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Abstract

We develop a simulation framework for studying misinformation spread within online social

networks that blends agent-based modeling and natural language processing techniques.

While many other agent-based simulations exist in this space, questions over their fidelity

and generalization to existing networks in part hinder their ability to drive policy-relevant

decision making. To partially address these concerns, we create a ’digital clone’ of a known

misinformation sharing network by downloading social media histories for over ten thousand

of its users. We parse these histories to both extract the structure of the network and model

the nuanced ways in which information is shared and spread among its members. Unlike

many other agent-based methods in this space, information sharing between users in our

framework is sensitive to topic of discussion, user preferences, and online community

dynamics. To evaluate the fidelity of our method, we seed our cloned network with a set of

posts recorded in the base network and compare propagation dynamics between the two,

observing reasonable agreement across the twin networks over a variety of metrics. Lastly,

we explore how the cloned network may serve as a flexible, low-cost testbed for misinforma-

tion countermeasure evaluation and red teaming analysis. We hope the tools explored here

augment existing efforts in the space and unlock new opportunities for misinformation coun-

termeasure evaluation, a field that may become increasingly important to consider with the

anticipated rise of misinformation campaigns fueled by generative artificial intelligence.

Introduction

Online misinformation has played a critical role in shaping public opinion on national issues

such as election security [1, 2], vaccine effectiveness [3, 4], climate science [5, 6], and many

other topics in recent years. As social media platforms continue to proliferate in volume [7]

and as technologies such as generative artificial intelligence (AI) mature, misinformation cam-

paigns are expected to increase in both severity and scale [8, 9]. Consequently, significant effort

has been focused on developing strategies to understand misinformation spread [10, 11] and

design mitigation strategies [12–14]. Within many of these frameworks, misinformation

spread is viewed through the lens of network theory and infectious disease modeling [15, 16],

whereby infected social network nodes (misinformation spreaders) expose node neighbors
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(social media connections) to infection, thereby inducing further infections. Consequently,

many proposed misinformation countermeasure strategies are rooted in public health con-

cepts such as inoculation via media literacy training [17], quarantining of infected individuals

via account blocking [18], inoculation via fact-checking [19], and others.

While mitigation strategies have been evaluated in randomized control trials [20–22], it is

difficult to anticipate how their effectiveness may change when applied at scale under rapidly

shifting online landscapes. A growing body of research is leveraging agent-based modeling

(ABM) to explore countermeasure evaluation [23–27] in low-cost, flexible environments. Such

systems allow for the simulation of misinformation campaigns across synthetic networks that

are customizable in both structure and scale. While still subject to the typical limitations of

agent-based models [28], such as computational complexity and explainability, these platforms

allow for probing of more granular dynamics than typically available via alternative computa-

tional techniques [29]. However, a majority of agent-based misinformation infection models

rely on infection probabilities that are static for each user and for each topic of misinformation

that is explored. In reality, the likelihood of information spread between social media users has

a complex relationship to user preferences, user community, and the topic being discussed

[30, 31]. The lack of such dynamism in static infection models limits investigation of how

countermeasure effectiveness varies in response to these variables.

To address these concerns, in this mixed methods article we augment existing ABM frame-

works with machine learning (ML) methods to generate infection pathways that are sensitive

to user community, user preferences, and topic of discussion. A known misinformation-

spreading network is ‘digitally cloned’ by downloading X (formerly Twitter) activity histories

for each user within the network, which are further processed to train ML models to produce

user-specific infection probabilities. Secondly, we introduce an information mutation feature

into our ABM that leverages large language models (LLMs) to predict how information

morphs as it is transmitted through a network. We evaluate our framework, which includes

both infection and mutation models, by seeding the cloned network with a sample of recorded

posts within our base network and comparing propagation dynamics between the two. Lastly,

we build our system predominantly in Julia, a programming language which may offer scaling

advantages when simulating dynamics in larger, and more realistic, networks.

Put together, this work presents progress towards building systems to (1) better evaluate

online misinformation countermeasures in low-cost environments and (2) perform red team

analysis on what linguistic framing and/or discussion topics render online networks most vul-

nerable to misinformation spread. In the following sections, we outline our method, describe

our results, and summarize future steps for this research.

