Skip to main content
. 2024 Jun 21;15:5165. doi: 10.1038/s41467-024-48792-2

Table 1.

Main results on mouse benchmarks

Method Pre-trained weights Data ratio mAP RMSE Dataset Architecture
Zero-shot SuperAnimal 50.397 14.32 DLC_Openfield DLCRNet
Zero-shot SuperAnimal 95.219 4.881 DLC_Openfield HRNetw32
Zero-shot SuperAnimal 96.348 4.572 DLC_Openfield AnimalTokenPose
Transfer learning ImageNet 0.01 62.226 18.136 DLC_Openfield DLCRNet
Transfer learning ImageNet 0.01 91.458 7.001 DLC_Openfield HRNetw32
Transfer learning ImageNet 1.00 99.23 2.340 DLC_Openfield DLCRNet
Transfer learning ImageNet 1.00 100 1.131 DLC_Openfield HRNetw32
Memory replay SuperAnimal 0.01 74.225 7.688 DLC_Openfield DLCRNet
Memory replay SuperAnimal 0.01 99.599 2.381 DLC_Openfield HRNetw32
Memory replay SuperAnimal 1.00 97.946 3.071 DLC_Openfield DLCRNet
Memory replay SuperAnimal 1.00 99.868 1.210 DLC_Openfield HRNetw32
Zero-shot SuperAnimal 76.139 9.013 TriMouse HRNetw32
Zero-shot SuperAnimal 70.372 10.580 TriMouse AnimalTokenPose
Transfer learning ImageNet 0.01 26.116 31.562 TriMouse HRNetw32
Transfer learning ImageNet 1.00 97.730 2.276 TriMouse HRNetw32
Memory replay SuperAnimal 0.01 90.320 5.850 TriMouse HRNetw32
Memory replay SuperAnimal 1.00 98.547 2.103 TriMouse HRNetw32

The mAP on multiple architectures, CNN (HRNet, DLCRNet), and Transformer based models (AnimalTokenPose model) on SuperAnimal-TopViewMouse. As a reminder, transfer learning means using a randomly initialized decoder that is also trained. Memory replay involves fine-tuning the encoder and decoder.