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Abstract

Despite the expert-level performance of artificial intelligence (AI) models for various medical 

imaging tasks, real-world performance failures with disparate outputs for various subgroups 

limit the usefulness of AI in improving patients’ lives. Many definitions of fairness have been 

proposed, with discussions of various tensions that arise in the choice of an appropriate metric 

to use to evaluate bias; for example, should one aim for individual or group fairness? One 

central observation is that AI models apply “shortcut learning” whereby spurious features (such 

as chest tubes and portable radiographic markers on intensive care unit chest radiography) on 

medical images are used for prediction instead of identifying true pathology. Moreover, AI has 

been shown to have a remarkable ability to detect protected attributes of age, sex, and race, 

while the same models demonstrate bias against historically underserved subgroups of age, sex, 

and race in disease diagnosis. Therefore, an AI model may take shortcut predictions from these 

correlations and subsequently generate an outcome that is biased toward certain subgroups even 

when protected attributes are not explicitly used as inputs into the model. As a result, these 

subgroups became nonprivileged subgroups. In this review, the authors discuss the various types 

of bias from shortcut learning that may occur at different phases of AI model development, 
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including data bias, modeling bias, and inference bias. The authors thereafter summarize various 

tool kits that can be used to evaluate and mitigate bias and note that these have largely been 

applied to nonmedical domains and require more evaluation for medical AI. The authors then 

summarize current techniques for mitigating bias from preprocessing (data-centric solutions) 

and during model development (computational solutions) and postprocessing (recalibration of 

learning). Ongoing legal changes where the use of a biased model will be penalized highlight the 

necessity of understanding, detecting, and mitigating biases from shortcut learning and will require 

diverse research teams looking at the whole AI pipeline.
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INTRODUCTION

Artificial intelligence (AI) models in medical imaging are able to match expert-level 

accuracy in multiple diagnostic and prognostic tasks, driven largely by developments in 

deep learning. For example, AI performance is at par with specialists for the diagnosis of 

common thoracic pathologies [1] and diabetic retinopathy on fundoscopic images [2] and 

outperforms single radiologists in detecting abnormalities on screening mammography [3]. 

Despite this high performance and the clearance of more than 520 algorithms by the FDA 

[4], the adoption of AI into the clinical workflow is still lagging. Moreover, studies have 

shown that there is a risk for unintended bias in AI systems affecting individuals unfairly 

on the basis of race, sex, and other clinical characteristics [5–8]. Although there exists no 

consensus on a single definition of fairness, there is recognition that bias can arise when AI 

leverages its ability to recognize patterns in the training data and unintentionally associates 

certain confounding characteristics with the targeted outcome.

One central observation is that the cause of many prediction failures in AI are not 

independent phenomena but are instead connected in the sense that AI follows unintended 

“shortcut” strategies for the targeted task [9,10]. For example, AI can diagnose pneumonia, 

but it uses portable intensive care unit radiographic markers as surrogates for the task 

rather than detecting true underlying pathology [11]. Similarly, pneumothorax detection uses 

shortcuts based on inserted chest tubes [12]. It has been observed that imaging AI models 

learn spurious age, sex, and race correlations from images when trained for seemingly 

unrelated tasks [13]. Simultaneously, studies have shown AI imaging models demonstrate 

bias against historically underserved subgroups of age, sex, and race in disease diagnosis 

[14]. Therefore, it is concerning that an imaging AI model may take shortcut predictions 

from these correlations and subsequently generate outcomes that are biased toward certain 

subgroups (often nonprivileged groups), even when protected attributes are not explicitly 

used as inputs into the model. In this article, we explore causes of bias that arise from 

“shortcut learning” and discuss methods of detection and mitigation of these biases.
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WHAT TYPES OF AI BIAS ARE OBSERVED IN DIFFERENT STAGES OF AI 

DEVELOPMENT THAT LEAD TO “SHORTCUT” LEARNING?

Figure 1 highlights different types of bias that can be introduced at various stages of imaging 

AI model development and validation, resulting in shortcut learning. These biases tend to be 

propagated to downstream tasks and ultimately accumulate, leading to biased outcomes [15].

