu-
man organs (82). Dpp4 expression is a marker of stem cell population 
in other tissues and was selected as a highly discriminative marker 
for F-SH. Immunostaining for DPP4 demonstrated that most F-SH 
cells reside within the adventitia of mid-to-small caliber coronary 
arteries but can also be found within the interstitium. The vascular 
adventitia contains multiple cell types including MSC-like cells dedi-
cated to vessel homeostasis and adaption, and these display immune 
and fibrotic sentinel responses to diverse stimuli including hyper-
tension and hypoxia (83, 93–99).

F-Act is closely related to F-SH and present in healthy hearts and 
all after injury stages. While largely immature and retaining stem 
cell characteristics, a subset of non-dividing F-Act cells express acti-
vation markers in a graded distribution across UMAP space, which 
in injured hearts includes MYO markers Acta2 and Cthrc1. These 
F-Act cells, while distinct from MYO, appear to have undergone 
commitment to myofibrogenesis. We propose that F-Act represents 
an early-tier CF activation state reflective of a reversible sentinel 
function, which creates an “alert” condition (100), similar to other 
stem cell populations (101), tipping toward proliferation and defini-
tive fibrogenesis and potentially other fates after injury.

Early injury–specific CF populations
After MI, early injury–induced populations, IR, F-CI, and F-Cyc, arise 
sequentially. TF network analysis showed that these states represent 

a closely related triad, separate from homeostatic populations, re-
sults that can now be explored further using single-cell chromatin 
accessibility assays. IR was first evident at MI-day 1 (10) and ex-
pressed monocyte/macrophage proinflammatory cytokines and in-
flammatory pathway genes, suggesting a role in innate immunity 
(15, 100, 102). Along with the other early CF populations, IR ex-
pressed higher levels of antioxidant and other prosurvival genes, 
likely adaptations to the hostile milieu after MI. Using MT1 and 
MT2 as markers, Forte et al. (10) reported that IR cells were abun-
dant in both injury and remote zones of infarcted ventricles, point-
ing to IR as a pan-ventricle IR. However, this would seem at odds 
with expectations that injury-induced proinflammatory cells cluster 
at the infarct and border zones in response to damage-associated 
molecular patterns (102). We confirmed that Mt1 and Mt2 are 
among the top DEGs for IR; however, both genes are expressed in 
other CF populations, so the spatial distribution of IR requires con-
firmation with additional markers and/or spatial RNA-seq. Our in-
tegrated data have allowed us to refine our understanding of IR in 
several respects. First, we confirmed that IR peaks at MI-day 1, as 
reported previously (10); however, our clustering shows that IR cells 
are virtually all resolved by MI-day 3. CFs previously assigned as IR 
at MI-day 3 by Forte et al. correspond in our integration study mostly 
to proliferative phase populations F-CI and F-Cyc, most of which 
appear committed to an MYO fate. However, they remain distinct 
from MYO, which represents a more advanced maturational state. 
IR cells have not yet initiated myofibrogenesis yet are primed for 
proliferation. IR may transition to MYO via F-CI and F-Cyc; how-
ever, the precise fate of IR remains unknown and cannot be inferred 
from available static single-cell data. An alternative fate for IR is that 
they undergo cell death during inflammation resolution, noting that 
>60% of infarct zone cells at MI-day 1 are positive for TUNEL (ter-
minal deoxynuleotidyl transferase–mediated deoxyuridine triphos-
phate nick end labeling) assay (8). Our integration data have allowed 
us to refine the CF proliferative window (46, 103), with commitment 
to division occurring in IR at MI-day 1 and F-CI and F-Cyc evident 
until MI-day 7.

F-CI cells are nonproliferating CFs that appear first at MI-day 3, 
coincident with cycling fibroblasts (F-Cyc). F-CI and F-Cyc are 
closely related populations (9, 44), and trajectory analysis suggests 
that F-CI includes both preproliferative CFs and those having just 
completed the cell cycle. Thus, F-CI can be thought of as an MYO 
progenitor pool. At MI-day 7, after MYO has peaked, F-CI was con-
siderably depleted. Trajectory analysis predicts that MYOs arise 
mostly from F-CI, although direct routes from other CF subtypes, 
including F-Cyc, may occur.