Materials and methods

Misinformation event selection

Cloning all users within a social media platform is not computationally feasible, nor necessary,

given the aims of this work. Consequently, the first step in creating a digital clone is identifying

a relevant social media subnetwork. Ideally, such a subnetwork would consist of highly con-

nected users who regularly share misinformation posts amongst one another, as such a net-

work is likely to exhibit rich propagation dynamics for our ABM to replicate. However,

identifying such a subnetwork, and evaluating its properties, is a non-trivial task. Instead, we

focused on the less burdensome task of identifying a viral misinformation post authored by a

given user and then backtracking a subnetwork by identifying users who interacted with this

post. While a subnetwork identified via this route may not be optimally structured, it was suffi-

cient for many purposes of this work, as will be discussed. Network backtracking will be
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described further in the Network Selection section; in this section we focus on the selection of

a viral source post (TS) submitted by a source user (uS).
To narrow our consideration pool for TS, we focused on a set of X posts flagged in a

COVID-19 vaccine hesitancy dataset established in the literature [32]. We selected this dataset

both for its robustness and for its relevance to recent misinformation conversations. Within

this dataset, we restricted our search to events that occurred in 2021 to avoid data volatility in

the period surrounding the initial onset of the COVID-19 pandemic.

Within this narrowed set of events, we randomly sampled a set of posts and leveraged the X

application programming interface (API) and rank them in descending order of retweet (RT)

count. We hand-evaluated the top ten results and selected a post related to vaccine conspiracy

theories authored in May 2021 that generated a total of ~600 retweets, placing the post in the

~90% percentile in terms of retweet activity [33]. The tweet was chosen for its linguistic coher-

ence and relative self-containment compared to the other reviewed posts. We do not provide

the text of the source post here to protect individual privacy.

Network selection

The next step was to construct a network of users who engaged with TS, or were connected to

such users, to serve as a foundational subnetwork for our cloned ABM. We leveraged the

Brandwatch [34] platform, a third-party collector and distributor of social media datasets, to

track the set of users, UT, who shared TS or any subsequent retweet of TS. We then derived a

subnetwork consisting of these nodes and a modified set of their immediate one-hop neigh-

bors. For the remainder of the article, we will define the following terms: if a user ui follows a

user uj, ui is a follower of uj and uj is a followee of ui.

In more detail, for each user, ut within UT, we downloaded tweets posted between February

2021 –April 2021 that were either (1) retweeted by ut or (2) posted by ut and later retweeted by

another X user. This period, which precedes TS by three months, was chosen to probe network

relationships/behavior that existed in the timeframe immediately prior to TS. The set of all

users present in this dataset, either as a retweeter or original poster, is denoted as UA. Bidirec-

tional edge relationships between users in UA were defined as:

eij ¼
1 if jRijj > 0

0 if jRijj ¼ 0

(

ð1Þ

where eij is a binary variable that indicates whether an edge relationship between ui! uj exists,

Rij is the set of posts authored by ui and subsequently retweeted by uj, and |Rij| is the size of this

set. To make our network size manageable for running simulations given available resources,

we further narrowed the network via the following process. Firstly, we define NA as the subnet-

work to be used within our ABM and initially set NA = UT. We consider all users in UT, but

not present in NA, and rank each user in this set, ui, according to the number of incoming
P

j�NA
jRjij

� �
and outgoing

P
j�NA
jRijj

� �
posts they’ve participated in with users within NA,

weighing each equally. Following a modified snowball sampling procedure, we add the highest

ranked user to NA and repeat the process iteratively until we have 10,000 users in NA (S1

Appendix in S1 File). Considering both the in-degree and out-degree connections of each user

to NA during the subnetwork selection process helps balance including users who source infor-

mation with those who disseminate information.

One-hop nearest-neighbor and snowball sampling have been known to produce subnet-

works that differ from their global networks across metrics such as centrality, average path

length, and others [35, 36]. The sampling procedure ensured here is deemed adequate but not
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optimal. While we focus the remainder of our analysis on the ability of our ABM to replicate

dynamics within NA, we nosste that in future studies, alternative sampling techniques may be

employed to generate ABM subnetworks with properties more representative of social net-

works of interest.

Lastly, on the X platform, each profile is associated with a set of users who follow the

account and a second set of users the user of the account themselves follow. However, these

relationships do not fully capture information spreading pathways. We infer edges between

nodes through Eq 1 rather than extracting followee! follower relationships from the X API

for the two following reasons:

1. Users are capable of retweeting information from individuals they do not follow. These

information pathways are captured via the method above but are not captured by solely

examining a user’s followees

2. When this research was conducted, the X API has rate limits that would make such process-

ing infeasible for our network

For the remainder of the text, we will define follower and followee relationships as edge

relationships determined by Eq 1 rather than those stated on a user’s X profile.