Dataset Bias (Data Collection Bias)

It is critical that training data used in machine learning be representative of the real-world 

population. Data collection bias can arise from inconsistencies in training data that do not 

accurately represent a model’s intended use case, resulting in skewed outcomes. Dataset bias 

can also arise from sampling and labeling biases as well as confounders that are learned by 

the AI models and used as shortcuts.

Selection or Sampling Bias.—Selection or sampling bias occurs because of improper 

sampling or inclusion of a population in which a certain subgroup is heavily represented 

while others are not. Often, radiologic images are collected from only a single or a few 

sites [16–19] and thus lack geographic and racial diversity. The granularity of available 

images also varies with underlying patterns of systemic racism: Black and Hispanic patients 

tend to undergo lower quality and nonadvanced imaging for similar presenting symptoms 

in emergency departments [20]. For example, Black women are less likely to receive 

advanced technologies such as 3-D tomosynthesis (which has been shown to reduce recall 

rates) and usually undergo 2-D mammography for breast cancer screening, highlighting a 

known fact that technological advancements do not always benefit historically vulnerable 

subpopulations in the early phases of adoption [21]. Other causes of sampling bias include 

disparities in access, whereby some patients will never be imaged and would hypothetically 

be included in an ideal dataset [22]. AI models can easily learn these patterns and use 

them in their predictions [22]. Of more concern is the tendency of AI models to hallucinate 

and not fail gracefully when they encounter datasets that are out of the distribution of the 

training dataset [23,24]. Further compounding this is the lack of AI models providing a level 

of certainty or uncertainty when rendering a prediction. Sampling bias can also result in 

extreme class imbalance, and hence AI models will learn from the majority case (usually 

the privileged class) and not the minority classes (usually the nonprivileged classes). These 

models usually result in good areas under the curve for the majority class but do not 

generalize to the minority classes. Moreover, strategies to mitigate class imbalance can result 

in further alteration of the disease distribution of the minority classes. This is important 

because minority class representation in the overall dataset may be small. However, the 

burden of disease in the minority classes may be larger as observed in breast cancer 

screening, in which Black women tend to have more aggressive cancers at diagnosis and 

at younger ages [25].

Labeling Bias.—Most labels of publicly available datasets are derived using weakly 

supervised techniques, whereby a subset of labels are generated by a radiologist, which are 

then used to train a model that is used to label the larger dataset [26]. Although commonly 

adopted, this strategy can perpetuate hidden signals in the textual reports that are then 
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embedded in the image dataset. Studies have shown that AI models can detect sentiments 

in text reports, with the ability to even identify a patient’s self-reported race from textual 

descriptions of clinical notes [27]. Broad classifications of datasets may miss smaller subsets 

of categories that are embedded in the dataset, causing hidden stratification [28]. This has 

been documented to result in differences in model performance for pneumothorax for the 

overall dataset and when analyzed for patients with and without chest tubes [28]. Other 

causes of reader-based bias include labeling by nonmedical personnel, including workers 

on Amazon Mechanical Turk, without transparency as to the training and standardization 

of the labeling process. Delineation or annotation bias occurs because there is significant 

interreader variability in delineating regions of interest of diseased regions on imaging, 

which are often used as one of the input channels for deep learning or machine learning. 

This is amplified when large multisite datasets are leveraged, as several readers are usually 

involved in the labeling or annotation process, which can introduce their biases into the 

model [29].