MYO and MFC
Definitive MYOs appear sparsely at MI-day 3 and peak at MI-day 5 
before being supplanted by MFCs. We confirm here that MYO is 
composed of at least two substates—MYO-1 and MYO-2 (9). Al-
though both are MYO in character, MYO-1 shows antifibrotic fea-
tures, including higher expression of Ccn5/Wisp2, which can inhibit 
TGFβ signaling and reverse established fibrosis (104), soluble WNT 
antagonist genes Sfrp2 and Sfrp1, and lower expression of profibrot-
ic transcriptional drivers, suggesting distinct functional properties. 
Unbiased classification revealed that MYO-1 and MYO-2 are pres-
ent as soon as MYOs appear in substantial numbers at MI-day 5 and 
persist in similar proportions after the MYO peak at MI-day 7. A 
notable additional finding was that MYO-1 and MYO-2 signatures 
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also occur within MFC, at a time when MYOs are completely re-
solved. Opposing gradients of MYO-1 versus MYO-2 markers across 
UMAP space hint at similar gradients in vivo. These findings chal-
lenge our current view of MYO and MFCs (46). One possibility is 
that MYO-1 and MYO-2 represent early and late forms of MYOs, 
respectively, noting that MYOs have been classified previously on 
continuous scales of morphologies and contractile states (105, 106). 
Alternatives are that they indicate MYO and MFC polarization and 
the self-limiting nature of fibrosis (46, 102, 107, 108), a finding with 
possible therapeutic implications (109), or that they exist within 
distinct niches.

Cross-integration of different disease states
Our integrated MI time course allowed us to accurately profile 
other CV disease states. At day 5 of IRI, CF populations resembled 
those of MI-days 5 to 7, although IRI showed a substantially higher 
proportion of MYO. This may result from increased infiltration 
of inflammatory cells after reperfusion, leading to amplification of 
myofibrogenesis.

In advanced stages of pressure overload cardiomyopathy (AngII 
and TAC), associated with “reactive fibrosis” (4), we identified an 
increase in F-Act, abundant MFC, and relative absence of MYO, fea-
tures in common with late stages of MI. We established the AngII 
model and demonstrated Pdgfra-lineage+α-SMA+ MYOs colocal-
izing with focal perivascular and interstitial collagen deposition at 
day 7; however, α-SMAhigh MYOs were resolved by day 14. This 
demonstrates that AngII pressure overload involves transient myofi-
brogenesis in both perivascular and adventitial compartments. We 
predict that, in the AngII model, MFCs derive largely from MYO, as 
in MI (46). Consistent with our findings, a recent mouse scRNA-seq 
study identified a CF population expressing Postn, Comp, and 
Thbp4, increasing after TAC to day 28 (47). This was proposed to be 
MFC after integration analysis.

There were no overt signs of fibrosis or changes in CF popula-
tion proportions in a two-hit C57Bl/6J model of HFpEF, a clinically 
relevant form of HF. Nonetheless, by 15 weeks, a profibrotic gene 
expression signature was emerging across all CF subtypes. In the 
original report of the HFpEF model performed in C57Bl/6N strain 
(divergent from C57Bl/6J), modest focal collagen staining was seen 
at 5 weeks of treatment, although fibrosis appeared to be purely a 
function of hypertension, being induced by l-NAME alone (78). In 
a more recent single-cell study of HFpEF hearts also performed in 
C57Bl/6N mice, a modest increase in fibroblasts was detected at 
7 weeks after treatment, with ECM and inflammatory pathways being 
induced (110). Collectively, these studies suggest that cardiometa-
bolic stress, not fibrosis, is the principal driver of HFpEF, consistent 
with preclinical studies (79, 111, 112) and molecular profiles in pa-
tients with HFpEF (77). However, the extent of fibrosis in HFpEF is 
likely modulated by the degree of hypertension and genetic back-
ground, as demonstrated here.

Adaptation of F-Act and MFC to distinct injury environments
Our integrated CF map showed high concordance of MFC and F-
Act DEG signatures in ischemic versus pressure overload injury 
models, reinforcing the unique identity and stability of MFC and F-Act. 
This aligns with a model of cardiac fibrosis whereby diverse injuri-
ous stimuli converge on a common fibrotic cascade. However, both 
MFC and F-Act show pronounced differential transcript isoform use 
between ischemic and hypertensive models, reflecting adaptation of 

CF subtypes to distinct injury environments, a level of network con-
trol thus far unexplored. Intron retention has been recently identi-
fied as a mode of transcriptional regulation associated with cardiac 
infarcts (113).

Conservation of CF states
Five CF subpopulations were detected after in silico processing of 
data derived from left ventricles of healthy human donor hearts 
(19), aligning with other large-scale studies (21, 82, 91). Homology 
of the healthy human population H-3 with F-SH in mice was strongly 
supported, consistent with previous findings of the conservation of 
Pi16high cluster CF across species and organs (82). A human F-Act–like 
state (H-4) was also suggested in healthy and MI hearts.

Single-cell studies on human heart failure samples have identi-
fied various activated CF states including those proposed to repre-
sent MYOs (20, 21, 24, 92), although these have not been studied in 
detail. We concentrated first on human AS-induced hypertrophic 
cardiomyopathy (22), allowing us to compare with our integrated 
mouse pressure overload data. We detected four main populations. 
AS-1 showed strong correlation to the universal healthy human H-3 
population and F-SH in mice, whereas AS-3 showed some similarity 
to healthy human H-4 and mouse F-Act. Our analysis also compel-
lingly confirmed human AS-4 as homologous to mouse MFC, found 
at late stages of mouse AngII/TAC and MI models. These findings 
strongly support conservation of MFC in pressure overload cardio-
myopathy between mice and humans. Our data also support the 
presence of F-Act and MFC in human MI (21), along with MYO, 
F-SH, and F-SL.