Community detection

With NA defined, we performed Leiden community detection [37] to segment each user into a

community, allowing community-community interactions to be studied within our ABM. This

process yielded nine total communities. Visualizations of these communities, as well as interac-

tions between them, are presented in Fig 1A. In the figure, each node represents a community,

where the node size (edge thickness) is proportional to the community size (number of total

edges between users from separate communities). A visualization of the network structure

within an example community (‘Free Assange’) is presented in Fig 1B, and the degree distribu-

tion for NA is shown in Fig 1C. Community labels were extracted by leveraging the BERTopic

[38] library to apply a class-based term-frequency inverse-document-frequency (c-TF-IDF) tech-

nique to a random sample of ~10,000 tweets from each community (S1 Appendix in S1 File).

Data extraction

We segment the Brandwatch historical X data pulled for each user in NA into three timeframes

as follows:

• Period I (Feb. 01, 2021 –Mar. 31, 2021)

• Period II (April 1, 2021 –April 15, 2021)

• Period III (April 16, 2021 –July 31, 2021)

Data from Periods I-II are leveraged to establish network relationships, extract user features

needed for the ABM, and train both the infection model and the mutation model. Period III

data is leveraged to evaluate both our infection model and our mutation model as well as to

evaluate the performance of our ABM. A notional diagram of the roles these time periods play

in our pipeline is displayed in Fig 2.

Ethics statement

We only extracted public posts which users, by agreeing to X’s data privacy terms and condi-

tions, agreed to make broadly publicly accessible. The RAND Corporation Human Subjects
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Protection Committee (HSPC) reviewed and approved the data collection and handling proto-

cols within this project. Given no private posts were obtained during this work, and given X’s

data privacy policy, the HSPC board determined additional consent was not required from the

studied users. To minimize the amount of personally identifiable information ingested by our

system, only data fields such as user id, post text, post engagement type (post, reshare, reply,

etc.), and number of followers/followees were analyzed within our research. However, a user

id can be linked to a user’s profile, where, in certain cases, users may opt to share personally

identifiable information publicly. Additionally, Brandwatch’s policies only permit authorized

Fig 1. Base network characterization. (A) Network diagram of our base social media network. Node size is proportional to community population

number, and edge thickness is proportional to the number of user edges between two community nodes. The labels are extracted by applying topic

modeling to recorded tweet history within each community. (B) A directed network diagram for a sample of users within the ‘Assange’ community

where each node represents a user within the community, node size is proportional to follower count, and edge transparency is proportional to node

out-degree (C) The in-degree and out-degree distribution of our base network.

https://doi.org/10.1371/journal.pone.0304889.g001

Fig 2. Data segmentation. Diagram displaying how historical social media data from users in our base network is distributed amongst various stages of

development stages for the ABM, infection model, and mutation model.

https://doi.org/10.1371/journal.pone.0304889.g002
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users to access data extracted on their platform. For both reasons, we do not release any of the

raw social media data we analyzed in this work. However, we do present the raw data from our

anonymized ABM simulations within a public data repository.

ABM dynamics

We build an agent-based susceptible-exposed-infective (SEI) model where individuals can

either be susceptible (S, have not been infected), exposed (E, have been infected by misinfor-

mation but have not yet retweeted misinformation), or infective (I, have retweeted misinfor-

mation). A detailed workflow diagram of the ABM logic is displayed in Fig 3, and a condensed

summary is provided as follows:
SEI Model Pseudocode
I. source author uS is exposed to tweet Ts
• set the state of user uS to exposed: S(uS) ! E
• initialize the set of exposed users: SE ! {uS}
• set author uS infection time: ts ! 0
• set the originator of tweet: Orig(Ts) ! uS

II. while |SE| > 0:
• Find the user ui with the lowest infection time ti
• user ui is infective
• S(ui) ! I

• remove user ui from the set of exposed users
• SE ! SE \ ui

• for each susceptible follower uj of ui (i.e., all uj such that uj
follows ui and S(uj) = S):

Fig 3. Schematic diagram of the ABM logic. Illustrative diagram conveying the operating principle behind the ABM. A source user is infected when

they share a source post. Their followers are exposed to their infection, some of which will become infected themselves by resharing the source post.

