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SuperAnimal pretrained pose estimation
models for behavioral analysis
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Quantification of behavior is critical in diverse applications fromneuroscience,
veterinarymedicine to animal conservation. A commonkey step for behavioral
analysis is first extracting relevant keypoints on animals, known as pose esti-
mation. However, reliable inference of poses currently requires domain
knowledge andmanual labeling effort to build supervisedmodels. We present
SuperAnimal, amethod todevelopunified foundationmodels that canbeused
on over 45 species, without additional manual labels. These models show
excellent performance across six pose estimation benchmarks. We demon-
strate how to fine-tune the models (if needed) on differently labeled data and
provide tooling for unsupervised video adaptation to boost performance and
decrease jitter across frames. If fine-tuned, SuperAnimal models are 10–100×
more data efficient than prior transfer-learning-based approaches. We illus-
trate the utility of our models in behavioral classification and kinematic ana-
lysis. Collectively, we present a data-efficient solution for animal pose
estimation.

Measuring and modeling behavior is an important step in many clin-
ical, biotechnological, and scientific quests1–6. A key part of many
behavioral analysis pipelines is animal pose estimation, yet this
requires domain knowledge and labeling efforts to obtain reliablepose
models2,3,7,8. Open-source pose estimation software, such as
DeepLabCut9,10 and other tools11–14 also reviewed in7, have gained
popularity in the research community interested in understanding
animal behavior. Compared to commercial solutions constrained to
fixed cage and camera settings15, DeepLabCut offers flexibility to train
customized pose models of various animals in diverse settings. Nota-
bly, it requires few human-labeled images (around 100–800) to train a
typical lab animal pose estimator that matches human-level
accuracy9,10 due to its transfer learning abilities9,16.

However, regardless of the data efficiency of current solutions,
their flexibility still comes with the cost of requiring users to label if
they want to define keypoints themselves (note, some unsupervised
approaches are available, but lack the ability of users to customize to
keypoints of scientific interest17,18). Then, they train deep neural

networks, an effort that is often duplicated across labs given that often
users study similar model organisms.

A solution is to build generalized, foundation models19, for com-
mon model organisms across labs and in-the-wild settings (proposed
and discussed in7). Suchmodels could be used across labs and settings
without further training and/or requiring little fine-tuning. Yet, there
are several key challenges to building these models. Firstly, data on
the same species is rarely labeled the same way or even with the same
names (for example consider simply naming the nose on a mouse:
“nose”, “snout”, “mouse1_nose”, etc—all found in the literature9,15),
which brings semantic and annotation bias challenges: how do we
merge such data? Secondly, even if we unify the naming, how do we
train across datasets that don’t have the full super-set of keypoints?
Missing data would confuse a network without any interventions.

To provide the research community with an easymethod to build
such high-performancemodels we present a new panoptic paradigm—

which we call the SuperAnimal method—for building unified pre-
trained pose-aware models, and the ability to perform fine-tuning and
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video adaptation across many species, environments and animal or
video sizes (Fig. 1a).

In brief, our new approach allows for merging and training
diverse, differently labeled datasets. We developed an optimal key-
point matching algorithm to automatically align out-of-distribution
datasets with ourmodels. Then, at inference time, tominimize domain

shifts, we developed a spatial pyramid search method to account for
changes in animal size or leverage a top-down detector. We also pro-
vide a rapid, unsupervised video-adaptationmethod that uses pseudo-
labeling to boost performance and minimize temporal jitter in videos
and allows users to fine-tune videos without access to source data or
requiring any target labeling on that video.
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We developed models based on state-of-the-art (SOTA) convolu-
tional neural networks (CNNs) such as HRNet20 or DLCRNet10, and
transformers21–23. We show that the resulting models have excellent
“zero-shot” performance, which we define to mean testing perfor-
mance on unseen datasets that include animals not used in training,
and critically becausewe set up our pose estimation task as a panoptic
segmentation task where the ground truth data does not have all class
labels (key points), it tests the ability of themodel to perform inference
on a super-set of keypoints not always used in training. Additionally,
our approach outperforms ImageNet-pretraining on six benchmarks,
which has been the standard in the field of animal pose estimation. If
ourmodels areused forfine-tuning,we showthey are 10 tonearly 100×
more data efficient in the low data regime (and can still improve per-
formance in the high-data setting), and our video adaptation method
allows for smooth, refined videos that can be used in behavioral ana-
lysis pipelines.

Results
The SuperAnimal method comprises generalized data conversion,
training with keypoint gradient masking and memory replay, a key-
point matching algorithm, and the ability to fine-tune models plus
video adaptation that pseudo-labels using unlabeled video data
(Fig. 1a), whichwill be explained below. Firstly, we describe the data we
used to train our two exemplary models with our SuperAnimal
approach.

Animal pose data
In order to demonstrate the strength of our SuperAnimal method, we
present two datasets that cover over 45 species: TopViewMouse-5K
andQuadruped-80K,whicharebuilt fromover85,000 images sourced
from diverse laboratory settings and in-the-wild data (Supplementary
Fig. S1a, b), yet critically they are not labeled in the samemanner. First,
we used a new generalized data converter (see Methods) to unify the
annotation space of those datasets and named the first dataset
TopViewMouse-5K (as it contains approximately 5k images). Specifi-
cally, we merged 13 overhead-camera view-point lab mice datasets
from across the research community9,10,15,24,25 (see Methods) and from
our own experiments (Fig. 1e, h). Similarly, we collected side-view
quadruped datasets16,26–32, including a new annotated “iRodent” data-
set with images sourced from iNaturalist (see Methods), to form
Quadruped-80K (Supplementary Fig. S1b, and see Supplemental
Datasheets). We define six benchmark datasets of varying difficulty
and always leave one out of the training in order to show performance
of the model on unseen data. There are: DLC-Openfield9, TriMouse10,
iRodent (new), Horse-1016, AP-10K31 and AnimalPose33. Note, that our
released SuperAnimal-TopViewMouse and SuperAnimal-Quadruped

weights (see Supplementary Information, Model Cards) are trained on
all available data described above (Supplementary Fig. S1b).

The SuperAnimal method
Collectively, SuperAnimal is a formulation that treats diverse pose
datasets as if they collectively formed one single super-set pose tem-
plate, trains unified models for image and video analysis, and ulti-
mately allows sharing of these models through standardized
repositories (Fig. 1a). This panoptic super-set approach effectively
allowed us to overcome a major challenge with combining datasets
that are not identically labeled across labs or datasets, as it is often the
case even for the same species (Fig. 1b and Supplementary Fig. S1a).
Multi-dataset training allows the model to receive richer learning sig-
nals (Fig. 1c, d), resulting in the model having “pose priors” (whereas
ImageNet pre-training, is common in animal pose10,16,33 has no pose-
specific features). For multi-dataset training, we developed keypoint
gradient masking (Supplementary Fig. S1c, d) to train neural networks
across disjoint datasetswithoutpenalizing “missing”ground truthdata
from the super-set of keypoints (Fig. 1b).We also developed a keypoint
matching algorithm (Methods and Supplementary Fig. S2a, b) to help
minimize the mismatch caused by annotator bias in the human-
annotated datasets (see Supplementary Note).

Theneural networkswe trained always consist of an encoder and a
decoder. While transfer learning has been important for animal
pose9,16, we hypothesized now that we have base encoders that have
pose priors, that the trained decoder could be leveraged (Fig. 1c, d).
Therefore, we tested two ways to train the architectures: one, via
transfer learning, defined as fine-tuning only the pre-trained encoder
but using a randomly initialized decoder in the downstream dataset;
two, via fine-tuning, defined as fine-tuning both the encoder and
decoder (seeMethods).We also note thatweusedbothbottom-up and
top-down methods7, meaning without or with an object detector,
respectfully, as noted in figure captions.

Benchmarking
We aim to show the performance of our approach in three important
settings: (1) zero-shot inference: how performant is the basemodel on
unseen, out-of-distribution data? (2) fine-tuning on a new dataset: how
does the base model compare to using a base model trained on Ima-
geNet (i.e., ImageNet transfer learning)? (3) If zero-shot and/or fine-
tuning is efficient, how good is the basemodel performance on videos
and for downstream tasks like behavior quantification?

We report results on two model classes: SuperAnimal-
TopViewMouse (SA-TVM) then SuperAnimal-Quadruped (SA-Q). For
each class, we consider several architectures for zero-shot and fine-
tuning (Figs. 1, 2, Supplementary Fig. S2c, d), and then consider

Fig. 1 | The DeepLabCut Model Zoo, the SuperAnimal method, and the
SuperAnimal-TopViewMouse model performance. a The website can collect
data shared by the research community; SuperAnimal models are trained and can
be used for inference on novel images and videos with or without further training
(fine-tuning). b The panoptic animal pose estimation approach unifies the voca-
bulary of pose data across labs, such that each individual dataset is a subset of a
super-set keypoint space, independently of its naming. Mouse cartoons from sci-
draw.io: https://beta.scidraw.io/drawing/87, https://beta.scidraw.io/drawing/49,
https://beta.scidraw.io/drawing/183. c For canonical task-agnostic transfer learn-
ing, the encoder learns universal visual features from ImageNet, and a randomly
initializeddecoder is used to learn the pose from the downstreamdataset. For task-
aware fine-tuning, both encoder and decoder learn task-related visual-pose fea-
tures in the pre-training datasets, and the decoder is fine-tuned to update pose
priors in downstream datasets. Crucially, the network has pose-estimation-specific
weights. d Memory replay combines the strengths of SuperAnimal models’ zero-
shot inference, data combination strategy, and leveraging labeled data for fine-
tuning (if needed). Mouse cartoon from scidraw.io: https://beta.scidraw.io/
drawing/183. eData efficiencyofbaseline (ImageNet) andvarious SuperAnimalfine-

tuning methods using bottom-up DLCRNet on the DLC-Openfield OOD dataset.
1–100% of the train data is 10, 50, 101, 506, and 1012 frames respectively. Blue
shadow represents minimum, maximum and blue dash is the mean for zero-shot
performance across three shuffles. Large, connected dots represent mean results
across three shuffles and smaller dots represent results for individual shuffles.
Inset: Using memory replay avoids catastrophic forgetting. f SuperAnimal vs.
baseline results on the TriMouse benchmark, showing zero-shot performance with
top-down HRNet and AnimalTokenPose, and fine-tuning results with HRNet.
1–100% of the train data is 1, 7, 15, 76, and 152 frames respectively Inset: example
image of results. g SuperAnimal-TopViewMouse (DLCRNet) qualitative results on
thewithin-distribution test images (IID). Theywere randomly selected basedon the
visibility of the keypoints within the figure (but not on performance). Full keypoint
color andmapping are available in Supplementary Fig. S1). hVisualization ofmodel
performance on OOD images using DLCRNet. (e, f, g) Images in (e–h) are adapted
from https://edspace.american.edu/openbehavior/video-repository/video-
repository-2/ and released under a CC-BY-NC license: https://creativecommons.
org/licenses/by-nc/4.0/.
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performance in video and behavioral analysis (Figs. 3 and 4). To eval-
uate each model’s performance we tested “within distribution” also
known as “independent and identically distributed" (IID), and on
images considered “out-of-distribution” (OOD). IID images are similar
in appearance and from the same dataset, but not identical to those
used in training. OOD data stems from images in datasets that were
never included in training34, and they constitute the key benchmark
results for showing the utility of the models in applied settings
(Tables 1 and 2).