In a snRNA-seq study of 26 failing human hearts (ventricular 
biopsies), a population of activated fibroblasts expressing POSTN, 
COL22A1, and THBS4, consistent with MFC-like cells, were present 
in failing but not control donor hearts (20). No MYOs were specifi-
cally detected. Furthermore, given that hearts used in this study 
were in advanced (pretransplantation) stages of failure, the MFC-
like cells were only abundant in 2 of 26 patients, one with dilated 
and the other hypertrophic cardiomyopathy. However, a follow-up 
study on a wider set of controls and patients with available bulk 
RNA-seq data confirmed the detection of MFC-like cells in only 
limited advanced heart failure samples but also suggested that MFC 
will be more prevalent at earlier disease stages (20). The presence or 
absence of MFC-like cells was not correlated with left ventricular 
ejection fraction, mass, or wall thickness nor history of diabetes, 
atrial fibrillation, or hypertension. Collectively with our own find-
ings, these data establish that MFCs are an integral component of 
CF trajectories in diverse forms of cardiomyopathy in mice and hu-
mans. Deeper analysis of fibroblast activation and resolution in hu-
man CV disease states is warranted.

Analysis of Visium spatial transcriptomics data in ventricular bi-
opsies from patients with MI (21) showed strong colocalization of 
spots scoring highly for MYO and MFC signatures, adjacent to re-
gions enriched in either MYO-high or MFC-high spots. This is con-
sistent with the known lineage relationship between MYO and MFC 
in mice (46) and sheds light on how MYO resolution plays out, in 
3D, in the human MI setting in which ischemic and fibrotic zones 
are heterodisperse.

Figure S20 shows a summary diagram representing our findings 
on CF dynamics under different injury conditions to date and likely 
mouse-human conservation. However, projected timelines for CF 
dynamics during truly chronic pressure overload responses in humans 
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and the conservation status of some human populations require ad-
ditional data.

Integrated single-cell data maps pave the way for generation of 
multispecies, multilineage, and multidimensional tissue atlases that 
will drive forward better understanding of human and animal biol-
ogy and treatment of disease. CV diseases remain the highest cause 
of death and disability worldwide, and development of antifibrosis 
therapies has been challenging. Progress may be accelerated by 
deeper understanding of CF agency and function and path to fibro-
sis resolution. Our data on diverse CV disease models should in-
form current efforts to reconstruct 3D tissue context through spatial 
transcriptomics and will add a deeper perspective to development of 
novel therapeutics.

Limitations of the study
Our study was specific to the cardiac ventricles—atrial, valvular, vascu-
lar, and other CFs present in whole hearts may have distinct signatures 
and trajectories (19). In different studies, there may be technical limita-
tions in recovery of certain cell types or biases due to differences in 
experimental design including cell enrichment protocols, ancestry, 
gender, baseline physiology, and extent of disease. Bioinformatic pro-
cesses, including QC and definition of cell types and states, are operator 
and software-dependent and involve subjective decisions, as described 
previously (24). As such, inferences about cell annotation, trajectories, 
spatial context, and function will require validation using multiple 
approaches including spatial transcriptomics. Our chosen population 
nomenclatures principally reference those of foundation studies (see 
Table 1) (9, 10). More systematic nomenclature will be needed in the 
future. Integration of other cell types, including cardiomyocytes, endo-
thelial, perivascular, and immune cells, will be necessary to further 
progress meaningful 3D tissues maps.

MATERIALS AND METHODS
Datasets
Data from Pdgfra-eGFP+/CD31− cells from sham- or MI-days 3 
and 7 mice are available on ArrayExpress under ID E-MTAB-7376 
(9). Cardiac interstitial cell data from healthy hearts and MI-days 1 
to 28 can be found on ArrayExpress under ID E-MTAB-7895 (10). 
Pdgfra-TdTom+/CD31−/CD45− cell data from sham- or MI-day 3 
mice are available on ArrayExpress under ID E-MTAB-9583 (8). 
Col1a1-GFP+ cell data from sham- or MI-days 7, 14, and 30 mice 
were obtained from the Gene Expression Omnibus (GEO) under 
accession number GSE132146 (28). scRNA-seq of cells from sham 
or TAC mice were obtained from GEO under accession number 
GSE155882 (51). Data from scRNA-seq of healthy or AngII mice are 
available on ArrayExpress under ID E-MTAB-8810 (63). Data from 
sham or ischemia-reperfusion hearts are available on ArrayExpress 
under ID E-MTAB-10035 (62). The sc/snRNA-seq datasets for HFpEF 
created in this study have been deposited in ArrayExpress (accession 
number E-MTAB-13362). For the healthy human heart analysis, 
processed counts were downloaded from GEO (accession number 
GSE156707) (80). For analysis of hypertrophic human hearts, the data 
are available on ArrayExpress under access E-MTAB-11268 (22). 
For the human COVID-19 analysis, a combined file of cardiac cells 
from individuals infected or uninfected with COVID-19 was down-
loaded from https://singlecell.broadinstitute.org/single_cell/study/
SCP1216 (heart_meta_study_all_cells_used_for_DE.h5ad)  (88). 
Human MI snRNA-seq and Visium data were downloaded from the 

publication’s data availability URL (21). Processed Seurat objects for 
mouse integration analyses, plus healthy and AS human fibroblasts, 
have been deposited on Synapse (https://synapse.org/) under proj-
ect ID syn52429757.

