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DeepFace: Deep-learning-based framework
to contextualize orofacial-cleft-related variants
during human embryonic craniofacial development
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Summary
Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified

dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes

have been highlighted, the ‘‘casual’’ variants are largely unknown. Here, we developed DeepFace, a convolutional neural networkmodel,

to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic

assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson cor-

relation coefficient between the predicted and actual values for 12 epigenetic features achieved amedian range of 0.50–0.83. Specifically,

our model revealed that SNPs significantly associated with OFCs tended to exhibit higher SAD scores across various variant categories

compared to less related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a signif-

icant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal

regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of

risk signals associated with OFCs. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering

new perspectives for prioritizingOFC variants using contextualized functional genomic features.We expect DeepFace to be instrumental

in accessing and predicting the regulatory roles of variants associated with OFCs, and themodel can be extended to study other complex

diseases or traits.
Introduction

Nonsyndromic orofacial clefts (OFCs) are among some of

the most common human birth defects, occurring in 1 in

700 live births worldwide.1 OFCs occur in various forms,

including cleft lip alone (CL), cleft palate alone (CP), and

a combination of both (CLP), with a spectrum of severity

in each case.1,2 Nonsyndromic OFCs arise without accom-

panying major cognitive or structural abnormalities and

exhibit complex etiology. This complexity is due to the

interplay of multiple genetic and environmental risk fac-

tors contributing to their development.

In recent years, multiple genome-wide association

studies (GWASs) have successfully depicted the genetic

architecture of OFCs in multiethnic populations.3–13

Although dozens of loci have been identified through

GWASs, most genetic discoveries are situated within non-

coding and regions of linkage disequilibrium.14 Conse-

quently, delineating the regulatory roles of these associ-

ated variants necessitates comprehensive functional
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genomics data to accurately interpret their biological

mechanisms.15

During recent years, large-scale experimental mapping

of epigenomic modification assays have been conducted

by several large consortia, including the Encyclopedia of

DNA Elements (ENCODE)16 and the Roadmap Epigenom-

ics Project,17 which provide insights for annotating the

function of noncoding variants by considering their over-

lap with regulatory elements in related contexts (tissue,

cell type, and developmental stage).18,19 Furthermore,

convolutional neural network (CNN) models have been

recognized as a robust approach for investigating regulato-

ry motifs within the genomic context. They are specifically

designed to capture high-level information from long

sequences, offering valuable insights into the complex

patterns of genomic regulation.20 Currently, many CNN-

based frameworks have been implemented to access the

function of noncoding variants, such as DeepSEA,21

Basenji,22 ExPecto,23 and our previous work, DeepFun.24,25

These CNNmodels provide a computational assessment of
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the regulatory effects resulting from genomic variations by

detecting disruptions or creations of regulatory motifs

identified through convolutional filters. Consequently,

they enable the downstream prediction of chromatin

accessibility and regulatory modifications.21,22 However,

these current methodologies predominantly focus on

proximal sequences adjacent to risk variants, neglecting

the potential for cis-regulatory elements to engage in loop-

ing interactions extending up to one million base pairs

away.26,27 Moreover, the epigenomic regulation of embry-

onic craniofacial development is highly context specific.28

None of the current methods have trained a craniofacial

development model. Therefore, predictions based on

the noncontextual model will not reflect the dynamic

epigenomic signals during craniofacial development.

To address these challenges, we obtained 204 human

craniofacial epigenomic arrays, including datasets across

six craniofacial developmental stages and 12 epigenetic in-

dicators for enhancers, promoters, and gene bodies. These

chromatin feature annotations could complement the

modeling of the epigenomic map in craniofacial develop-

ment. Moreover, we trained a deep learning model

specifically for cleft development, DeepFace, to learn the

epigenetic feature association with the long-range DNA

sequence feature. Therefore, DeepFace predicts the impact

of variants on DNA sequence, enabling us to understand

how alterations in the DNA sequence influence epigenetic

modifications. Next, we applied the DeepFace model to

systematically assess curated CP and cleft lip with or

without cleft palate (CL/P) risk variants. Then, we charac-

terized variants with the largest accessibility alteration

and the development-specific stage of variants. We antici-

pated that the CNN model on dense epigenomic maps

would be a valuable approach for both gene-regulatory

studies and disease studies seeking to elucidate the molec-

ular basis of OFCs.
Material and methods

Primary chromatin feature collection and processing
The 204 chromatin immunoprecipitation of post-translational

epigenetic modifications coupled with next-generation sequencing

(ChIP-seq) data were collected from human embryonic craniofacial

tissues28 and downloaded from the Gene Expression Omnibus

(GEO) (accessed on June 8, 2021, GEO: GSE97752).