Zero-shot performance (SA-TVM)
Using the panoptic SuperAnimal approach we first consider the per-
formance in the OOD zero-shot setting and find that it has excellent
performance across both top-view mouse benchmarks (Table 1). We
tested both a bottom-up DLCRNet (Fig. 1e–h) and a top-down HRNet-
w3210,13,35 (Supplementary Fig. S3), which was recently shown to be
excellent in crowded animal scenes36, and our transformer for testing.
Specifically, to test performance, we built SA-TVMmodels that did not
contain data from the DLC-Openfield9 or TriMouse dataset9,10.

Article https://doi.org/10.1038/s41467-024-48792-2

Nature Communications |         (2024) 15:5165 4



We found that the SuperAnimal methods were critical: using
gradient masking SA-TVM DLCRNet zero-shot performance was
14.31 ± 1.00 RMSE vs. 27.90 ± 1.20 without gradient masking (Supple-
mentary Fig. S4a). Memory replay was critical to avoid catastrophic
forgetting qualitatively (see Supplementary Video 1) and quantita-
tively, measured with keypoint dropping (See Supplementary Fig. S4c
and Supplementary Tables S1 and S2).

Collectively, they show excellent zero-shot performance on
both benchmarks (Fig. 1e, f, Supplementary Fig. S4c, and Supple-
mentary Tables S3 and S4). SA-TVM performed well within dis-
tribution (IID) and critically OOD data across diverse camera and
cage settings (Fig. 1g, h). Note that the performance of zero-shot
inference is even likely underestimated by annotator bias (see
Supplementary Note). Concretely, zero-shot SA-TVM DLCRNet
bottom-up showed a RMSE error of 14.31 pixels, 4.88 pixels with
the HRNet-w32-based top-down approach, and 4.57 pixels with
AnimalTokenPose on the DLC-Openfield dataset, where the aver-
age mouse’s nose width is ~10 pixels9 (Fig. 1e, f). Thus, we found
that without any labeling we could still outperform ImageNet-
based transfer learning (Fig. 1e; mixed-effect model; in the low-
data regime (1% training data ratio) for TriMouse: d = 8.03 [5.27,
10.79] p < 0.0001; Supplementary Tables S5 and S6; for DLC-
Openfield: d = 3.86 [1.88, 5.84] p = 0.0002, Supplementary
Tables S7 and S8).

Fine-tuning performance (SA-TVM)
For fine-tuning SuperAnimal models we consider two ways: one, naive
fine-tuning (see Methods), and inspired by the excellent zero-shot
inference of pre-trained models37 and continual learning38, we devel-
oped a tailored fine-tuning approach that combines zero-shot infer-
ence and few-shot learning, which we call “memory replay” fine-tuning
(Fig. 1d). We find that in the user-relevant low-data regime, fine-tuning
significantly outperforms ImageNet transfer learning (Fig. 1e, f; mixed
effects model, DLC-Openfield: d = 7.19 [4.61, 9.78]; p <0.0001, Tri-
Mouse:d = 8.06 [5.29, 10.82];p <0.0001; Supplementary Tables S5, S6,
S9, and S10). This is approximately a 10× data efficiency factor and
large margin of performance gain (Fig. 1e). Note that effect sizes
remain moderate to large even when training with 5% of the
data (d >0.59).

For example, if the model is memory replay fine-tuned with only
ten randomly selected images on DLC-Openfield, the SA-TVM pre-
trainedmodel obtained anRMSEof 7.68 pixels, whereas ImageNet pre-
training was 18.14 pixels. The baseline ImageNet pre-trained model
required 101 (randomly selected) images to reach a performance
similar to SA-TVM (6.28 pixels; Fig. 1e). Therefore, we outperformed
DeepLabCut-DLCRNet (i.e., the ImageNet baseline) by over 2X in the
low data regime (i.e., with 10 frames of labeling; p <0.0001, Cohen’s
d = 4.88), and we can achieve the same performance as DeepLabCut-
ImageNet weights with 10× less data (i.e, using 10 frames with our SA-

TVM memory replay gives the same RMSE as ImageNet transfer
learning with 101 images).

One important point is that the SA-TVM model is now imbued
with a “pose prior”. Historically, the transfer learning using ImageNet
weights strategies assumed no “animal pose task priors” in the pre-
trained model, a paradigm adopted from previous task-agnostic
transfer learning39. Yet, here we show that naively fine-tuning on
datasets that do not have the full super-set of points might cause
catastrophic forgetting (Supplementary Video 2). Namely, if we fine-
tuned with the four keypoints dataset from DLC-Openfield, the model
would forget the full 27 keypoints.

Zero-shot performance (SA-Q)
Developing pre-trained animal pose models to work in the wild is a
challenging task. There are two main reasons for its difficulty: (1) the
lack of labeled data, and (2) the diversity of the data. Firstly, compared
to the widely used COCO human keypoint benchmark40 that has 200K
images, the biggest wild animal pose keypoint benchmarks have
10–36K images from AP-10K31 and APT-36K32, respectively. Yet even
with Quadruped-80K, we generate, the number of images is still much
less than that in COCO. Secondly, the appearance size of the animals is
a long tail distribution (discussed below), which can pose a challenge
for models to learn.

To tackle such challenges, we developed top-down HRNet-w32
based SA-Q models (Fig. 2a), tested zero-shot our transformer (Sup-
plementary Fig. S4d). We tested SA-Q performance on four OOD
benchmarks that had various official metrics: Horse-1016 reports the
normalized error (NE, normalized by the animal’s size, see inset in
Fig. 2b), iRodent, AP-10K31, and AnimalPose28 report the mAP. As a
reminder, for every benchmark we took a leave-one-out strategy such
that the benchmark data was not used for training. Following the
common practice in top-down animal poseworks31,41, we report results
using ground-truth bounding boxes and flip test in the test time (see
Methods).

In addition to ImageNet pre-trained weights as a baseline, in
benchmarks other than on AP-10K we also used a HRNet-w32 pre-
trained on AP-10K (green dash line or column, Fig. 2b–d) as an addi-
tional baseline comparison. For comparisons to the official bench-
marks we report the official metrics in Fig. 2. We also report mAP and
RMSE for all benchmarks, which can be found in Supplementary
Tables S11, S12, S13, and S14.

Horse-10 is a benchmark challenge that tests OOD robustness of
generalizing to held-out individual horses. We evaluated on the official
splits and show zero-shot SA-Q gives 0.228 NE (Fig. 2b), which out-
performs an AP-10K-trained model that achieves a 0.287 NE. Note the
current SOTA performance in Horse-10 benchmark is around 0.3 NE
with a bottom-up EfficientNet16. We thus used top-down HRNet-w32 as
a stronger baseline that gives 0.135 OOD NE. Importantly, we find that
SA-Q has zero-shot that is as good as supervised training with 50%

Fig. 2 | SuperAnimal-Quadruped. a Qualitative performance with SuperAnimal-
Quadruped (HRNet-w32). Image randomly selected based on visibility of the key-
points within the figure (but not on performance). A likelihood cutoff of 0.6 was
applied for keypoint visualization. Full keypoint color andmapping are available in
Supplementary Fig. S1). Images in panels a and e are adapted from https://github.
com/AlexTheBad/AP-10K/blob/main/LICENSE and are under a CC-BY license:
https://creativecommons.org/licenses/by/4.0/ Bottom right image is courtesy of
the authors. HRNet-w32 and same cutoff of 0.6 are used in other panels.
b Performance on the official OOD Horse-10 test set, training with the official IID
splits, reported as a normalized error from eye to nose, see inset adopted from
ref. 16 and qualitative zero-shot performance. HRNet-w32 is trained on AP-10K and
Quadruped-80K, respectively, for zero-shot performance comparison. 1–100% of
the data is 14, 73, 146, 734, and 1469 frames, respectively. The (b) images are
adapted from https://www.mackenziemathislab.org/horse10 and released under a

CC-BY-NC license: https://creativecommons.org/licenses/by-nc/4.0/.
c Performance on the OOD iRodent dataset, reported mAP. Colors and zero-shot
baseline are as in (b). 1–100% of the data is 3, 17, 35, 177, and 354 frames, respec-
tively. See inset for qualitative zero-shot performance. Images in (c) are adapted
from iNaturalist https://www.inaturalist.org/ and are under a CC-BY license: https://
creativecommons.org/licenses/by/4.0/. d Performance on the OOD AnimalPose
dataset, reported as mAP. HRNet-w32 trained on AP-10K is used as an additional
zero-shotbaseline. Benchmark images cannot be showndue to copyright concerns,
but please see ref. 51. e Performance on the OOD AP-10K dataset, reported asmAP.
Qualitative zero-shot performance is also shown. AP-10K raw images are licensed
under CC-BY: https://creativecommons.org/licenses/by/4.0/. f AP-10K benchmark
with SA-Q and other pose data pre-trained models. The size of dots represents the
parameter size of each model. The number of pre-training images represents the
number of pose data models trained before being fine-tuned on AP-10K.
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training data (734 images) using the HRNet ImageNet baseline
(Fig. 2b), and with SA-Q + fine-tuning we can achieve 0.146 normalized
errorwith 5% (73 frames) of data, andwith the full data a 0.07OODNE,
setting a new SOTA.

iRodent is a challenging new dataset comprising a diverse set of
images of rodents that are often under heavy occlusion, have a com-
plex background, and have very various appearance sizes (Fig. 2c), yet

with SA-Q we can achieve excellent zero-shot performance 58.6 mAP
(Fig. 2c), which is on par with 58.9mAP obtained by fully trained (100%
training data) HRNet-w32 using ImageNet weights. In contrast, AP-
10K’s weights gives 40.4 mAP, 18.2 points lower than ours.