Alignment and quantification
All mouse data were processed from Fastq files to count matrices 
using the CellRanger 6.0.2 count program against the mouse 
mm10 reference genome (2020-A-2.0.0) downloaded from the 10x 
Genomics website (https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/what-is-cell-ranger). 
Individual datasets were aggregated by using the CellRanger aggr 
program with the normalize parameter set to “none.”

QC filtering and clustering
Clustering analyses were performed using the Seurat R package 
(v 4.0.3). Jupyter notebooks containing the analysis pipeline for each 
of the datasets is available at https://github.com/VCCRI/Fibroblas-
tIntegration. Briefly, the distributions of unique molecular IDs and 
gene counts were visualized, with outliers filtered. Cells were filtered 
for percent of mitochondrial content. Initial clustering was performed 
following a basic Seurat pipeline, including detection of top variable 
genes, scaling, dimensionality reduction with principal components 
analysis (PCA), construction of nearest neighbor graphs using the 
Seurat FindNeighbors program, and clustering with FindClusters. 
Doublets were estimated by running Scrublet (114) on individual 
single-cell datasets and visualized on UMAP plots prior to filtering 
to retain singlets. Following doublet filtering, the clustering steps, 
from detection of variable genes, was rerun. Clusters were inspected 
for stressed or damaged cells, with clusters representing likely dam-
aged cells removed. Fibroblasts were identified among the returned 
clusters by the expression of fibroblast marker genes (including Pdgfra, 
Col1a1, and Tcf21) and filtered for further analysis. The fibroblast 
subclusters for the MI datasets were manually annotated in accor-
dance with previous fibroblast subpopulation designations accord-
ing to marker gene expression (9, 10). For our previous datasets 
[Pdgfra-eGFP+/CD31− cells (9) and Pdgfra-TdTom+/CD31−/CD45− 
cells (8)], population IDs were maintained in accordance with the 
original publications.

Integration of mouse cardiac datasets
Integration of the MI and cross-disease mouse datasets was performed 
using the cFIT R package (v 0.0.0.9) (25). For the MI integration, we 
performed integration on the following six sets of conditions and 
cell isolation strategies:

1) Uninjured versus MI hearts at MI-days 1, 3, 5, 7, 14, and 28 
from interstitial cells of cardiac ventricles (10).

2) Sham- versus MI-day 3 on Pdgfra-eGFP+/CD31− cells from 
cardiac left ventricles (9).

3) Sham- versus MI-day 7 on Pdgfra-eGFP+/CD31− cells from 
cardiac left ventricles (9).

4) Sham- versus MI-day 3 on Pdgfra-TdTom+/CD31−/CD45− 
cells from cardiac left ventricles (8).

5) MI-day 14 from Col1a1-GFP+ cells from cardiac ventricles (28).
6) MI-day 30 from Col1a1-GFP+ cells from cardiac ventricles (28).
For the Col1a1-GFP+ data from Ruiz-Villalba et al. (28), we noted 

that batch effects appeared to exist between each condition, in line 
with the approach of the original paper, which used the Seurat 
canonical correlation analysis (CCA) integration method between 

https://singlecell.broadinstitute.org/single_cell/study/SCP1216
https://singlecell.broadinstitute.org/single_cell/study/SCP1216
https://synapse.org/
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://github.com/VCCRI/FibroblastIntegration
https://github.com/VCCRI/FibroblastIntegration
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the conditions prior to analysis (28). Therefore, we selected the two 
later MI time points (MI-days 14 and 30), where enriched CFs were 
not already available and incorporated these as separate datasets for 
integration.

For the cross-disease integration, we used the above MI datasets, 
in addition to the following:

1) Total cardiac cells from the cardiac ventricles of AngII- or 
saline-treated mice (63).

2) Cardiac interstitial cells from cardiac ventricles of sham- or 
TAC-day 62 operated mice (51).

3) Enriched CFs (Wt1-​tdTom+/CD31−/CD45−) from the hearts 
of sham or ischemia-reperfusion–day 5 operated mice (62).

The integration for both MI and cross-disease datasets was per-
formed on 4000 variable genes, out of a union of genes expressed 
across the datasets, identified with the select genes function in cFIT 
(25). For the MI integration, we used the CFITIntegrate function 
with the r value, representing expected biological heterogeneity, set 
to 15. For integration of the larger cross-disease dataset, we used the 
CFITIntegrate_sketched function with the same r value of 15 and 
subsample.prop set to 0.5.