This process continues across infection layers, with a fraction mutating the infection as they transmit it by adding additional commentary to their

reshare post.

https://doi.org/10.1371/journal.pone.0304889.g003

PLOS ONE Digital cloning of online social networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0304889 June 21, 2024 6 / 19

https://doi.org/10.1371/journal.pone.0304889.g003
https://doi.org/10.1371/journal.pone.0304889


• compute infection probability as IP ! IM(uj, Orig(Ti), Ti) (Orig
(Ti) is the originator of tweet Ti)

• sample a uniform random variable: xIP ~ Uniform(0, 1)
• if xIP � IP:
• follower uj is exposed: S(uj) ! E
• follower uj is added to the set of exposed users: SE ! SE [ {uj}
• follower is assigned an infection time
• sample Δ ~ Exponential(1)
• tj ! ti + Δ

• compute quote tweet probability: QP ! QM(uj)
• QM(uj) is the empirical frequency at which user uj quote
tweets (as opposed to retweets) from their observed twitter
history. This quantity is pre-computed for each user.

• sample xQP ~ Uniform(0, 1)
• if xQP � QP:
• Tj generated by LLM
• Orig(Tj) ! uj

• if xQP > QP:
• Tj ! Ti
• Orig(Tj) ! Orig(Ti)

• if xIP > IP:
• continue

where S(uj) represents the SEI state of user uj; S is the susceptible state; E in the exposed state; I
in the infective state; IM(uj, uk, Ti) is a function that returns the probability of infection with

features derived from the follower uj, tweet’s source author uk, and the tweet itself Ti (see

Infection model section below). One thousand iterations of the above process are executed for

each explored ABM scenario to capture stochastic variation.

Infection model

The infection model estimates the probability IP = IM(fj, uk, Ti) that a particular follower fj of

user ui will retweet tweet Ti, originally posted by user uk. To provide features for this model,

we calculate vector embeddings for Ti and also provide the following set of information

extracted from uk and fj during Period I: the number of followers, the number of followees, the

follower-to-followee ratio, the frequency at which their tweets were retweeted, the frequency at

which they retweeted followee tweets, and a set of embeddings extracted from their retweet

history (Fig 4). A vector is constructed from all non-embeddings features and concatenated

with the embeddings vectors to form a final set of model inputs.

As noted above, there are two types of embeddings ingested by the model: a set (user-level)

calculated for uk and fj and another set (tweet-level) extracted from Ti. For the user-level set,

we generate 384-dimensional embeddings for each Period I post that is either authored by uk
or reshared by fj using the all-MiniLM-L6-v2 model in the sentence-transformers Python

package [39]. We use an autoencoder to further reduce the embedding dimension to 24 and

then average these reduced embeddings for each user, generating a tweet embedding vector

for uk and retweet embedding vector for fj. The uk and fj embeddings provide information on

the type of content each user has historically posted and reshared, respectively.

For the tweet-level embeddings, we apply all-MiniLM-L6-v2 to Ti as above but use a sepa-

rate autoencoder to reduce the embedding dimension to 96. We concatenate all three sets of

embeddings mentioned above into a vector that is ingested, along with the non-embeddings

features, by the model. By providing both tweet-level and user-level embeddings, we enable

the model to parse how the topic of a given post relates to historical user preferences. Here, we

chose a greater dimension for the Ti embeddings than the user-level embeddings so that the
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infection model would be more sensitive to the text of the tweet spreading through the

network.

After pre-processing the data, we trained a gradient-boosted tree classification model using

the EvoTrees Julia package [40] to compute the probability that a follower will retweet a partic-

ular tweet from a particular followee. The data in our training period included 35,330,188

tweets, with a total of 130,432 retweets (0.37% overall retweet rate). Here, we assume all follow-

ers of a user are exposed to their posts, meaning a lack of reshare between a user and their fol-

lower will be labeled as a negative event within our binary classification training set. We

Fig 4. Schematic diagram of the infection model training process. Diagram describing the training process for the

infection model, which predicts whether User A will retweet User B’s post. The core model is a gradient boosted

classifier with three sets of input features (i) transformer embeddings of User B’s post (i) transformer embeddings

extracted from both historical tweets User B has authored and historical tweets User A has retweeted from others (iii)

user metadata—such as number of followers, number of followees, etc.–from both User A and User B. Once the

infection model is trained, it can be deployed to estimate the likelihood of infection spread.

https://doi.org/10.1371/journal.pone.0304889.g004
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partitioned the data into a training set of roughly 20% of observations and a test set of the

remaining 80%. We used the hyperopt Python package [41] for identifying optimal hyper-

parameters subsequently used for fitting the final model.

We evaluate our model on a set of four Period II-III test sets, each consisting of samples

taken from each month in the April 2021 –July 2021 time frame. We observe a degree of over-

fitting between the training and test sets; however, we notice only very slight performance deg-

radation across time, suggesting Period I-II user behavior encoded during the training process

remains relevant to user information sharing tendencies for multiple months (Fig 5A). The

persistence of infection model performance bodes well for the maintainability of simulation

frameworks leveraging the model. For example, if performance degraded sharply over time,

the model would need to be retrained frequently to produce infection probabilities aligned

with current user preferences, imposing significant model maintenance costs. The lack of such

degradation implies an infection model, once trained, may produce reasonably accurate infec-

tion probabilities across a time horizon spanning several months.