On the AnimalPose, which is a benchmark dataset consisting of
dogs, cats, cows, horses, and sheepwith 20 keypoints28, our SA-Q zero-
shot performance is 84.6 mAP, which is almost on par with the 86.9
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Fig. 3 | Unsupervised video adaptation methods. a Illustration of the unsu-
pervised video adaptation algorithm. b–e Animal size described by convex hull of
keypoints using the SA-TVM model. Frequent changes of the convex hull indicate
non-smooth keypoint predictions and below are example images with and without
video adaptation showing the trailing keypoints for 10 past frames of data (to
demonstrate the motion smoothness). Images in (b) are adapted from https://
github.com/DeepLabCut/DeepLabCut/blob/main/examples/openfield-Pranav-
2018-10-30/videos/m3v1mp4.mp4 and are under a CC-BY license: https://
creativecommons.org/licenses/by/4.0/. Images in (c) are adapted from https://
edspace.american.edu/openbehavior/project/open-field-social-investigation-
videos-donated-sam-golden/ and released under a CC BY-NC-SA license: https://
creativecommons.org/licenses/by-nc-sa/4.0/. Images in (d) are adapted from
Mathis Laboratory of Adaptive Intelligence (2024) “MausHaus Mathis Lab’’.
Zenodo. https://doi.org/10.5281/zenodo.10593101 and is under a CC-BY license:
https://creativecommons.org/licenses/by/4.0/. Images in (e) are adapted from
https://edspace.american.edu/openbehavior/project/olfactory-search-video-
donated-matt-smear/ and released under a CC BY-NC-SA license: https://
creativecommons.org/licenses/by-nc-sa/4.0/. f, g Change in jitter score before and
after video adaptation. The box plots show jitter scores across test videos DLC-

Openfield (n = 2329 samples), MausHaus (n = 3270 samples), Smear Lab
(n = 144 samples), Golden Lab (n = 4859 samples), Elk (n = 265 samples), Black Dog
(n = 637 samples), Horse (n = 239 samples). In box plots, the middle line indicates
the median. The bounds of the box indicate the first and third quartiles and the
whiskers extend to the 0th and 100th percentile. Overall, our method had a sig-
nificant effect on reducing jitter (linear mixed effect model: F(1, 23286) = 190.03,
p <0.0001; Supplementary Table S20, in all but the dog (p =0.36, d = −0.03) and
Golden lab (p =0.62, d = −0.06) videos; two-sided post-hoc contrasts with Tukey
multiplicity adjustment: Supplementary Table S21. h, i Same analysis as in (b–e)
using the SA-Q model. Note that additional median filtering post-video adaptation
examples (dark purple line) can be used if needed. j, k Video adaptation, self-
pacing, and Kalman filter’s performance on the Horse-30 video dataset where (j) is
an example of one of 30 videos from the dataset Images in (j) are adapted from
“Pretraining boosts out-of-domain robustness for pose estimation” WACV (Jan
2021) https://www.mackenziemathislab.org/horse10 and released under a CC-BY-
NC license: https://creativecommons.org/licenses/by-nc/4.0/. In box plots, the
middle line indicates themedian. The bounds of the box indicate the first and third
quartiles and the whiskers extend to the 0th and 100th percentile.

Fig. 4 | Zero-shot behavioral quantification with SuperAnimal. a Workflow
overview for behavioral analysis with SuperAnimal. Artwork by Gil Costa. b Images
in (b) are adapted from Lukas von Ziegler, Oliver Sturman, and Johannes Bohacek
(2020) “Videos for deeplabcut, noldus ethovision X14, and TSE multi conditioning
systems comparisons’’. Zenodo. https://doi.org/10.5281/zenodo.3608658 under a
CC-BY license: https://creativecommons.org/licenses/by/4.0 with their DeepLab-
Cut “in distribution" model (left) and our SuperAnimal zero-shot, out-of-distribu-
tion, results (right). c Ethogram comparing ground truth annotations vs. zero-shot
predictions from SuperAnimal-TopViewMouse. d F1 score computed across IID
(Sturman) and SuperAnimal with, or without CEBRA on the two behavioral classes
(n = 20 videos). Box plots’middle lines indicate the median. The bounds of the box
indicate the first and third quartiles and the whiskers are drawn to the farthest
datapoint within 1.5*IQR. e CEBRA48 embedding on Sturman keypoints and

SuperAnimal-based keypoints in 3D, transformed with FastICA for visualization.
f Correlation matrix that demonstrates the correlation between SuperAnimal-
TopViewMouse and ground-truth annotations averaged across three annotators
and across the model and keypoint configurations. gWe analyzed 30 horse videos
where every frame had a ground truth (GT) annotation of keypoints16 (left) vs. our
SuperAnimal-Quadruped model (right). The right limbs (closest to the camera)
from one representative gait trial are shown. Swing and stance phases are colored
in light gray and black zones, respectively. h Histogram delineating the number of
videos where the ground contact by the hoof was identical to the GT vs. over or
under-counted by one stride (no error larger than one was found). i: We computed
the error between the GT stride length vs. model prediction for the hoofs (i.e.,
right_back_paw vs. Offhindfoot, etc). Each dot represents a stride, color denotes
hindlimb vs. forelimb, near legs only.
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mAP from fully supervised models that also use HRNet-w32 (Fig. 2d).
Moreover, we beat the zero-shot 79.4 mAP with HRNet-w32 that was
pre-trained on the AP-10K dataset.

Lastly, on the AP-10K benchmark, we used the official train-val
splits. The benchmark officially tests fine-tuning performance on the
validation set (see below), but first, we tested zero-shot and find with
SA-Q a 68.0 mAP (Fig. 2e), which is already close to the reported 71.4
mAP that is obtained by a fully fine-tuned ViTPose-S++41.

Fine-tuning performance (SA-Q)
Thus, while the SA-Q shows generally strong zero-shot performance
(matching or beating strong supervised baselines), we tested its fine-
tuning capacity.

OnHorse-10weshow in (Fig. 2b) that usingmemory replay to fine-
tune SA-Q, with only 5% of the training data, we match the ImageNet-
transfer-learning baseline with 100% training data (which is a 20X data
efficiency gain). In both the low and high data regimes, we significantly
outperform ImageNet-transfer-learning baseline (Supplementary
Tables S15 and S16).

On iRodent, SA-Q significantly outperforms ImageNet-transfer-
learning baseline in both the low and high data regime (Fig. 2c, Sup-
plementary Tables S17 and S18). In particular, using memory replay to
fine-tune SA-Q gives 73 mAP with full training data, outperforming
ImageNet-transfer-learning by 14.1 mAP, and can be nearly 100X more
data efficient in the low data regime (meaning, one needs nearly 354
images to reach the same zero-shot performance and/or fine-tuning
with three images).

Next, on AnimalPose we show that our fine-tuning SA-Q gives 87
mAP, slightly better than 86.9 mAP from ImageNet-transfer-learning
(Fig. 2d), and using transfer learning gives 89.6 mAP, outperforming
ImageNet weights by 2.7 points.

AP-10K is one of the most challenging animal pose estimation
benchmarks with many strong baselines (e.g., ViTPose++41, UniPose42)
(Fig. 2e, f). SA-Q gives 80.1 mAP after fine-tuning on AP-10K, which is
very close to 80.4 obtained by a top-downbaseline ViTPose-L++, which
uses a vision transformer that is 10X (307 M parameters) bigger than
our architecture (HRNet-w32, that has 29Mparameters) and it was pre-
trained on 307K pose images, which is then 4.38× more than our 70K
pose image dataset (Quadruped-80K excluding 10K AP-10K) (Fig. 2f).
We also outperform the 79.0 mAP obtained by UniPose-V-Swin-L,

which is a bottom-up method that is pretrained on 226K pose images
(plus previously pre-trained on 400M images for usingCLIPweights)37.
Note, Swin-L43 has 197M parameters, making it 6X larger than the
HRNet-w32 we used. Lastly, we are 34.7 points higher than 45.4 mAP
reported by another strong bottom-up method, ED-Pose44, which was
pretrained on 154K pose images. Thus, our performance in AP-10K
benchmark shows that our approach is not only data-efficient but also
parameter-efficient. Taken together, this means that our method’s
strongperformance is not simply due tomore data or bigger networks,
it is the algorithmic advancements and the animal pose prior from
Quadruped-80K.

Collectively, the SuperAnimalmethod presents an efficient way to
achieve strong zero-shot and few-shot performance and also provides
better starting weights for fine-tuning (vs. ImageNet-based transfer
learning). Of course, despite strong generalization, there can still be
failures. Note that both SuperAnimal models—TopViewMouse and
Quadruped—learned to predict the union of all keypoints defined in
multiple datasets even if no single dataset might have defined all of
these keypoints (i.e., as in TopViewMouse-5k), and even if fine-tuned
on data without the super-set they still retain the super-set.