For comparisons with alternative integration methods, we inte-
grated the MI datasets using the Seurat (26) CCA approach, Harmony 
(v 0.1.0) (29), and RISC (v 1.0) (30). For consistency, we used 4000 
variable genes, as above, for each of the comparison methods. Seurat 
integration was performed as follows. Functions NormalizeData 
and FindVariableFeatures were run on each condition with nfea-
tures set to 4000 for FindVariableFeatures. SelectIntegrationFeatures 
was run with nfeatures set to 4000. FindIntegrationAnchors and 
IntegrateData followed by ScaleData and RunPCA were all run with 
default parameters. UMAP coordinates were generated using the 
RunMAP function, with n.neighbors set to 200, min.dist = 0.5, 
and dims (PCA) set to 50.

For the Harmony comparison, variable genes were identified as 
above, followed by scaling and PCA dimensionality reduction using 
the Seurat functions. The RunHarmony function was run using the 
top 50 principal components (PCs), with UMAP coordinates gener-
ated using the Seurat RunUMAP function as above. For RISC, we 
followed the pipeline as outlined in the software vignette, identifying 
4000 variable genes per dataset and using the union of all variable 
genes for integration. We used the scMultiIntegrate function with 
eigens = 15, npc = 50, and align = “OLS.” UMAP coordinates were 
generated using the scUMAP function with npc = 50.

For nearest neighbor comparisons between the methods, we used 
the Seurat FindNeighbors function to identify the top 200 nearest 
neighbors for each cell, based on the reduced dimensions (e.g., PCA) 
used for calculating UMAP. For each cluster, we calculated the aver-
age percentage of cluster identities that nearest neighbor cells belonged 
to. These percentages were plotted as heatmaps using the Complex-
Heatmap R package (115).

Analysis of human datasets
For the healthy heart data (80), processed counts were downloaded 
from GEO. For the AS hearts (22), Fastq files were downloaded and 
processed to counts using CellRanger count and aggr as above but 
mapping to the GRCh38-2020-A reference. For clustering of the 
human datasets [both healthy hearts (80) and AS hearts (22)], the 
individuals were integrated prior to clustering using the Seurat CCA 
integration pipeline (see Jupyter notebooks at https://github.com/
VCCRI/FibroblastIntegration). Briefly, following doublet removal 

with Scrublet, data were log-normalized, and 2000 variable genes 
were identified for each sample. The SelectIntegrationFeatures (with 
nFeatures = 2000), FindIntegrationAnchors, and IntegrateData func-
tions were run, followed by data scaling, dimensionality reduction 
with PCA, and clustering performed on the top 50 PCs using the 
FindNeighbors and FindClusters functions. Fibroblast clusters were 
identified according to the expression of fibroblast markers and absence 
of markers of other cardiac cell lineages (including cardiomyocytes, 
endothelial cells, and leukocytes) and selected for further analysis. 
PCA was then rerun on the integrated fibroblasts, with clustering 
and calculation of UMAP coordinates performed on the top 40 PCs.

For the analysis of CFs from the COVID-19 study, we used the 
CF clusters defined in the healthy human heart as a reference point 
for label transfer analysis. We used a combined dataset of cardiac cells 
from two sets of healthy individuals and two datasets of individuals 
infected with severe COVID-19 (88). As major cell types had been 
assigned, we first selected the cells annotated as fibroblasts. We then 
processed the datasets as follows. For each dataset, we retained indi-
viduals with greater than 100 fibroblast cells. Similar to our analysis 
of human data above, we applied the Seurat integration pipeline to 
remove batch effects between the individuals by running the Select 
IntegrationFeatures (with nfeatures = 2000) and FindIntegrationAn-
chors functions on log-normalized data. The data were then scaled 
prior to PCA and clustering and UMAP run on the top 40 PCs. We 
filtered out clusters that appeared to be nonfibroblast cells (based on 
markers of cardiomyocyte, immune, endothelial, glial, and mural 
cells) and thus further enriched for fibroblasts. To use a consistent 
nomenclature and determine if the CF clusters we had characterized 
in healthy hearts were altered following severe COVID-19 infection, 
we used Seurat label transfer analysis to impose the cell identities 
from our analysis of the Sim et al. data (80) on the healthy and CO-
VID-19 datasets. We processed each dataset individually, using the 
FindTransferAnchors and TransferData functions with dims = 1:40.

RF predictions
For prediction of profibrotic versus antifibrotic signatures in MYOs 
and MFCs and prediction of CF states in the cross-disease map, we 
trained RF classifiers on the cFIT-integrated data using the Ranger 
R package (v 0.13.1) (116). In both cases, RF classifiers were trained 
using 500 trees and subsequently applied by taking the highest-
scoring cell type prediction. Before application to the relevant data-
set, the accuracy of the classifiers were evaluated through 10-fold 
cross-validation experiments, with prediction accuracy measured 
using multiple metrics including sensitivity, specificity, and bal-
anced accuracy.