Because the boosted tree model involved regularization, its outputs did not correspond per-

fectly to empirical probabilities and had to be recalibrated to conform to actual probabilities.

To recalibrate tree model outputs, we binned the prediction from each observation in the test

dataset by quantile (100 quantiles total). We then calculated the empirical probability of a

retweet among all observations in each quantile. Finally, to smooth the calibration curve, we fit

a degree-11 polynomial with non-negative coefficients to the calibration curve, which we used

to adjust any boosted tree model outputs for the simulation model.

Fig 5. Infection model and ABM characterization. (A) The AUC-ROC curves for the infection model across the training set and set of hold-out test

sets from different time periods that occurred after all recorded training set events. Slight overfitting between the training and test sets is observed;

however, performance across test sets appears roughly consistent, suggesting Period I and II user behavior encoded during the training process is

indicative of forward-looking information sharing behavior for multiple months. (B) The number of infections across infection layers for a set of ABM

trials for a sample source post. The grey lines represent traces obtained from each of the 1000 trials. The blue bands denote the 68% percentile bands

across these trials, with the red dashed line representing the median number of infections at each infection layer across all trials.

https://doi.org/10.1371/journal.pone.0304889.g005
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Mutation model

Rather than remaining static, misinformation often gets mutated as it travels through a social

network, as users interpret and transmit information through their own unique lens. On the X

platform, users can add custom commentary to posts they retweet from other users, with such

posts often garnering more attention than standard reshares. For example, within our Period

I-II dataset, these so-called ‘quote tweet’ (QT) events experienced an average of ~50% more

impressions than standard retweet events, as measured by BrandWatch’s monitoring metrics

[42, 43].

While previous work has highlighted the importance of information mutation to misinfor-

mation propagation dynamics [44, 45], such mutations are difficult to model, posing chal-

lenges to incorporating them into ABMs. In this work, we explore how LLMs may be

leveraged to reduce this capability gap.

The anatomy of a quote tweet event consists of a parent tweet a user shares (PT, i.e., ‘Cli-
mate scientists lie AGAIN about impact of fossil fuels on sea levels’) and additional commentary

the user adds to the PT (AC, i.e., ‘First climate scientists, now vaccine scientists. . . #NoTrust’).
Upon authoring of the QT, followers of a user will see an aggregated post consisting of AC

+ PT concatenated together (i.e., ‘First climate scientists, now vaccine scientists. . . #NoTrust:
Climate scientists lie AGAIN about impact of fossil fuels on sea levels’).

Our mutation model is described in depth in S2 Appendix in S1 File, and a high-level over-

view is provided here. For a subset of users, we instructed the gpt-3.5-turbo model to predict

user AC given a PT for a set of Period III QT evaluation events, sampling from the user’s

Period I-II QT history to provide few-shot prompting context. We only selected users who had

at least 25 QTs in Period I-II and 20 QTs in Period III for mutation modeling to ensure we had

enough QT events for context building and model evaluation, respectively. Further, the muta-

tion model predicts the text of a given QT event but not whether it will occur. For modeling

the latter, a random draw based on a users’ Period I-II QT:RT frequency count ratio deter-

mines whether a user exposes his followers to a mutated (QT) or un-mutated (RT) strain of

their infection within our ABM (Fig 3).

To evaluate the quality of the QT predictions, we computed cosine similarities between the

embeddings of the LLM prediction and the ground truth text. Amongst the set of selected

users, we observed an average cosine similarity of 0.54 between embeddings of the LLM ACs

and ground truth ACs (S2 Appendix in S1 File).

While the data filters mentioned above limited the mutation model user set to ~1% of total

NA users, in the future, increasing the length of Period I-II, exploring longer context window

models, and additional prompt engineering may improve results even further. Due to the lim-

ited user set, our mutation model exerted minor influence on our ABM outputs (<1% differ-

ence in infection rates compared to neglecting mutations); however, this trend is expected to

change as the capability is expanded to more users. The prototype method explored here pres-

ents a step towards modeling more complex online misinformation behavior through LLMs

and simulating information sharing not solely restricted to reposts.