Unsupervised video adaptation
Independent of the use case (i.e., zero-shot or few-shot fine-tuning), to
optimize performance on unseen user data we also developed two
unsupervised methods for video inference that help overcome dif-
ferences in the data SuperAnimalmodels were trained on compared to
what data users might have (Fig. 3a, and Supplementary Fig. S5a).
These so-called distribution shifts can come in various forms (e.g.,
spatial or temporal; see Methods). For example, a bottom-up model
can not performwell if the video resolution or animal appearance size
is dramatically different from those data which we trained on, and the
animal datasets are particularly diverse in size, which can pose chal-
lenges (Supplementary Fig. S5b, c). Therefore, inspired by45, we
developed an unsupervised test-time augmentation called spatial-
pyramid search that significantly boosted performance in three OOD
videos (Supplementary Fig. S5c–e, Supplementary Video 3, Supple-
mentary Table S19; and seeMethods). This is unsupervised, as the user
does not need to label any data, they simply give a range of video sizes.
Note that in practice this does slow down inference timedepending on
the search parameter space, and this method is not needed with top-

Table 1 | Main results on mouse benchmarks

Method Pre-trained weights Data ratio mAP RMSE Dataset Architecture

Zero-shot SuperAnimal – 50.397 14.32 DLC_Openfield DLCRNet

Zero-shot SuperAnimal – 95.219 4.881 DLC_Openfield HRNetw32

Zero-shot SuperAnimal – 96.348 4.572 DLC_Openfield AnimalTokenPose

Transfer learning ImageNet 0.01 62.226 18.136 DLC_Openfield DLCRNet

Transfer learning ImageNet 0.01 91.458 7.001 DLC_Openfield HRNetw32

Transfer learning ImageNet 1.00 99.23 2.340 DLC_Openfield DLCRNet

Transfer learning ImageNet 1.00 100 1.131 DLC_Openfield HRNetw32

Memory replay SuperAnimal 0.01 74.225 7.688 DLC_Openfield DLCRNet

Memory replay SuperAnimal 0.01 99.599 2.381 DLC_Openfield HRNetw32

Memory replay SuperAnimal 1.00 97.946 3.071 DLC_Openfield DLCRNet

Memory replay SuperAnimal 1.00 99.868 1.210 DLC_Openfield HRNetw32

Zero-shot SuperAnimal – 76.139 9.013 TriMouse HRNetw32

Zero-shot SuperAnimal – 70.372 10.580 TriMouse AnimalTokenPose

Transfer learning ImageNet 0.01 26.116 31.562 TriMouse HRNetw32

Transfer learning ImageNet 1.00 97.730 2.276 TriMouse HRNetw32

Memory replay SuperAnimal 0.01 90.320 5.850 TriMouse HRNetw32

Memory replay SuperAnimal 1.00 98.547 2.103 TriMouse HRNetw32

ThemAPonmultiple architectures, CNN (HRNet, DLCRNet), and Transformer basedmodels (AnimalTokenPosemodel) onSuperAnimal-TopViewMouse. As a reminder, transfer learningmeans using
a randomly initialized decoder that is also trained. Memory replay involves fine-tuning the encoder and decoder.
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down pose models as top-down detection standardizes the size of the
animal in both train and test time before the cropped image is seen by
the pose models.

Secondly, to improve temporal video performance we propose a
new unsupervised domain adaptation method (Fig. 3a). Others have
considered pseudo-labeling for images but they always required
access to the full underlying dataset, which is not practical for
users33,46,47. Our approach is tailored for pose video adaptation without
the need for the ground-truth data. The method runs pose inference
on the videos and treats the output predictions as the pseudo ground-
truth labels and then fine-tunes the model.

First, we used the animal’s size (estimated by convex hull formed
by animal keypoints, see more details in Methods) as an indicator to
measure the improvement in smoothness of video pose predictions.
Qualitative performance gain for SA-TVM is shown in Fig. 3b–e.

We also use a jitter score (see Methods) as the indicator to mea-
sure whether video adaptation mitigates the jittering that can be seen
in pose estimation outputs. Overall, our method had a significant
effect on reducing jitter (F(1, 23286) = 190.03, p <0.0001; Supple-
mentary Table S20, in all but the dog (p =0.36, d = −0.03) and Golden
lab (p =0.62, d = −0.06) videos; Supplementary Table S21, Fig. 3f–j and
Supplementary Video 4).

To quantitatively measure the improvement of video adaptation,
we define adaptation gain and robustness gain (see Methods) to
evaluate the method’s improvement to the adapted video (a subset of

the video dataset) and to the target dataset (all videos in the video
dataset). We used Horse-3016 where 30 videos of horses are densely
annotated to evaluate video adaptation (Fig. 3k).

We compare our method to Kalman filtering and so-named self-
pacing33 (see Methods), and find that it significantly improves mAP in
terms of video adaptation gain (p < 0.003, Cohen’s d > 0.785) and
robustness gain (p = 0.0001, Cohen’s d = 3.124; Fig. 3k; Supplementary
Tables S22, S23, S24).

Notably, video adaptation outperforms self-pacing by 4 mAP in
terms of robustness gain, demonstrating that it not only adapts to one
single video, but to all 30 videos in the dataset. This is important
because our method demonstrates successful domain adaptation to
the whole video dataset rather than to a single video.

Our method does not take extensive additional time, and practi-
cally speaking, can be run during video analysis. For example, if a video
(of a given size) can be run at 40 FPS, our video adaptation would slow
down processing to approx. 12 FPS, while self-pacing would be closer
to 4 FPS (thus slower and less accurate).

SuperAnimal models can be used with unsupervised behavioral
analysis
To illustrate the value of our zero-shot predictions for behavioral
quantification (Fig. 4a), we first turned to an open-source dataset that
was used to benchmark the performance of open-source machine
learning tools vs. some commercially available solutions15. Specifically,

Table 2 | Main results on quadruped benchmarks

Method Pre-trained weights Data ratio mAP RMSE Dataset NE_IID NE_OOD Architecture

Zero-shot SuperAnimal – 68.038 12.971 AP-10K – – HRNetw32

Zero-shot SuperAnimal – 66.110 12.849 AP-10K – – AnimalTokenPose

Transfer learning ImageNet 1.00 70.548 11.228 AP-10K – – HRNetw32

Memory replay SuperAnimal 1.00 80.113 11.296 AP-10K – – HRNetw32

Zero-shot AP-10K – 79.447 5.774 AnimalPose – – HRNetw32

Zero-shot SuperAnimal – 84.639 4.884 AnimalPose – – HRNetw32

Zero-shot SuperAnimal – 83.043 5.154 AnimalPose – – AnimalTokenPose

Transfer learning ImageNet 1.00 86.864 5.757 AnimalPose – – HRNetw32

Fine-tuning AP-10K 1.00 86.794 4.860 AnimalPose – – HRNetw32

Memory replay SuperAnimal 1.00 87.034 4.636 AnimalPose – – HRNetw32

Zero-shot AP-10K – 65.729 4.929 Horse-10 0.296 0.287 HRNetw32

Zero-shot SuperAnimal – 71.205 3.958 Horse-10 0.227 0.228 HRNetw32

Zero-shot SuperAnimal – 68.977 4.081 Horse-10 0.239 0.233 AnimalTokenPose

Transfer learning ImageNet 0.01 0.934 46.255 Horse-10 2.369 2.36 HRNetw32

Transfer learning ImageNet 1.00 90.516 1.837 Horse-10 0.036 0.135 HRNetw32

Fine-tuning AP-10K 0.01 66.284 5.029 Horse-10 0.286 0.285 HRNetw32

Fine-tuning AP-10K 1.00 93.973 1.220 Horse-10 0.036 0.083 HRNetw32

Memory replay SuperAnimal 0.01 73.366 3.719 Horse-10 0.209 0.202 HRNetw32

Memory replay SuperAnimal 1.00 95.165 1.153 Horse-10 0.040 0.073 HRNetw32

Zero-shot AP-10K – 40.389 37.417 iRodent – – HRNetw32

Zero-shot SuperAnimal – 58.557 33.496 iRodent – – HRNetw32

Zero-shot SuperAnimal – 55.415 34.666 iRodent – – AnimalTokenPose

Transfer learning AP-10K 0.01 12.910 92.649 iRodent – – HRNetw32

Transfer learning ImageNet 0.01 0.785 152.225 iRodent – – HRNetw32

Transfer learning ImageNet 1.00 58.857 35.651 iRodent – – HRNetw32

Fine-tuning AP-10K 0.01 43.144 37.704 iRodent – – HRNetw32

Fine-tuning AP-10K 1.00 61.635 26.758 iRodent – – HRNetw32

Memory replay SuperAnimal 0.01 60.853 31.801 iRodent – – HRNetw32

Memory replay SuperAnimal 1.00 72.971 24.884 iRodent – – HRNetw32

Here, the base SuperAnimal-Quadruped model had none of the held-out datasets. Full results can be found in Fig. 2 for fine-tuning with different amounts of data, but the best fine-tuning
performance is shown,whichmatches the top performanceof theSuperAnimal (SA) variant as shown in Fig. 2. Cao et al.33 donot report a unifiedsinglemAP, rather per animal, thereforewe trained a
model using their dataset to estimate top-line performance if only trained on AP. Number as reported in ref. 41 using the data from ref. 31.
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we used the open-field test (OFT) dataset presented in Sturman et al.15.
We evaluated the performance of SuperAnimal weights in an action
segmentation task. To make OFT out-of-distribution, we made a var-
iant of the SA-TVMmodel by excluding theOFTdataset during training
from full SA-TVM.

As a strong baseline, we used the DeepLabCut keypoints trained
by Sturman et al., who trained in a supervised way on each video
specifically, thus making it in-domain (Fig. 4a, b). We asked if the
SuperAnimal model variant, which has never been trained on the 20
videos they present, is sufficient to classify two critical kinematic-
based postures: unsupported rearing in the open field, and supported
rearing against the box wall (Fig. 4a, b, see also Supplementary
Video 5). If the keypoints were too noisy, this task would be very
challenging.

In order to transform keypoints into behavioral actions via seg-
mentation, we used skeleton-based features to convert keypoints to
feature vectors (see Methods). We then either used only a MLP-based
classifier as in Sturman et al., or we used a newly described non-linear
clustering algorithm called CEBRA48 to further improve the feature
space, followed by the same classifier (see Methods and Fig. 4c–e).

We found that SA-TVM zero-shot could be as good as the super-
vised keypoint model in predicting both behaviors (Fig. 4d–g; linear
mixed effect model, fixed effect of “method”: F =0.999, p =0.393;
Supplementary Table S25). Moreover, using CEBRA slightly improved
upon the behavior classification, independent ofwhich keypoints were
used (Fig. 4e, f). We also compared the correlation of our result based
onSuperAnimalor Sturmankeypoint data against the three annotators
per video and found that our model is well correlated to the ground
truth annotations, particularly when using CEBRA (Fig. 4f).

As a further test, we compared the performance of using our
keypoints vs. the officially provided keypoints on the MABe
benchmark49. In brief, we used the top-down SA-TVM model and ran
inference over three million frames over 1830 videos (without video
adaptation to test baseline performance). We then used the outputs
and ran PointNet50, which was provided as a baselinemethod inMABe.
Here, we find nearly identical performance on the behavioral classifi-
cation tasks as the fully-supervised pose estimation data they provide
(Supplementary Table S26, Supplementary Fig. S6a). Further sug-
gesting that SA-TVM can be combined with other approaches for
mouse behavioral classification.