For the MYO-1 versus MYO-2 predictions, we could distinguish 
the two populations with a balanced accuracy of 0.93 according to 
the 10-fold cross-validation simulations.

Trajectory analyses
Trajectory analysis of the integrated MI datasets was performed 
with PAGA (48) through the Scanpy (v 1.9.5) Python package (117). 
For the three comparisons (healthy, MI-days 1 to 5, and MI-days 7 
to 14), the subsets were used to calculate top 10 nearest neighbors based 
on the 15 dimensions returned by cFIT. We used the SaveH5Seurat and 
Convert functions in Seurat to generate h5ad files for Scanpy. The 
Scanpy function sp.pl.paga (with layout = “fr” and threshold = 0.03) 
was used to generate the PAGA graph, and sp.pl.draw_graph was 
used to generate the force-directed layout graph.

https://github.com/VCCRI/FibroblastIntegration
https://github.com/VCCRI/FibroblastIntegration
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Trajectory analysis was also performed using Monocle 3 (49). 
Monocle was run on UMAP coordinates from indicated subsets of 
conditions: healthy and MI-days 1 and 3, 3 and 5, 5 and 7, 7 and 14, 
and 14 and 28/30. For each data subset, the trajectory graph was calcu-
lated with the learn_graph function with parameters rank.k =  50, 
maxiter = 15, and minimal_branch_len = 10 and trajectories plotted 
using the plot_cells function.

Differential expression testing
Unless otherwise stated, DEGs were determined using the Seurat 
FindMarkers program with MAST testing (v.1.18.0) (50). A Bonferroni-
adjusted P value of 1 × 10−05 and a log2(fold change) difference of 
0.5 were used to determine significance.

For the analysis of HFpEF samples, pseudo-bulk replicates of 
each cell population were generated according to biological replicates 
(n = 2 for HFpEF and normal chow). For each cell type, genes were 
evaluated if they were expressed in ≥10% of cells in either condition. 
DESeq2 (v 1.32.0) (118) was applied for differential expression test-
ing, and the fdrtool package (v 1.2.16) (119) was used for P value 
correction. Genes returning adjusted P  <  0.05 and an absolute 
log2(fold change) difference of 0.5 were considered significant.

For the COVID-19 analysis of human samples, a pseudo-bulk 
approach was taken. Within a cell population, each sample (repre-
senting an individual) was used to generate pseudo-bulk profiles for 
the individuals infected with COVID-19 and healthy individuals. As 
these samples are composed of five separate studies (representing 
three healthy and two COVID-19 datasets), we used the RUVSeq (v 
1.26.0) R package (120) to normalize out technical variation as part 
of the differential expression analysis. To obtain control genes, we first 
applied DESeq2 (118) to calculate differential expression between 
the individuals infected with COVID-19 and healthy individuals and 
retained genes that were outside the top 5000 differentially expressed. 
The control genes and pseudo-bulk count matrix were used as input 
to the RUVg function with the k value (representing the estimated 
number of sources of technical variation) set to 3. The W matrix 
returned by RUVg was used as input into DESeq2 for an updated 
DE analysis. Genes returning adjusted P  <  0.05 and an absolute 
log2(fold change) difference of 0.5 were considered significant.

Differential transcript usage
DTU was determined using the Sierra R package (v 0.99.27) (44). 
Peak calling was run on the CellRanger BAM files utilizing the same 
reference file as for alignment. Peaks were merged within each study 
and read counting performed using the CountPeaks method. DTU 
testing was performed on each study by comparing the population 
of interest (MFC or F-Act) to the F-SH population from each respec-
tive uninjured control. DTU genes were evaluated using the Sierra 
DUTest function, requiring peaks to be expressed in a minimum of 
10% of cells (exp.thresh = 0.1) and feature.type set to include “UTR3” 
and “exon,” An adjusted P value of 0.05 and a log2(fold change) dif-
ference of 0.5 was used to determine significant DU peaks. Analysis 
of differences in 3′UTR length was determined using the Detec-
tUTRLengthShift and PlotUTRLengthShift functions, with default 
parameters.

GO testing
GO term overrepresentation testing was performed using the ViSEAGO 
(121) R package. The BiomaRt package (122) was used to convert 
gene symbols to Uniprot/Swissprot IDs, and GO annotations for the 

genes were performed using the ViSEAGO Uniprot2GO and anno-
tate functions. Overrepresentation testing was performed using the 
TopGO (123) runTest function, with algorithm = “classic” and sta-
tistic = “fisher” and the set of expressed genes used as background. 
The returned P values were adjusted for multiple testing using 
Benjamini-Hochberg correction, with GO terms considered signifi-
cant if they obtained an adjusted P value of <0.05.