ABM runtime

The runtime of the ABM is determined by the number of mutation events, the average infec-

tion probability, and the degree distribution of the network. For each tweet, we run 1,000 sim-

ulations to accurately capture uncertainty in the infection dynamics. When allowing for

mutations, the runtime for 1,000 simulations is ~5 minutes. In this case, OpenAI API calls

were run serially with an average response time of 1.13 seconds and accounted for ~70% of

total run time. An equivalent model without mutations required only ~20 seconds of runtime
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for 1,000 trials. Note that the non-mutation model benefits from both avoiding OpenAI API

calls and the ability to pre-compute all required infection probabilities prior to running the

ABM given the static infection tweet text. Infection probabilities for mutations, which are not

known a priori, cannot be pre-computed in this way. However, parallelization of OpenAI calls

and increasing parallelization of ABM trials can reduce run times further. Assuming conserva-

tive ~N2 scaling of computation time with network size, simulating networks of order ~1M

users may be feasible.

Results

After establishing our cloned network and infection model, we conducted benchmark tests to

evaluate its performance. Firstly, we seeded the synthetic network with TS as discussed in the

Misinformation event selection section and monitored propagation dynamics over 1,000 trials.

The distribution of infection number across all simulated trials, displayed as a function of

infection layer, is shown in Fig 5B.

Direct comparison of both the total infection number and total infection rate (infection

number / exposed users) between the cloned and base networks is complicated due to their dif-

ferent sizes. For example, uS has ~100,000 followers, while NA only possesses ~10,000 users

total. While NA contains users infected in the base network, it does not contain all users that
could have been infected. Put another way, the observed outcome in our base network is one

sample drawn from possible outcomes that could be observed if one were able to initialize

identical versions of the base network prior to applying TS. Since our ABM does not contain

the same set of users, it cannot sample the full outcome space available to our base network

and produce directly comparable infection numbers.

To account for the difference in network sizes, for all work presented below, we multiply

infection probabilities by a constant factor α. We explored a range of values and found that α
= 3.0 resulted in total infection numbers in our cloned network similar to that observed in the

total network.

As an alternative to comparing direct infection numbers, we explore how well our ABM

anticipates variations in virality amongst posts by seeding our network with both

(i) a set of ~10,000 Period III posts sampled across all users in NA

(ii) a set of ~1000 Period III posts sampled from uS

For posts within both (i) and (ii), we extracted the number of infected users for each post

through our Brandwatch dataset and compared the resulting value to that obtained through

our ABM. The comparison of (i) helps assess how well the ABM can predict variations in viral-

ity amongst a set of posts by considering differences in both user-level features and post text.

On the other hand, the comparison of (ii) helps isolate the degree to which the ABM can antic-

ipate how differences in post text impact virality. Due to computational requirements of run-

ning such a large volume of simulations, we truncate each ABM trial after the first infection

layer. For (i), we also normalize infection number by the number of post author followers to

set a consistent scale across observations. Lastly, since events are randomly sampled from each

user’s post history, not all posts with (i) and (ii) are necessarily misinformation-related, yet

their analysis still provides insight into our platform’s ability to simulate propagation dynamics

within NA.

As shown in Fig 6A, the number of recorded infections within NA for type (i) posts demon-

strates a reasonable correlation with that predicted by the ABM with a Pearson correlation in

log-space equal to 0.81 (p< 0.01). A positive, albeit not statistically significant, correlation of

0.06 (p = 0.075) is observed (Fig 6B) for type (ii) posts. These results suggest most of the
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variation in virality explained by the ABM is attributable to user-level features; however, the

ABM still does demonstrate a degree of text-sensitivity even when user-level features are fixed.

For reference, static infection models that do not consider user or text-based features would

not display any variation in virality across (i) and (ii) posts. In summary, Fig 6A and 6B dem-

onstrate that post virality varies strongly both across users as well as across posts authored by a

single user. This variation is partially reproduced by our dynamic ABM but is largely neglected

by more traditional static infection probability frameworks, suggesting the tools explored here

may help produce higher fidelity simulations of social network activity. Lastly, while Fig 6 sug-

gests user-level features account for a majority of ABM variation, the infection model architec-

ture can be adjusted to place more or less of an emphasis on text-based features, allowing for

balancing of ABM text sensitivity with simulation fidelity.

Aside from understanding how many users a post will infect, understanding how these

infections are distributed across online communities is also a key consideration for interven-

tion strategies. To this end, we compare the community infection rates (number of infections /

community size) extracted from our cloned and base networks for TS (Fig 7A), observing an

average mean absolute error of 0.065 between the two sets. For comparison, we also ran a static

probability version of our ABM that replaced our infection model with a fixed infection rate

equal to the average reshare rate of all posts within NA. This baseline achieved a MAE of 0.080,

a value roughly 15% larger than our infection model ABM.