Moreover, since the time of pre-printing this work51, SA-TVM has
been used zero-shot with post-hoc unsupervised analysis of mouse
behavior with Keypoint-MoSeq52 and (both SA-TVM and SA-Q) within
AmadeusGPT53. Therefore, collectively this demonstrates that without
any training, the SA-TVM model can be used for downstream beha-
vioral analysis on out-of-distribution data.

Lastly, to show the utility of the SA-Q model in video analysis we
performed gait analysis in horses. Here, we turn to a ground truth video
dataset where every frame of the video was annotated by an equine
expert16. We computed the stride and swing phase of the gait and
showed that the SA-Q model with video adaptation can match ground
truth (Fig. 4g–h, andwith filtering see Supplementary Fig. S6b) in 24 out
of 30 videos, where we only miss one stride detection (either over or
under, (Fig. 4h). We also computed the hoof-ground contacts and find
generally good agreement between ground truth and predictions
(r=0.919; Fig. 4i). The fraction of contacts within 1–5 frames of ground
truthwas 69.9–81.7%, respectively, averaged across front andhind limbs
across all videos. Collectively, this suggestsour SuperAnimalmodels can
be used in real-world tasks both in and outside the laboratory.

Discussion
We propose an approach to create robust, cross-lab neural network
models that are applicable for rodents and many other quadrupeds
(>45 species). Our approach is general, and it will be an important
future goal to expand the DeepLabCut Model Zoo to additional

animals (e.g., insects, birds, orfish) andbehavioral contexts.moreover,
what keypoints are of relevance also depends on the experiment. For
instance, in reaching experiments9,54, different keypoints are of inter-
est than in open field studies, but many groups could still benefit from
such collective model-building efforts.

Building a pretrained posemodel via supervised learning benefits
from the availability of the annotated pose datasets, and we show that
our formulation removes the obstacles of leveraging inhomogenous
pose datasets, which enables SuperAnimal models to benefit from
learning pose prior from larger datasets. Alternatively, unsupervised
keypoint discovery can be used55,56. While the unsupervised approach
requires no pose annotations, the learned keypoints might lack inter-
pretability and it is not clear yet whether it allows zero-shot inference
on OOD data. Therefore, both approaches that create predictions
based on the super-set of annotated keypoints from different studies
and unsupervised keypoint discovery are promising, complementary
directions.

Moreover, labs may be more incentivized to share their data
knowing their work can be leveraged by a global community effort to
build more powerful models. The DeepLabCut Model Zoo web plat-
form allows access to SuperAnimal pre-trained models, aids in col-
lecting and labeling more data (Supplementary Fig. S6d), and hosts
other user-shared models at http://modelzoo.deeplabcut.org.

Taken together, we aimed to reduce the (human and computing)
resources needed to create or adapt animal pose models in both lab
and in-the-wild animal studies, thereby increasing access to critical
tools in animal behavior quantification.Wedevelopedanew framework
called panoptic pose estimation, where models can be used across
various environments in a zero-shot manner and if fine-tuned, they
require 10–100× less labeled data than previous models (Figs. 1 and 2).
They also show increased performance compared to ImageNet transfer
learning, plus we demonstrate their ability to be used in downstream
tasks such as behavioral classification (Fig. 4), suggesting they could
become foundation models for animal pose estimation.

Methods
Datasets
We collected publicly available datasets from the community, as well
as provided two new datasets for showing how to build models with
the SuperAnimalmethod, iRodent, andMausHaus, as described below.
Thereby, we sought to cover diverse individuals, backgrounds, sce-
narios, and postures. We did not modify the source data otherwise. In
the following, we detail the references for those datasets.

TopViewMouse-5k. 3CSI, BM, EPM, LDB, OFT See full details at ref. 15
and in ref. 57. BlackMice See full details at ref. 24.WhiteMice Seedetails
in SIMBA ref. 25. Courtesy of Prof. SamGolden and Nastacia Goodwin.
TriMouse See full details at ref. 10. DLC-Openfield See full details at
ref. 9. Kiehn-Lab-Openfield, Swimming, and treadmill See details at
ref. 58. Courtesy of Prof. Ole Kiehn, Dr. Jared Cregg, and Prof. Carmelo
Bellardita. MausHaus We collected video data from five single-housed
C57BL/6J male and femalemice in an extended home cage, carried out
in the laboratory of Mackenzie Mathis at Harvard University and also
EPFL (temperature of housing was 20–25 °C, humidity 20-50%). Data
were recorded at 30Hz with 640 × 480 pixels resolution acquired with
White Matter, LLC eV cameras. Annotators localized 26 keypoints
across 322 frames sampled fromwithinDeepLabCut using the k-means
clustering approach59. All experimental procedures for mice were in
accordance with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and approved by the Harvard Institu-
tional Animal Care and Use Committee (IACUC) (n = 1 mouse) and by
the Veterinary Office of the Canton of Geneva (Switzerland; license
GE01) (n = 4 mice). MausHaus data is banked on zenodo60.

For ease of use, we packaged these datasets into one directory
that can be accessed at https://zenodo.org/records/10618947 61.
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Quadruped-80K. AwA-Pose Quadruped dataset, see full details at
ref. 62. AnimalPose see full details at ref. 28. AcinoSet see full details at
ref. 26. Horse-30 Horse-30 dataset, benchmark task is called Horse-10;
see full details at ref. 16. StanfordDogs see full details at refs. 63,64. AP-
10K see full details at ref. 31. APT-36K see full details at ref. 32 iRodent
We utilized the iNaturalist API functions for scraping observations with
the taxon ID of Suborder Myomorpha65. The functions allowed us to
filter the large amount of observations down to the ones with photos
under the CC BY-NC creative license. The most common types of
rodents from the collected observations are Muskrat (Ondatra zibethi-
cus), Brown Rat (Rattus norvegicus), House Mouse (Mus musculus),
Black Rat (Rattus rattus), Hispid Cotton Rat (Sigmodon hispidus), Mea-
dow Vole (Microtus pennsylvanicus), Bank Vole (Clethrionomys glar-
eolus), Deer Mouse (Peromyscus maniculatus), White-footed Mouse
(Peromyscus leucopus), Striped Field Mouse (Apodemus agrarius). We
then generated segmentation masks over target animals in the data by
processing the media through an algorithm we designed that uses a
Mask Region Based Convolutional Neural Networks(Mask R-CNN)66

model with a ResNet-50-FPN backbone45, pretrained on the COCO
datasets40. The processed 443 images were then manually labeled with
pose annotations, andbounding boxeswere generatedby runningMega
Detector67 on the images, which were then manually verified. iRodent
data is banked at https://zenodo.org/record/8250392.

For ease of use, we packaged these datasets into one directory,
which is banked at: https://zenodo.org/records/10619173 68.

Additional OOD Videos. In Fig. 3, for video testing we additionally
used the following data: Golden Lab mouse: see details at ref. 69.
Smear Lab Mouse: see details at ref. 70. Mathis Lab MausHaus: New
video conditions, but the same as MausHaus ethics approval as above.
BlackDog: video from https://www.pexels.com/video/unleashing-the-
pet-dog-outdoors-4763071/, Elk video from https://www.pexels.com/
video/a-deer-looking-for-food-in-the-ground-covered-with-snow-
3195531/. Horse-30 videos: we used the ground truth annotations for
30 horse videos as described in ref. 16.

Benchmarking: data splits and training ratios. Pre-training datasets:
For every test of an OOD dataset we create a dataset that has all
datasets that exclude theOODdataset.Within thepretrainingdatasets,
we used 100% of the images and annotations, and we used the OOD
datasets for performance evaluation.

OOD datasets: For AP-10K, we used the official training and vali-
dation set. For AnimalPose, iRodent, and DLC-Openfield, we create our
own splits and shuffles. We use the 80:20 train test ratio for AnimalPose
and iRodent and we use the 95:5 train test ratio for DLC-Openfield.

Note that in our data release, each leave-one-out dataset is noted
in the metadata such that others can easily benchmark their models in
the future.

Panoptic pose estimation
We cast animal pose estimation as panoptic segmentation71 on the
animal body; i.e., every pixel on the body is potentially a semantically
meaningful keypoint that has an individual identity. Ideally, an infinite
collection of diverse pose datasets covers this and the union of key-
points that are defined across datasets makes the label space of
panoptic pose estimation.

Data conversion and panoptic vocabulary mapping (generalized
data converter). Data came from multiple sources and in multiple
formats. To homogenize different annotation formats (COCO-style,
DeepLabCut format, etc.), we implemented a generalized data con-
verter.Weparsedmore than20public datasets and re-formatted them
into DeepLabCut projects. Besides data conversion, the generalized
data converter also implements key steps for the panoptic animal pose
estimation task formulation. These steps include:

1. Hand-crafted conversion mapping. The same anatomical keypoint
might be named differently in different datasets, or different
anatomical locations might correspond to different labels in
different datasets. Thus, the generalized data converter used a
hand-crafted conversionmapping (see Supplementary Figs. S1a and
S5) to enforce a shared vocabulary among datasets. We checked
the visual appearance of keypoints to determine whether two
keypoints (in different datasets) should be regarded as identical. In
such cases, the model had to learn (possible) dataset-bias in a data-
driven way. We can also think of it as a form of data augmentation
that randomly shifts the coordinate of keypoints by a small
magnitude, which is the case for keypoints which most dataset
creators agree on (e.g., keypoints on the face). For keypoints on the
body, the quality of the conversion table can be critical for the
model to learn a stable representation of animal bodyparts.

2. Vocabulary projection. After the conversion mapping was made,
keypoints from various datasets were projected to a super-set
keypoint space. Every keypoint became a one-hot vector in the
union of keypoint spaces of all datasets. Thereby the animal pose
vocabularies were unified.

3. Datasetmerging. After annotationswere unified into the super-set
annotation space, we merged annotations from datasets by
concatenating them into a collection of annotation vectors. Note
that if the images only displayed a single species, we essentially
built a specialized dataset for that species in different cage and
camera settings. If there were multiple species present, we
essentially grouped them in a species-invariant way to encourage
the model to learn species-agnostic keypoint representations, as
is the case for our SuperAnimal-Quadruped model.