Confounding Bias.—The presence of a confounding attribute can create the illusion of 

an association between certain variables and the targeted outcome and force the model 

to learn an incorrect relationship between the studied variable and its outcome, leading 

to wrong conclusions. For example, Rueckel et al [12,30] demonstrated that AI models 

trained on open-source chest radiographic data for pneumothorax detection learned the 

strong association between a confounding attribute, the presence of thoracic tubes, and the 

diagnosis of pneumothorax. This model makes a systematic error (false negative) when the 

thoracic tube is not present. An area of ongoing research remains understanding the value 

of confounders that are helpful in the model prediction and how to harness such features 

to mitigate disparities. For example, Pierson et al [31] demonstrated that an algorithmic 

prediction score for the severity of osteoarthritis mitigates known biases in pain and 

osteoarthritis evaluation, yet the same AI models demonstrate high accuracy in predicting 

self-reported race of the patients [13]. In such cases, it is unclear as to the contribution 

of the model’s ability to detect a nonbiologic variable (in this case a confounder) and its 

contribution to mitigating existing disparities. More work is required to differentiate between 

spurious confounders such as patient location in the intensive care unit (from radiographic 

markers) versus significant confounders such as demographics.

Bias in Modeling

During the modeling phase of an AI model, bias arises from systematic errors resulting 

from erroneous assumptions about the data, which may cause the model to miss a relevant 

relationship between data inputs (features) and targeted outputs (predictions).

Feature Bias.—Various feature selection methods starting from manual selection on the 

basis of prior knowledge to automated methods, such as LASSO, minimum redundancy, 

maximum relevance ensemble [32], and mutual information maximization [33], are used 

to reduce features (predictors) to the most predictive and robust ones. Such selection 

techniques can be misleading for targeted tasks and can introduce feature selection bias, 

which can adversely affect a model’s prediction ability. This occurs because the model 

overfits the data in the presence of selection bias, causing it to not generalize well. 
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Krawczuk and Łukaszuk [34] demonstrated such feature selection bias using the genomics 

dataset for well-studied clinical use cases (colon cancer, leukemia, and breast cancer) when 

the same dataset was used for feature selection and learning. They demonstrated positive 

feature selection bias in 28 experiments after applying four selection methods (ReliefF; 

minimum redundancy, maximum relevance; support vector machine recursive feature 

elimination; and relaxed linear separability), with a difference between validation and test 

accuracies of between 2.6% to 41.67%. Incorrect assumptions on feature distribution can 

cause bias. For example, certain feature selection methods assume a continuous and gaussian 

distribution, but often categorical features or those that are not normally distributed are fed 

to the feature selection method. This can erroneously remove an important feature or retain a 

relatively unimportant feature [35,36].

Algorithmic Bias.—“Algorithmic bias” refers to systematic and repeatable errors in an 

AI model that create unfair outcomes for certain subgroups or individuals as a result of 

algorithmic design choices during AI model development. Selecting a loss function on the 

basis of the overall model performance rather than for each subgroup skews performance to 

the majority group. Design choices that can bias the outcome of an algorithm include the 

choice of regularization techniques, optimization functions, and use of statistically biased 

estimators [37]. For example, Ribeiro et al [38] trained a model to discriminate images 

representing wolves and huskies. Despite showing reasonable accuracy to decide whether 

the image contained a wolf or not, the model was inferring spurious correlations: the 

presence or absence of snow in the background.

Bias in Inference or Decision Making

At the final stage of an AI model deployment, bias can be introduced on the basis of how the 

results of the model are presented to end users.

Presentation Bias.—AI classification models output numeric scores and rankings that are 

displayed on a user interface for human decision makers. For medical imaging computer 

vision tasks, it is common to display areas of interest (correlating to areas of high 

probability) using gradient class activation mapping and saliency maps. Evaluations of 

these visualization techniques have shown that the utility, repeatability, and reproducibility 

of these methods are limited [39]. It is more challenging to use these techniques to 

understand some of the shortcuts that the model is relying on, especially when the evaluator 

lacks appropriate medical knowledge. Another factor that can introduce bias is related 

to how and when AI results are presented in the user interfaces. Through visualization, 

counterexamples, semantics, and uncertainty estimation, we can expect different behaviors 

from end-user radiologists introducing bias [40].

Latent Bias.—In latent bias, models may incorrectly label something on the basis of 

historical data or because of a stereotype that already exists in society [41]. For example, 

an algorithm to predict treatment outcomes could learn and predict differing outcomes on 

the basis of patient race, ethnicity, and socioeconomic factors instead of clinically relevant 

information [41].
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HOW TO MEASURE BIAS IN AI MODELS?