In Fig 7B, we also present the community-to-community infection rates within an ABM

trial for TS as a heatmap. The heatmap indicates strong interactions between the two COVID-

related communities within NA, as might be expected given the nature of the post. While in

our ABM model we can track which member infected another member, there is an ambiguity

in the underlying Brandwatch data that makes it unclear whether a user in the base network

Fig 6. Comparison of infections in base and cloned networks. (A) For a set of source posts sampled across all users in our base network, we plot the

infection rates extracted from simulating these events within our ABM versus the infection rate measured in the base network ABM (Pearson

correlation in log-space equal to 0.81, p< 0.01). Infection rate, which is calculated as number of infections divided by the number of source author

followers, is presented to provide a consistent scale across the observations. (B) A similar plot to (A), except all events are sampled from uS (Pearson

correlation in log-space equal to 0.08, p = .075). Since all author-level features are fixed for these events, the visualization conveys the extent to which the

ABM can anticipate variations in virality arising solely from post text. In both plots, the blue solid line represents a linear fit to the data, with the bands

denoting the 95% confidence intervals of the fit.

https://doi.org/10.1371/journal.pone.0304889.g006
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reacted to TS or a subsequent retweet of TS when spreading their infection. Due to this ambigu-

ity, we cannot directly compare infection pathways between the twin networks. However,

since understanding community infection pathways is often a starting point within infode-

miology [46], we still explore such dynamics to highlight an operational feature of the ABM.

Countermeasure evaluation

To demonstrate our platform’s relevance to countermeasure evaluation, we ran two separate

sets of ABM simulations, as discussed below.

Quarantining of influential individuals. We first ranked users in descending order of

how many infections they caused within our simulation of TS. We then ran a set of simulations

where we effectively quarantined varying fractions of the most highly ranked users by render-

ing them unable to produce infections (account blocking). The results are displayed in Fig 8A.

As can be seen in the figure, infection numbers drop precipitously as the number of blocked

accounts increases. Social media moderators must carefully weigh the benefits of blocking an

individual to prevent harmful content spread on their platform with the costs of stymieing free

expression and eroding user trust. Evaluation methods that can estimate how integral different

users are to infection spread, and on which topics these users are most influential, may play a

role in guiding these risk calculations for moderators.

Inoculation of dominant infection-spreading communities. For our second set of simu-

lations, we first identified which community caused the largest number of infections within

our ABM simulation of TS. We then simulated an inoculation campaign in this community by

reducing all infection probabilities for community members by 20% +/- 2%, a value extracted

from research on such campaigns within randomized control trials [21]. The results from

these simulations are displayed in Fig 8B. As seen in the figure, the number of infections within

the network falls as inoculation rates within the target community increase.

Fig 7. ABM infections across communities. (A) A comparison of the distribution of infections rates across communities for TS between our base

network and a simulation of the event with our ABM. (B) A heatmap presenting the community-to-community infection rates recorded when

simulating TS through our ABM, with each grid block representing the fraction of total infections originating from the associated infection pathway.

https://doi.org/10.1371/journal.pone.0304889.g007
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Inculcation campaigns are being administered through in-person training [21] as well as

through digital advertisements [47], channels with differing costs and degrees of effectiveness.

With a better understanding of how inoculating different communities will impact overall

misinformation spread, public health practitioners can make more strategic decisions about

Fig 8. Countermeasure evaluation and ABM topical sensitivity. (A) Results for a set of simulations of TS where we block variable amounts of

influential users (x-axis) and measure the corresponding effect on total number of infections within the cloned network (y-axis). We run a base

simulation of TS to identify users that generated the most infections. We then run additional simulations while blocking the top X most influential

accounts, where X varies over a range of 0–1000. When a user is blocked in the ABM, they cannot infect other users. (B) We simulate an inoculation

campaign within our ABM by running a set of simulations where a variable fraction of users within a community (x-axis) has their output infection

probabilities decreased by ~20%. These simulations mimic the effect of inoculation campaigns that reduce the likelihood users will pass on

misinformation. As can be seen in the plot, as inoculation fraction decreases, so does the total number of infections recorded within the cloned network

(y-axis). The community chosen for inoculation here is the COVID-Vaccines community that generated the most infections within base simulations of

TS (C) We seed our ABM with a set of posts on different common misinformation topics, as well as a baseline post on cooking. We notice large

variations in the output infection numbers, indicating information spread within our cloned network is sensitive to topic of discussion. In all three

plots, infection numbers are presented on a normalized [0,1] scale.

https://doi.org/10.1371/journal.pone.0304889.g008
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who to target for inoculation and which inoculation channels to pursue given a finite set of

resources.