The SuperAnimal algorithmic enhancements for training and
inference
Keypoint gradient masking. First, we manually verified a semantic
mapping of the datasets with diverse naming (i.e., nose in dataset 1 and
snout in dataset 2). Then, we defined a master keypoint space naming,
where no one dataset needed to have all the names identified. This
yielded sparse keypoint annotations into the super-set keypoint space
(Supplementary Fig. S1b, c). Training naively on these projected anno-
tations would harm the training stability, as the loss function penalizes
undefined keypoints, as if they were not visible (i.e., occluded).

For stable training of our panoptic pose estimation model, we
mask components of the loss function across keypoints. The keypoint
mask nk is set to 1 if the keypoint k is present in the annotation of the
image and set to 0 if the keypoint is absent. We denote the predicted
probability for keypoint k at pixel (i, j) as pk(i, j)∈ [0, 1) and the
respective label as tk(i, j)∈ {0, 1}, and formulate the masked Lk error
loss function as

LLk
=
Xm
k = 1

X
i,j

nk � kpkði, jÞ � tkði, jÞkz , ð1Þ

with z = 2 formean square error and z = 1 for L1 loss (e.g., used for locref
maps in DLCRNet10) and the masked cross-entropy loss function as

LCE = �
Xm
k = 1

X
i,j

nktkði,jÞ logpkði,jÞ: ð2Þ

Note that we make distinct the difference between not annotated and
not defined in the original dataset and we only mask undefined key-
points. This is important as, in the case of sideview animals, “not
annotated” could alsomeanoccluded/invisible. Addingmasking to not
annotated keypoints will encourage the model to assign high like-
lihood to occluded keypoints.

Also note that the network predictions pk(i, j) are generated by
applying a softmax to the logits lk(i, j) across all possible keypoints,
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including masked ones:

pkði,jÞ=
exp lkði, jÞPM

k0 = 1 exp lk0 ði, jÞ
: ð3Þ

M is the total number of keypoints. The masking in the loss function
then ensures that probability assigned to non-defined keypoints is
neither penalized nor encouraged during training.

Automatic keypointmatching. In caseswhere userswant to apply our
models to an existing, annotated pose dataset, we recommend to use
our keypoint matching algorithm. This step is important because our
models define their own vocabulary of keypoints that might differ
from the novel pose dataset. To minimize the gap between the model
and the dataset, wepropose amatching algorithm tominimize the gap
between the models’ vocabulary and the dataset vocabulary. Thus, we
use our model to perform zero-shot inference on the whole dataset.
This gives pairs of predictions and ground truth for every image. Then,
we cast the matching between models’ predictions (2D coordinates)
and ground truth as bipartitematching using the Euclideandistance as
the cost between pairs of keypoints. We then solve thematching using
the Hungarian algorithm. Thus for every image, we end up getting a
matching matrix where 1 counts for match and 0 counts for non-
matching. Because themodels’ predictions can be noisy from image to
image, we average the aforementioned matching matrix across all the
images and perform another bipartite matching, resulting in the final
keypoint conversion table between the model and the dataset
(example affinity matrices are shown in Supplementary Fig. S2a, b).

Note that the quality of thematching will impact the performance
of the model, especially for zero-shot. In the case where, e.g., the
annotation nose is mistakenly converted to keypoint tail and vice
versa, the model will have to unlearn the channel that corresponds to
nose and tail (see also case study in Mathis et al.7). For evaluation
metrics such asmAPwhereaper keypoint sigma is used,we sample the
sigmas from the SuperAnimal sigmas (See Supplementary Table S1).

Memory replay fine tuning. Catastrophic forgetting72 describes a
classic problem in continual learning38. Indeed, amodel gradually loses
its ability to solve previous tasks after it learns to solve new ones.

Fine-tuning a SuperAnimal models falls into the category of con-
tinual learning: the downstream dataset defines potentially different
keypoints than those learned by the models. Thus, the models might
forget the keypoints they learned and only pick up those defined in the
target dataset. Here, retraining with the original dataset and the new
one, is not a feasible option as datasets cannot be easily shared and
more computational resources would be required.

To counter that, we treat zero-shot inference of the model as a
memory buffer that stores knowledge from the original model. When
we fine-tune a SuperAnimal model, we replace the model predicted
keypoints with the ground-truth annotations, resulting in hybrid
learning of old and new knowledge. The quality of the zero-shot pre-
dictions can vary and we use the confidence of prediction (0.7) as a
threshold to filter out low-confidence predictions. With the threshold
set to 1, memory replay fine-tuning becomes naive-fine-tuning.

Memory replay pseudo-code:

def is_defined(keypoints):
# Check whether the original dataset defines each

keypoint. We use a flag '-1' to denote that a given
keypoint is not defined in the original dataset.
Note this is different from not annotated in the
COCO convention, which use flag '0'

return True if keypoints[2] >= 0 else False

def load_pseudo_keypoints(image_ids):

# get the pseudo keypoints by image IDs.
# note, pseudo keypoints are loaded from disk and
fixed throughout the process, so no label drifting
is expected as in typical online pseudo labeling

return pseudo_keypoints

def get_confidence(keypoints):

# get the model confidence of the predicted key-
points. Unlike ground truth data that have 3
discrete flags, predicted keypoints have con-
fidence that can be used as likelihood readout for
post-inference analysis

return keypoints[2]

def memory_replay(model, superset_gt_data_loader,
optimizer, threshold):

# gt data is preprocessed such that annotations
are now in superset keypoint space.

# we extended the visibility flag of COCO annota
tion to following (-1: not defined in the target
dataset, 0: not labeled, 1: labeled but not
visible, 2: labeled and visible)

for batch_data in superset_gt_data_loader:

gt_keypoints = batch_data['keypoints']
image_ids = batch_data['image_ids']
images = batch_data['images']
# model() is a pytorch style forward function
preds = model(images)
pseudo_keypoints = load_pseudo_keypoints(
image_ids)
# 3 here is (x, y, flag)
batch_size,num_kpts,_=gt_keypoints.shape
# iterate through batch

for b_id in batch_size:

# iterate through keypoints
for kpt_id in range (num_kpts):
# since this specific bodypart is not

defined in the new dataset, we use saved
pseudo labels (zero-shot prediction)
as gt. This prevents catastrophic for
getting and drifting. We can also use
confidence to filter the pseudo
keypoints]
if not is_defined(gt_keypoints[b_id]

[kpt_id]) and get_confi-
dence(pseudo_key-
points[b_id][kpt_id]) >
threshold:

#weassumeasingleanimalscenario
for simplicity. For multiple ani
mals, matching between gt and
pseudo keypoints need to be done.
gt_keypoints[b_id][kpt_id] =
pseudo_keypoints[b_id][kpt_id]

loss = criterion(preds, gt_keypoints)
optimizer.zero_grad()
loss.backward()
optimizer.step()
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Model architectures
For SuperAnimal-TopViewMouse we used both a bottom-up model
(DLCRNet) and top-down model (HRNet-w32), or transformer (Ani-
malTokenPose) (see below). Whereas for SuperAnimal-Quadruped we
only use top-down based HRNet-w32. Please refer to the Supplemen-
tary Fig. S6 and Supplementary discussion for why we use only top-
down models for quadruped.

Bottom-Up model
DLCRNet. The SuperAnimal-TopViewMouse used the bottom-up
approach as described in DeepLabCut9,10. We use DLCRNet_ms510 as
the baseline network architecture for its excellent performance on
animal pose estimation. A batch size of 8 was used and the
SuperAnimal-TopViewMouse was trained for a total of 750k itera-
tions. In the fine-tuning stage, a batch size of 8 was used for 70k
iterations. The Adam optimizer73 was used for all training instances,
and we otherwise used default parameters. We follow DeepLab-
Cut’s multi-step learning rate scheduler to drop learning rates
three times from 1e—4 to 1e—5. Cross-entropy is used for learning
heatmaps. For fine-tuning experiments, we keep the same optimi-
zer, batch size, and learning rate scheduler. The total number of
training steps is adjusted to 70k iterations. During video adapta-
tion, we keep the same optimizer and learning rate scheduler, but
with batch size 1 and total training steps as 1000. We observe that
the low computational budget as described is sufficient for the
model to adapt.

Top-Down models
Object detectors. For the object detectors, we trained Faster R-CNN
using ResNet-50 as the backbone74 and incorporated Feature Pyramid
Networks45 for enhanced feature extraction. The training was con-
ducted over 100 epochs using the AdamW optimizer and LRList-
Scheduler. We initiated the training with a learning rate of 0.0001,
which was decreased to 1e—05 at the 90th epoch. The batch size was
set to 4 for both the SuperAnimal-TopviewMice and SuperAnimal-
Quadruped.

We processed the TopViewMouse-5K and Quadruped-80K data-
sets to ensure that there is only one animal category, namely top-view
mice or quadrupeds, in each dataset. This approach was adopted to
train the model to detect generic animal types effectively. During
training, image resizing to 1333 × 800 pixels, random flipping, nor-
malization, and paddingwere applied as part of the data augmentation
process.

HRNet-w32. HRNet-w3220 is used for the top-down based
SuperAnimal-Quadruped models. The training protocol follows that
described in the AP-10K paper31. Specifically, we employed the Adam
optimizer73 with an initial learning rate of 5e—4. The total training
duration was set to 210 epochs, with a step decay applied to the
learning rate at epochs 170 and 200. A batch size of 64 was used.
Consistent with the AP-10K protocol, random flip, half-body transfor-
mation, and random scale rotation were applied during training, along
with flip testing during evaluation.

For fine-tuningmodels with a very small number of unique images
(e.g., fewer than 64 images in the training set), we fixed the running
stats of batch normalization layers and used a smaller initial learning
rate of 5e—5. This setting improves training stability.

HRNet-w32 was also employed for the top-down based
SuperAnimal-TopviewMouse models, adhering to the exact same
training protocol as the SuperAnimal-Quadruped.

AnimalTokenPose. Inspired by recent results of Vision
Transformers21 on human pose estimation tasks23 we assessed ViT’s
zero-shot performance. We conducted experiments with the ori-
ginal ViT architecture in three setups: with masked auto-encoder

(MAE)75 initialization, DeiT76 initialization, and truncated normal
initialization with standard deviation 0.02 and 0 mean. Following
the original setup21, we did not use a convolutional backbone. The
input image of size 224 × 224 was split into patches of 16 × 16 pixels,
the depth of the transformer encoder was equal to 12 and each
attention layer had 12 heads with a feature dimension of 768. It was
crucial to use a pre-trained vision transformer; without pre-train-
ing, the model did not converge for either dataset (data
not shown).