TF network analysis
We performed analysis of TFs predicted to regulate different fibro-
blast populations using the decoupleR package (v 2.2.2) (53). 
DoRothEA (v 1.8.0) (124) TF regulons were retrieved using the get_
dorothea function with levels “A,” “B,” and “C.” The log2-normalized 
counts were input to the run_wmean function with times = 100 and 
minsize  =  5. The average weighted mean in each population/MI 
time point tested was then used to rank the TF according to the cell 
type and condition of interest. Heatmaps were generated using the 
pheatmap (v 1.0.12) R package (125).

Differential proportion testing
Differences in cell type proportions were evaluated in the HFpEF 
and COVID-19 experiments using the propeller function from the 
Speckle R package (v 0.0.2) (126). In both experiments, sample was 
set to biological replicates and group was set to experimental condi-
tion (HFpEF versus normal chow and time point or COVID-19 versus 
uninfected). A false discovery rate of 0.05 was used to determine 
significance.

Ethics statement
Mice were bred and housed in the BioCORE facility of the Victor 
Chang Cardiac Institute. All experimental procedures were approved 
by the Garvan Institute/St. Vincent’s Hospital Animal Experimentation 
Ethics Committee (nos. 19/07 and 19/14) and performed in strict ac-
cordance with the National Health and Medical Research Council of 
Australia Guidelines on Animal Experimentation. Mice were main-
tained on a 12-hour light/dark cycle from 6 a.m. to 6 p.m. and had 
unrestricted access to food and water.

Mouse strains
1) Wild-type [inbred C57BL/6J] (the Jackson Laboratory; stock 
no. 000664).

2) PdgfraMCM/+ [Pdgfratm1.1(cre/Esr1∗)Nshk] (RIKEN, Japan; MGI 
catalog no. 5475226).

3) PdgfraH2BEGFP/+ [B6.129S4 Pdgfratm11(EGFP)Sor/J] (the Jackson 
Laboratory; stock no. 007669).

4) Rosa26-tdTomato [B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)
Hze/J] (the Jackson Laboratory; stock no. 007909).

Lineage tracing
For irreversible labeling and fate mapping of PDGFRα+ cells, 
PdgfraMCM/+ males were mated with RosaTom/Tom females on the 
C57BL/6J background. Reporter activation in 8- to 12-week-old 
male PdgfraMCM/+; RosaTom/+ mice was induced by three intraperi-
toneal injections of tamoxifen (Sigma-Aldrich, A9525) (100 mg/kg 
body weight) on consecutive days.

MI and AngII heart failure models
MI was performed as described previously (8). Hypertension-induced 
cardiac hypertrophy and fibrosis were achieved by subcutaneous 
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implantation of osmotic pumps (Alzet, model 2002) loaded with 
AngII (Sigma-Aldrich, United States; no. T5648) (1000 ng/kg per 
min) or vehicle (saline). Osmotic pumps were implanted 1 week af-
ter the tamoxifen treatment, and hearts were subjected to cells or 
tissue analysis at indicated time points after implantation.

HFpEF Model
The mouse HFpEF model was induced in the C57BL/6J background 
by HFD + l-NAME (Nω-nitro-​l-arginine methyl ester hydrochloride) 
(Sigma-Aldrich, no. N5751-25G) feeding for 15 weeks as described 
previously (78). Ten- to 12-week-old male mice were fed with a normal 
chow diet or HFD (Specialty Feeds, Australia; no. SF13-092). l-NAME 
was dissolved in drinking water (0.5 g/liter, pH = 7.4). The develop-
ment of HFpEF was monitored via blood pressure taken via tail cuff 
and by echocardiography.

Analysis of HFpEF sc/snRNA-seq data
The Fastq files were processed to count matrices using the CellRanger 
6.0.2 count program against the mm10 reference used above. As the 
data contain both cells and nuclei, we ran CellRanger count once to 
count exons only and a second time to include introns by setting 
--include-introns. Individual datasets for exons only or exons plus 
introns were aggregated using the CellRanger aggr program with 
the normalize parameter set to “none.” Doublets were predicted and 
removed using Scrublet on the exon counts, with a doublet score 
threshold of 0.25 used to classify cells as doublets.

As a combination of single cells and nuclei are a confounding 
factor for clustering, we first identified and integrated the cells and 
nuclei as follows. A previous work (127) has shown that ribosomal 
genes and long noncoding RNAs (lncRNAs) can discriminate between 
cells and nuclei, respectively. We therefore defined a “ribosomal score,” 
based on all ribosomal genes using the Seurat AddModuleScore 
function. Similarly, all lncRNAs as marked in the CellRanger mm10-
2020-A GTF file were used to generate an lncRNA module score. 
The product of these two scores was taken, and the dataset was split 
according to the ribosomal × lncRNA score, with a score >−0.5 rep-
resenting putative nuclei and <−0.5 representing putative cells.