Bias arising from shortcut learning can be difficult to assess and requires a combination of 

domain expertise and technical ability. Today, imaging AI model performance is measured 

primarily in terms of overall accuracy or ratio between sensitivity and specificity (area 

under the receiver operating characteristic curve). However, on a test dataset with a <10% 

positivity rate, a biased model may provide 90% accuracy but only 50% sensitivity. Caution 

should be given to the selection of metrics to evaluate the performance of AI algorithms, as 

most of them may not be appropriate and, in turn, may result in a biased estimate of their 

performance [8,42]. It is important to record disparity rates (eg, true positive, false positive) 

of the nonprivileged subgroups to comprehend the model performance before deployment. 

Table 1 summarizes available open-source tool kits for bias detection. These have been used 

for general AI evaluation from 2015 and their use in health care machine learning is still 

limited.

HOW TO MITIGATE BIAS IN AN AI MODEL?

There are several ways to combat bias in AI models, which is traditionally known 

as debiasing or “fair” AI model development, starting with data-centric approaches to 

computation methods (Fig. 2). In the following subsection, we group the methods on the 

basis of their applicability to different phases of the AI model development.

Preprocessing Techniques

Preprocessing techniques, particularly those categorized as “data-centric” approaches, 

mitigate bias (eg, sampling bias, confounding bias) in the training data. There are many 

general preprocessing techniques prescribed for AI, including reweighting [43], disparate 

impact removal [44], learning fair representation [45], optimized preprocessing [46], and 

the maximum entropy approach [47]. Apart from these general preprocessing techniques, 

cross-population training and testing is the most adopted solution for imaging AI, in 

which datasets from multiple institutions are combined to train a model and validate 

its performance on a heterogeneous population. For example, Das et al [48] trained a 

convolution model on a mixture of two chest radiographic datasets (with tuberculosis) 

and demonstrated that it contributed to a greater prevalence of positive findings. Similarly, 

Zech et al [11] studied the ability of models to detect pneumonia on chest radiographs 

by training and testing on data from different hospital systems in the United States and 

showed that training sets with equal incidence across sites achieved the best performance 

on the testing set. Larrazabal et al [49] showed that sex-balanced training datasets presented 

minimal bias toward nonprivileged subgroup. However, the collection of a large, balanced, 

multi-institutional dataset is always challenging, and it does not guarantee the inclusion of 

every variation and factor of the targeted population.

In contrast to cross-population training, developing subgroup-specific modeling has been 

experimented with for medical imaging. For example, Puyol-Antón et al [50] used two 

preprocessing approaches for bias mitigation in cardiac MRI segmentation: stratified batch 

sampling and protected group models. In stratified batch sampling, the data are stratified 

by the protected attribute(s) for each training batch, and samples are selected to ensure that 
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each protected group is equally represented. The protected group models approach trains a 

different segmentation model for each protected group. Although training an individualized 

model for each population subgroup is technically demanding (especially when there are 

multiple subgroups), this approach is necessary when there are biologic differences among 

various subgroups, rather than trying to achieve good general performance or making a 

diverse dataset [51–53].

Imaging preprocessing techniques are also applied as preprocessing bias reduction solutions. 

For example, Rueckel et al [30] demonstrated that including in-image pixel annotations 

of dehiscent visceral pleura for pneumothorax detection on chest radiography significantly 

improved algorithm performance and reduced the confounding bias caused by inserted 

thoracic tubes. To mitigate skin-tone bias while diagnosing diabetic retinopathy, Burlina 

et al [54] proposed debiasing by altering the retinal appearance through augmentation 

of the training data via controlled synthetic image generation to include more data from 

underrepresented subgroups of the population.