We also adapted theTokenPosemodel byYang et al.22, which adds
information about each keypoint in learnable queries called keypoint
embeddings. The model was originally used for human pose estima-
tion with a fixed number of keypoints. Combining TokenPose and
panoptic animal pose estimation, we obtain AnimalTokenPosemodels
that are able to achieve high zero-shot performance in OOD datasets
we prepared (Figs. 1 and 2).

For keypoint estimation, 12 transformer encoder blocks with
feature vector of size 192were stacked.While the ViT encoder received
raw pixels as an input, in TokenPose22 the images of size 256× 256 are
first processed by a convolutional backbone, and captured abstract
features are then split into patches of size 4 × 4. As in TokenPose22, we
used the first three stages of HRNet77 and 2 stacked residual blocks
from a ResNet78.

The training procedure for AnimalTokenPose is identical to
HRNet-w32 detailed above.

Video inference methods and considerations
Domain shifts and unsupervised adaptation. These domain shifts79

describe a classical vulnerability of neural networks, where a model
takes inputs from a data domain that is dissimilar from the training
data domain, which usually leads to large performance degradation.
Weempirically observe three types of domain shiftswhen applyingour
models in a zero-shot manner. These domain shifts range from pixel
statistics shift80, to spatial shift81, to semantic shift79,80. To mitigate
those, we applied two methods, test time spatial-pyramid search and
video adaptation.

Handling the train and test time resolution discrepancy for bottom-
up models. One notable challenge for our bottom-up models face at
inference time is the discrepancy in the animal appearance sizes and
image resolutions between train and test stages. Even though scale
jitter augmentation is part of most pose estimation frameworks’ data
augmentation pipeline, including DeepLabCut’s10,59,82, the model can
still have trouble handling dramatic changes in the image resolution or
the animal appearance sizes. To further deal with scale changes, we
employ spatial-pyramid search at test-time (see below). The same
challenge happens in fine-tuning stage. The downstream dataset (and
the animals present in it) could have very different animal sizes from
the pre-training datasets, causing a distribution shift to the pre-trained
models. We thus apply resizing (height 400 pixels and same aspect
ratio) to downstream datasets if their sizes are drastically different
from our training images.

Test time spatial-pyramid search for bottom-upmodels. As bottom-
up models do not enforce the standardization of the animal size seen
by the pose estimator, the relative animal size (ratio between the ani-
mal’s bounding box area and the area of the image) seen in the pre-
training stage and testing stage can be very different. In other words,
the bottom-up model performs best with the animal sizes seen in the
training stage. The relative animal size in the test time is unknown and
as a result, it can cause performance degradation due to spatial dis-
tribution shift. We propose to apply multiple rescaling factors to the
test image and aggregate the models’ predictions.

Therefore, during the inference, we build a spatial-pyramid com-
posed of model’s predictions for multiple copies of the original image

Article https://doi.org/10.1038/s41467-024-48792-2

Nature Communications |         (2024) 15:5165 13



at different resolutions. We use model’s confidence as the criterion to
filter out the resolutions that give sub-optimal performance and
aggregate (taking median) predictions from resolutions that have
above-threshold confidence as our final prediction.

The train-test resolution discrepancy83 has been studied actively
and most approach it through multi-resolution fusion10,45,77. Previous
work mostly focuses on IID settings where the resolution of testing
images did not vary considerably from the training images. Moreover,
prior work approaches multi-resolution fusion via deep features,
requiring modifications of the architecture and adding more para-
meters. In contrast, theproposed spatial-pyramid search is designed to
aid SuperAnimal models in zero-shot scenarios where the resolutions
of testing images are most likely out of distribution to our training
images. We did not apply multi-resolution fusion via deep features for
that requires fixing choice of architectures. On the other hand, com-
monly usedmulti-scale testing in IID setting does not need to carefully
filter out very noisy predictions. This method can also be used for
calibration to find the optimal scale.

Spatial-pyramid pseudo-code:

def spatial_pyramid_search(images, model, scale_-
list, confidence_threshold, cosine_threshold):

# generate rescaled version of original images
with multiplescaling factor
rescaled_images = rescale_images(images,
scale_list)
preds_per_scale = []
# gather predictions of the model, assuming the
final pred_keypoints are projected to the original
image space by the forward function

for rescaled_image in rescaled_images:

pred_keypoints = model(rescaled_image)
# using median to get a good estimate of expec
ted keypoint positions
median_keypoint = get_median_key
point(pred_keypoints)
# If the rescaled image is not suitable for the
model, we expect the model have a confidence
less than a given threshold
pred_keypoints = filter_by_confidence(pred_
keypoints, confidence_threshold)
# A median filter alone does not remove out
liers. After confidence filtering, we compare
the remained predictions to the median key
point and drop the low quality predictions
pred_keypoints = filter_by_cosine_similar
ity(pred_keypoints, median_keypoint,
cosine_threshold)
preds_per_scale.append(pred_keypoints)

return get_median_keypoints(preds_per_scale)

Video adaptation. To aid SuperAnimal models to adapt to novel
videos, we inference the model on the videos, and treat these pre-
dictions as thepseudoground-truth84 labels to train on.We remove the
predictions that have low confidence to filter out unreliable predic-
tions. We found that it is critical to fix the running stats of batch nor-
malization layers during the adaptation training (See supp for more
details). Empirically, 1000 iterations with batch size 1 is sufficient to
greatly reduce the jitter. The optimal number of iterations and the
confidence threshold are hyperparameters for different videos.

Video adaptation pseudo-code:

def get_pseudo_predictions(frame_id):
# return pseudo prediction by frame id

def video_adaptation(model, video_data_loader,
optimizer, threshold):
for data in video_data_loader:

# fix the running stats of BN layers
model.eval()
frame_id = data['frame_id']
Image = data['image']
pseudo_keypoints = get_pseudo_pre
dictions(frame_id)
preds = model(image)
# predictions that have low confidence are

masked from loss calculation.
loss = criterion(preds, pseudo_keypoints,
mask_by_threshold = threshold)
optimizer.zero_grad()
loss.backward()
optimizer.step()

Evaluation metrics
Supervised metrics for pose estimation
RMSE. Root Mean Squared Error is a metric to measure the distance
between prediction and ground truth annotations in pixel space7,9.
However, for pose estimation, does not take the scale of the image and
individuals into consideration and thedistance is thus non-normalized.
As our data is highly variable, we also sometimes use normalized
errors. We use RMSE for the DLC-Openfield benchmarking, as this was
the original authors'main reportedmetric. Note that during evaluating
RMSE, we do not remove predictions that have low confidence due to
occlusion. Therefore, all predictions including outliers are penalized
by RMSE.

Normalized error. For Horse-10 experiments, we compute RMSE
between ground-truth annotations and predictions with confidence
cutoff 0 (to include all predictions to ensure low confidence predic-
tions are also penalized). The resulting RMSE is then normalized by the
eye-to-nose GT distance provided by ref. 16.

mAP. Mean average precision (mAP) is the averaged precision of
object keypoint similarity (OKS)85:

OKS=

Pn
i = 1 exp �d2

i =2s
2ki

2
� �

δ vi >0
� �h i

Pn
i= 1 δ vi >0

� �� � ð4Þ

where di is the Euclidean distance between each corresponding ground
truth and detected keypoint and vi is the visibility flags of the ground
truth, s is the object scale and ki is a per keypoint constant that controls
falloff (see full implementation details at ref. 40). For lab mice, we used
0.1 for all keypoints following10. For quadruped, we used the sigmas (per
keypoint constant) of the 17 keypoints shared with AP-10K31 and used
0.067 for the rest of animal keypoints (see below). s is the square root of
the bounding box area (product of width X height of the bounding box).

The body parts along with their corresponding k in pixels are:
nose (0.026), upper_jaw (0.067), lower_jaw (0.067), mouth_end_right
(0.067), mouth_end_left (0.067), right_eye (0.025), right_earbase
(0.067), right_earend (0.067), right_antler_base (0.067), right_-
antler_end (0.067), left_eye (0.025), left_earbase (0.067), left_earend
(0.067), left_antler_base (0.067), left_antler_end (0.067), neck_base
(0.035), neck_end (0.067), throat_base (0.067), throat_end (0.067),
back_base (0.067), back_end (0.067), back_middle (0.035), tail_base
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(0.067), tail_end (0.079), front_left_thai (0.072), front_left_knee
(0.062), front_left_paw (0.079), front_right_thigh (0.072), fron-
t_right_knee (0.062), front_right_paw (0.089), back_left_paw (0.107),
back_left_thigh (0.107), back_right_thai (0.087), back_left_knee (0.087),
back_right_knee (0.089), back_right_paw (0.067), belly_bottom
(0.067), body_middle_right (0.067), body_middle_left (0.067).

Unsupervised metrics for video prediction smoothness
Convex hull body areameasurement. To evaluate the smoothness of
SuperAnimal model predictions in video, we utilize a simple unsu-
pervised heuristic. It computes the area of a polygon encompassing all
keypoints, the idea being that the smoother the detections, the lower
the variance of this polygon’s area. This is formally noted by Abody, to
estimate the animal body area.Abody is calculated using the convex hull
containing all keypoints over time. Let K represent the set of all key-
points for the animal at each time step, and HðKÞ denote the convex
hull containing all keypoints. The animal body area,Abody, is then given
by the area of the convex hull:

Abody =AreaðHðKÞÞ ð5Þ

where AreaðHðKÞÞ is the function that calculates the area of the convex
hull HðKÞ containing all keypoints over time.

Jitteringmetric.We define jittering, denoted by J, as the average of the
absolute values of centered, non-signed speeds across all examples
and all keypoints. For a given keypoint k and example e, the jittering
value is computed as follows:

Jk,e =
1

Nk,e

XNk,e

i= 1

∣vk,e,i∣ ð6Þ

where: Jk,e is the jittering value for keypoint k in example e; Nk,e is the
total number of centered, non-signed speed measurements for
keypoint k in example e; vk,e, i is the i-th centered, non-signed speed
measurement for keypoint k in example e.