After the datasets were split into putative cells and putative nu-
clei, these two datasets were integrated using the Seurat integration 
pipeline. For the purposes of integration, the counts for the nuclei 
were updated to include introns. Each dataset was log-normalized, 
and the top 3000 variable genes were identified with the FindVariable-
Features function. Integration features were selected with the 
SelectIntegrationFeatures function, with features set to 3000. The 
FindIntegrationAnchors and IntegrateData functions were then run. 
The data were then scaled and reduced with PCA, and the Find-
Neighbors function was run on the top 40 PCs. FindClusters was 
run using a resolution of 1.2. RunUMAP was run on the top 40 PCs. 
A total of 34 clusters were returned an annotated based on marker 
gene expression. Of these, one was identified as contaminating red 
blood cells and removed, and a second defined by up-regulation of 
mitochondrial genes was filtered out.

TMT discovery proteomics sample preparation
Tandem mass tagged (TMT) discovery proteomics was carried out 
by specialist staff at Sydney Mass Spectrometry, The Charles Perkins 
Centre, University of Sydney, Australia. Heart tissue was powdered 
under liquid nitrogen, before 20 mg was mixed with 400 ml of so-
dium deoxycholate buffer and heated to 95°C for 10 min at 1000 rpm, 

in a thermomixer. The samples were processed in a bead beater for 
3 min at 50 Hz. A solution of 10 mM tris(2-carboxyethyl)phosphine 
and 40 mM chloroacetic acid was added to each sample, which was 
then returned to the thermomixer to reduce and alkylate proteins at 
95°C for 10 min at 1000 rpm. Sample cleanup was carried out using 
chloroform/methanol precipitation and resolubilized in 6 M urea/2 M 
thiourea. Following Qubit quantitation, 100 mg was taken from each 
sample and made up to 50 ml with urea/thiourea. The proteins were 
then digested by the addition of 2 mg of porcine trypsin and incu-
bated at 37°C in a thermomixer for 16 hours at 1000 rpm.

TMT labeling, mid-pH fractionation, and data collection
The peptides were purified using Oasis hydrophilic-hydrophobic– 
balanced (HLB) with short cartridges (Waters Corp., Milford, MA, 
United States) and resuspended in a total volume of 30 μl with 100 mM 
Hepes buffer (pH 8.5). For each sample, 7-μg total peptides were 
labeled with TMT pro 16plex Isobaric labeling reagent (Thermo Fisher 
Scientific, MA, United States), following the manufacturer’s instructions. 
The TMT-labeled peptides were purified using an HLB column and 
fractionated by offline basic pH reversed-phase chromatography. 
Approximately 15 μg of peptides was loaded on to an in-house packed 
320 μm × 25 cm column (3.5 μm particle size, Xbridge BEH C18; 
Waters Corporation, MA, United States). Liquid chromatography 
(LC) mobile phase buffers were composed of 10 mM ammonium 
formate (pH 7.9) and 90% (v/v) acetonitrile/10% (v/v) water. Peptides 
were eluted using a linear gradient of 5 to 50% over 45 min at a flow 
rate of 6 μl/min. Twelve concatenated fractions were then dried 
down prior to analysis. The TMT-labeled hydrophilic interaction 
liquid chromatography fractions were resuspended in mass spec-
trometry (MS) loading buffer [3% (v/v) acetonitrile/0.1% (v/v) for-
mic acid] and analyzed online by nanocapillary LC–tandem mass 
spectrometry using a Dionex Ultimate 3000 HPLC system (Thermo 
Fisher Scientific, MA, United States) coupled to an in-house built 
fritless nano 75 μm × 30 cm column packed with ReproSil Pur 120 
C18 stationary phase (1.9 μm, Dr. Maisch GmbH, Germany). Sepa-
rated compounds were analyzed with an Orbitrap Eclipse Tribrid 
Mass Spectrometer (Thermo Fisher Scientific, MA, United States). 
A synchronous precursor selection MS3 method was used for data 
collection (128). Proteome Discoverer 2.5 (Thermo Fisher Scientif-
ic, MA, United States) was used to analyze the MS data; the settings 
included the SEQUEST HT database search engine node and perco-
lator validation for protein identification. The abundance ratios for 
each sample were calculated against a pooled internal standard and 
normalized relative to total protein signal. Protein quantification 
values were exported for further analysis to Microsoft Excel (2016), 
and log(fold change) values were calculated.

Statistical analysis
For statistical analysis, unless otherwise specified, all results obtained 
from independent experiments are reported as means ± SEM of 
multiple replicates. Comparisons between two groups of normally 
distributed and not connected data were performed using unpaired, 
nonparametric Student’s t test. Multiple group comparisons were 
performed by one-way analysis of variance (ANOVA) (for one inde-
pendent variable) or two-way ANOVA (for two independent variables), 
followed by Tukey’s post hoc comparison (GraphPad Prism version 
8.0, La Jolla, CA). Unless otherwise indicated, “n” in the figure legends 
represents the number of animals or independent biological samples 
per group used in the indicated experiments. P values of <0.05 were 
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considered statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001.
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