In-Processing Techniques

There are multiple in-processing techniques prescribed for AI debiasing for generic image 

analysis (eg, facial images, natural images), including meta-fair classifier [55], prejudice 

remover [56], grid search reduction and exponentiated gradient reduction [57], GerryFair 

classifier [58], adversarial debiasing [59,60], and adding fairness constraints [61–64]. An 

example of application of an in processing technique is the work of Dinsdale et al [65], 

who constructed a multi-institutional AI model for detecting age on brain MR images and 

identified that a model is biased toward the data source and MR scanner subtypes. They 

were able to improve the classification performance of the model by domain adaptation, 

whereby they removed confounding factors by creating a feature space that was invariant 

to the acquisition scanner. After this debiasing, the model’s ability to identify the site of 

origin decreased from 96% accuracy to 56%, with only a slight decrease in the model task 

performance.

Correa et al [66] developed a two-step adversarial debiasing approach with partial learning 

that reduced disparity while preserving the performance of the targeted diagnosis or 

classification task. They experimented with two independent medical image case studies 

and showed bias reduction while preserving the targeted performance on both internal and 

external datasets in radiology and dermatology. Puyol-Antón et al [50] added a meta-fair 

classifier to the segmentation network, which classified protected attributes along with the 

cardiac MRI segmentations.

Researchers have also experimented by combining preprocessing and in-processing 

techniques through federated learning, in which a model is trained in a distributed, 

collaborative fashion on decentralized data distribution, without having direct access 

to patient-sensitive data [67]. However, existing federated learning methods focus on 

minimizing the average aggregated loss functions [68,69], leading to a biased model that 

performs well for some hospitals while exhibiting undesirable performance for other sites 

[70]. Recently, Hosseini et al [71] proposed a new federated learning scheme, Prop-FFL, 

for “fair” AI model training, which uses a novel optimization objective function to decrease 
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performance variations among participating hospitals. There is promise in using texture-

agnostic imaging biomarkers that are less sensitive to scanner and site specific variations 

[72].

Postprocessing Techniques

The most common postprocessing techniques for AI debiasing are equalized odds/calibrated 

equalized odds [73,74], reject option classification [43], and discrimination-aware ensemble 

[43]. Marcinkevics et al [75] proposed a debiasing technique of an already trained network 

for CXR classification on the basis of fine-tuning and pruning to minimize unknown 

sources of bias and demonstrated that this method reduces the classification disparity. 

In the task of real age estimation from human facial images, Clapés et al [76] used a 

simple postprocessing technique for bias correction by shifting apparent age toward the 

corresponding real age value.

DISCUSSION AND CONCLUSION

Shortcut learning, especially for protected attributes such as demographics (rather than 

learning true disease characteristics) that are barely, if at all, perceptible to the clinician 

interpreting medical images, affect performance of the affected subgroups, causing bias. 

Notably, this occurs even when the model input does not include the protected attribute, as 

shown in the work of Obermeyer et al [8], in which race is not included as input in the 

model. The challenge of these proxies is that they are difficult to audit and remove from 

datasets, as demonstrated by the work of Gichoya et al [13] on AI’s ability to recognize 

self-reported races without a clear explanation. Recent changes in legislation calling for 

health care organizations to be penalized for using biased models [77,78] highlight the 

challenge of evaluating when shortcut learning is the root cause of biased outcome. It is 

important for the AI community to design AI solutions with bias in mind from the point 

of idea development, data acquisition and curation, model development and evaluation, 

and at the point of deployment. To mitigate errors from shortcuts, the AI team must be 

diverse, combining both domain knowledge and technical expertise to evaluate and then 

subsequently mitigate bias. We also challenge the community to develop mechanisms 

through which useful shortcuts that mitigate existing disparities are harnessed to develop 

more equitable algorithms that work for everyone.
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TAKE-HOME POINTS

• Models use shortcuts as confounders in their predictions.

• These shortcuts are not always obvious, and are often hidden to the human 

eye which makes their evaluation difficult.

• Various bias mitigation strategies including preprocessing, post processing 

and algorithmic approaches can be applied to remove bias arising from 

shortcuts.
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Fig. 1. 
Type of bias in different phases of artificial intelligence model development and validation 

causing “shortcut learning.”
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Fig. 2. 
Bias mitigation techniques at different phases of artificial intelligence model development.
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