Keypoint droppingmetric. Keypoint drop is a count of the number of
keypoints with predicted likelihood below a set threshold for every
predicted frame (the cutoff was set to 0.1 for bottom-up models, and
0.05 for top-downmodels). In practice, low-confidencepredictions are
dropped to remove predictions that are not reliable or occluded.

In this work, keypoint dropping is used to complement metrics
such as RMSE to evaluate the jittery of predictions or catastrophic
forgetting. Note keypoint dropping is only valid for top-view,openfield
(almost no occlusion) videos where every keypoint is supposed to be
predicted with relatively high confidence. For side-view poses, key-
point dropping is not suitable as many bodyparts are occluded.

Let Ktotal be the total number of keypoints in the video sequence,
and Kdropped be the count of keypoints that are below a defined
threshold Tthreshold and considered for dropping in environments with
little occlusion and a top view.

KdroppedðtÞ=
XKtotal

i= 1

δiðtÞ ð7Þ

where Kdropped(t) is the count of keypoints dropped at time t, and δi(t)
is an indicator function that returns 1 if the i-th keypoint is below the
threshold at time t, and 0 otherwise:

δiðtÞ=
1, if scoreiðtÞ<T threshold

0, otherwise

�
ð8Þ

where scoreiðtÞ is the confidence score or measurement of the i-th
keypoint at time t.

Adaptation gain (or loss) in mAP. Denotes the adapted model’s
change in mAP on the adapted video. A negative number means a
performance degradation after adaptation.

Every video inHorse-30 dataset is densely annotated. Thuswe can
calculate themAPgain on the video after themodel is adapted to it.We
use the pre-adapted zero-shot mAP as the reference and calculate the
difference between the post-adaptationmAP and pre-adaptationmAP.

Robustness gain (or loss) in mAP. Calculates mAP gain on all videos
from the same dataset. This helps to identify whether the model
overfits one single video it trains on or it performs successful domain
adaptation with respect to the whole video dataset. We use this
robustness gain to complement adaptation gain.We calculate themAP
for the adapted models on all 30 videos of Horse-30 dataset16. A
positive gain in robustness also suggests that the method can be used
on one video and benefit all other videos in the same dataset.

Video adaptation compared to baselines using supervised metrics
(mAP). We use HRNet-w32 with the detector we trained to perform
video adaptation to inference the videos to obtain pseudo-labels.

For video adaptation algorithm, the prediction confidence
threshold is set to 0.5 and we perform video adaptation for 4 epochs
for each video it adapts to. The learning rate scheduler and augmen-
tations are identical to HRNet-w32’s.

PPLO. Progressive Pseudo-label-based Optimization33 implements
iterative pseudo-labeling that follows a curriculum, namely, the
pseudo-labeling startswith high confidenceprediction, and then trains
with small confidence predictions, following an easy-to-hard curricu-
lum. We initialize three confidence intervals as [0.9, 0.7, 0.5] and
sequentially apply pseudo-labeling to the model for four epochs with
each confidence level, making a total of 12 epochs training with PPLO.

The full algorithm of PPLO also requires training on both labeled
source data and labeled target data, which the video adaptation does
not do. For fairness reasons, we only performed the iterative pseudo-
labeling step.

Kalman filtering. We apply a constant-velocity Kalman filter (imple-
mented in filterpy v1.4.5) as post-processing to our pre-adaptation
zero-shot pose predictions. As Kalman filtering does not modify the
model weights, we do not report the general robustness gain on it.

Statistical analysis. Linear mixed-effects models were fitted in R86

using the lme4 package (v1.1.31;)87. Training data ratio (or, equiva-
lently, the number of images) and fine-tuning methods were defined
as fixed effects, whereas the various datasets and shuffles were trea-
ted as random effects; random intercepts and slopes were also added
at the dataset level. The best models were selected based on the
Akaike Information Criterion (AIC); adding complexity did not result
in lower AIC, and even led to singularfits, indicative of overfitting. The
weight of evidence for an effect was computed using likelihood ratio
tests, as well as with p values provided by lmerTest (v.3.1.3). Two-
sided pairwise contrasts and Cohen’s d standardized effect sizes were
computed with the emmeans package (v.1.8.9), and degrees of free-
dom estimated with the Kenward–Roger method. Distributions of
prediction errors with and without spatial-pyramid search were
compared with the two-sample, one-sided (alternative hypothesis:
“less") Kolmogorov–Smirnov test. The significance threshold was
set at 0.05.

Behavioral action segmentation, OFT
As our benchmark dataset, we used the openfield test (OFT) task from
Sturman et al.15. We calculated the same skeleton-based features by
concatenating 10 distances between keypoints, six angles, four body
areas, and two additional boolean variables coding whether the nose
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and head center was inside the arena, resulting in a 22D vector at each
time step. For the action classifier, we used an MLP neural network as
the action decoder that acted as a sliding window across 31 time steps
to perform action segmentation and used F1 score on supported and
unsupported rears as evaluation metrics. As in the original paper, we
performed leave-one-out cross-validation on 20 videos and across
three annotators.

Note that the original model for OFT task from Sturman et al.
includes the center and four corners of the mouse cage, which is cri-
tical for their handcrafted features to determine the relative distance
between themouseand thewalls. As our SuperAnimalmodels focus on
animal bodyparts only, we take the corner coordinates from their
released data for the sake of comparison. In practice, those static
environmental keypoints can be provided by taking users’ inputs via
interactive GUI for videos.

For CEBRA48, we used the model architecture “offset10-model”.
The output dimension was set to 32, as found via a simple grid search
over the following values: [4, 8, 16, 32].We trained it for 5000 iterations
with batch size 4096, the Adam optimizer, and learning rate 1e—4.

Behavioral action segmentation, MABe
MABe has two rounds and since only round 2 released videos, we use
videos from round 2 as the inputs for our pretrained SA-TVM model.
Since our paper focuses on pretrained pose model, we use recom-
mended baselines49,50 from round 1 that build representation based on
pose trajectories instead of RGB-based representation learning base-
lines (as RGB-based representation learning is known to be better than
pose trajectory-based representation88. Videos from MABe round 2
have threemice in videos, thereforeweused our top-down version SA-
TVM. The procedure is as follows: we inferenced our pretrained top-
down SA-TVM on all 1830 videos from round 2, converted the pose
results intoMABekeypointfile format, and ranPointNet code toobtain
embeddings. Finally, we use the official evaluation code to compare
the performancebetween using the officialMABe poses obtained from
fully supervised learning and poses that are obtained via our models’
zero-shot predictions.

Behavioral action segmentation, Horse Gait Analysis
Our SA-Qmodel was run on the videos fromHorse-3016. The start (2 s)
and end (2 s) of eachof the 30 videoswere removed from the analysis,
to ignore instantswhen the horse is only partially seen. Front andback
hoof contacts and lifts were identified using respectively peak and
valley detection from the 2D kinematic traces of the front and back
hooves. Beforehand, these trajectories were smoothed using a 2nd-
order, low-pass, zero-lag Butterworth filter (cutoff=3 Hz) and cen-
tered on a keypoint located on the animal’s back; this effectively
expresses keypoint coordinates in a reference frame stationary rela-
tive to the moving horse, facilitating event detection. We extracted
fore and hind limb strides between consecutive ground contacts, and
stance phases between a contact of one hoof until it is lifted off the
ground. Stride lengths (in pixels), stances, and the number of iden-
tified hoof contacts were then computed, and qualitatively compared
to those obtained using the densely annotated (ground truth) key-
points (Fig. 4g, h, i).

Code API
High-level inference API (with optional spatial-pyramid search) for
using SuperAnimal models in DeepLabCut:

video_path= ‘demo-video.mp4’
superanimal_name= ‘superanimal_topviewmouse’
scale_list = range(200, 600, 50) # image height pixel size
range and increment

deeplabcut.video_inference_superanimal(
[video_path],
superanimal_name,
scale_list=scale_list,
video_adapt=True)

Web App
Many labs use DeepLabCut to define, annotate, and refine animal
bodyparts, resulting in high quality, diverse keypoint annotations for
animals in different contexts10,59. In order to enable a positive feedback
loop to turn the collection of animal pose data and models into a
community effort we developed a Web App.

The app is available at https://contrib.deeplabcut.org/. This app
allows anyone, within their browser, to a) upload their own image and
label, b) annotate community images, c) run inference of available
community models on their own data, and d) share models to be
hosted. The website is written using JavaScript with the Svelte frame-
work, and the models are run on cloud servers.

Data collection. The website has an upload portal for groups to
upload their models and labeled data in DeepLabCut format to help
grow the pre-training datasets and allow researchers to build on top of
varied models and data.

Annotation. Additionally, the website hosts a labeling web app that
allows users to annotate curated images. The datasets currently avail-
able for annotation are from iNaturalist89 and theOpenImage Datase90.
After selecting which dataset to label, images are displayed succes-
sively with the target animal prominently shown in front of an opaque
masked background (which can be toggled off). The keypoint set is
selected taking into account the species morphology and keypoint
value in subsequent analysis. Once the annotation is complete, thedata
is saved to the database andmade available for use in further research.

Online inference. To allow testing DeepLabCut models in the brow-
ser, the user selects a few images, which model to run, and receives
predictions along with confidence scores for each keypoint. Users are
then able to adjust or delete keypoints, as well as download themodel
weights from HuggingFace. This allows for a quick and hassle-free
evaluation of DeepLabCut’s capabilities and suitability for specific
tasks, making it available to a wider range of users.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Two SuperAnimal datasets generated in this study have been
deposited in the Zenodo database under DOIs61,68. These packaged
datasets are detailed in the “Datasheets” in Supplementary Informa-
tion. The SuperAnimal model weights are banked at HuggingFace:
https://huggingface.co/mwmathis/DeepLabCutModelZoo-Super
Animal-Quadruped and https://huggingface.co/mwmathis/DeepLab
CutModelZoo-SuperAnimal-TopViewMouse, and see the detailed
“Model Cards” in Supplementary Information.

Code availability
Code to use the DeepLabCut Model Zoo: https://github.com/
DeepLabCut/DeepLabCut; it is available since version 2.3.1 and at the
time of final acceptance the code is at version 2.3.9. Code and data to
reproduce the figures: https://github.com/AdaptiveMotorControlLab/
modelzoo-figures. All other requests should be made to the corre-
sponding author.
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