Topic sensitivity

Anticipating which misinformation topics may cause the most network activation ahead of

time may give social media platform managers and other actors more time to develop tailored

mitigation strategies. Another potential use case of our ABM is performing topical red teaming

to inform such discussions. To explore this, we ran our ABM using a set of seed posts covering

a range of common misinformation topics as well as a non-information topic, cooking, to

serve as a reference (S3 Appendix in S1 File). We notice relatively larger mean activations

across topics such as global warming, COVID, and vaccines than across topics such as geneti-

cally modified organisms (GMO) produce and our baseline topic (cooking). Once again, the

variance in infection number across topics demonstrates that our infection model and ABM

dynamics are sensitive to topic of discussion, unlike static infection models that are topic-

agnostic.

Discussion

In this work, we present a proof-of-concept system for simulating misinformation spread

within online social media networks. We effectively clone a base network of ~10,000 users by

producing an agent-based model where each agent is modeled after a user in the base network.

Social media histories for each base network user are extracted and transformed into features

that are assigned to each agent. Historical misinformation sharing events within the base net-

work are recorded and leveraged to train an infection model that predicts the likelihood that a

given social media post will be shared between two network agents. We also deploy LLMs to

anticipate how information will be mutated as it propagates through a network. Collectively,

the infection model, mutation model, and extracted network relationships ground our cloned

network in recorded social media behavior to help anticipate forward-looking misinformation

dynamics.

To evaluate our method, we seed our cloned network with a sample of historical posts

recorded within the base network and compare infection rates across the network twins,

observing positive correlations between the two. Similarly, compared to a static probability

ABM baseline, we demonstrate our infection model ABM 15% more accurately anticipates

how infections are distributed amongst online communities for a vaccine hesitancy validation

event. Lastly, we explore how the ABM may be leveraged for red teaming analysis and for sim-

ulating both quarantine-based and vaccination-based misinformation interventions.

However, there are several limitations of this work. Firstly, we evaluated our simulation sys-

tem by replicating dynamics within a fixed set of X communities known to discuss COVID-19

conspiracy theories. Future work should reapply our framework to a different set of online

communities and misinformation topics, either within X or a separate social media platform,

to assess the generalizability of our results. Similarly, our ABM was built upon a simple SIR

model that neglected more complex user interactions, such as refutation and debunking,

known to influence propagation dynamics [48, 49]. Further, we assumed a user exposed all fol-

lowers to a given retweet; however, X’s recommendation algorithm plays a vital role in deter-

mining the posts each user views, a mechanism that has been modeled elsewhere [50]. Lastly,

as described in the Network selection section, subnetwork generation required removing a set

of relationships known to exist within the base network. This process resulted in base and

cloned networks with non-identical graph structures, ultimately hampering the fidelity with

which the cloned network could replicate base network dynamics.
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There are several future directions this work may take. Firstly, in this work, we chose to

clone a relatively small social media subnetwork to simplify evaluation of our method. How-

ever, it may be desirable to create synthetic networks that are more representative of larger

national social media communities to study more widespread misinformation campaigns.

Extracting social media histories for all users in these networks is neither practical nor likely

necessary. Rather, a small set of recorded histories may be used to generate a much larger syn-

thetic population. Similarly, national social networks can be analyzed and condensed into

smaller, more manageable networks that still retain core parent network properties. A combi-

nation of community detection at scale, node aggregation [51], and synthetic network genera-

tion [52] can be performed to produce networks that are structurally similar to national

networks but computationally feasible to both populate with agents and run simulations over.

Secondly, higher dimensional embeddings can be leveraged within the infection model to

better capture sensitivities to subtle linguistic features such as tone, emotion, and other stance

variables. In line with recent work exploring LLMs for social simulation [53, 54], our binary

classification infection model may be replaced by fine-tuned LLMs trained on each commu-

nity to yield more accurate infection rates and mutation dynamics.

Lastly, the ABM can be modified to process multimodal misinformation content that con-

tains text, video, and image components, which may help extend our framework to other

mainstream social media platforms outside of X. While we note that the tools presented here

for misinformation mitigation may be adapted by bad-faith actors for misinformation amplifi-

cation, we hope the open publication of such tools prevents either offensive or defensive actors

from gaining a runaway advantage [55]. We believe the work presented here provides a useful

step towards more accurately modeling and understanding forward-looking misinformation

scenarios as well as developing nuanced mitigation strategies.
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