Briefly, these 204 assayswere extracted from 17 individual human

embryos during a crucial developmental period. This period encom-

passes the formation of the human orofacial apparatus, spanning

Carnegie stages (CSs) from post-conception weeks (pcw) 4 to pcw

10, including stages CS13, CS14, CS15, CS17, CS20, and F2.29 For

each sample, 11post-translationalhistonemodifications28werepro-

filed, including the repressive marks (H3K27me3 and H3K9me3),

promoter activation marks (H3K4me3 and H3K9ac), transcription

regulation marks (H3K36me3, H4K20me1,30,31 and H3K79me232),

active regulatory marks (H3K4me1, H3K4me2, H3K27ac, and

H2A.Z), and open chromatin signal DNase. Then, we extracted

nonoverlapping sequences across the chromosomes, each spanning

approximately 131,072 bp (�131 kb) as the segment length of the
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input. Sequences with more than 35% unmappable content were

discarded, collectively covering approximately 81% of the human

genome. Each epigenomic data in bigWig format was further con-

verted and split into these segments, resulting in 14,990 segments

for training, 1,805 segments for validation, and 1,798 segments for

testing, based on a distribution scheme across various samples in

an 8:1:1 ratio.

Curation for OFC-significant variants
We collected a diverse set of orofacial variants from the GWAS

Catalog33 (accessed May 16, 2021) using the keyword ‘‘oral cleft,’’

resulting in 306 variants with p value <1 3 10�5 from 33 studies

(Table S1). These variants included a total number of 234 unique

SNPs. We further obtained two multiethnic craniofacial GWAS

datasets for CL/P7,34 and CP13 (available from dbGaP:

phs000884.v2.p1). We selected the SNP with at least one SNP

with nominal significance p value <1 3 10�5. Our craniofacial-

sign (OFC-sign) dataset has 1,787 SNPs in total.

Curation for control variants
From previous studies,35–38 we observed that trait-related variants

tended to manifest their effect in the trait-related tissues. We

investigated whether OFC-significant variants exhibit higher

absolute SNP activity difference (SAD) scores than variants from

unrelated traits using control variant collections equal in size to

the OFC-significant collection from two resources: (1) nonsignifi-

cant craniofacial development variants and (2) irrelevant trait

variant collections. The first variant collection was obtained

from the aforementioned two GWAS datasets (CL/P34 and CP

only [CPO]13). The OFC-low group was defined as randomly

sampled variants with p value >0.5 in both GWAS datasets. The

OFC-medium group was defined as randomly sampled variants

with p values ranging from 13 10�5 to 0.5 in both GWAS datasets.

The second irrelevant trait variant was chosen from two

GWAS summary statistics datasets: neurodegenerative disease Alz-

heimer disease39 (AD) and psychiatric disorder schizophrenia40

(SCZ), each with p value <1 3 10�5 significance (AD-sign and

SCZ-sign). We further employed random downsampling to ensure

that all control datasets contained the same number of SNPs as the

OFC-sign collection, thereby enhancing comparability. All the

control variant groups were randomly sampled to match the size

of the OFC-sign group.

Variant annotation
SNPs were annotated with the ANNOVAR function ‘‘table_anno-

var.pl’’ (v.4/16/2018) with hg19 reference genome and dbsnp150

version annotation.41 The function of the SNPs was annotated

and merged into the following categories: exon (variant overlaps

a coding), intergenic (variant is in intergenic region), intronic

(variant overlaps an intron), ncRNA_exonic (variant overlaps a

transcript coding region without coding annotation in the gene

definition), ncRNA_intronic (variant overlaps a transcript intron

region without coding annotation in the gene definition),

upstream/downstream (variant overlaps 1-kb region upstream or

downstream of transcription start site), and untranslated region

(UTR) 30/UTR 50 (variant overlaps a 30 or 50 UTR).

Training the CNN model and model performance

evaluation
We utilized the CNN framework Basenji22 and our in-house

DeepFun24 to train the 204 epigenomic assays. The CNN



architecture consists of seven dilated convolution layers with max

pooling (in windows of two, four, four, and four) to obtain repre-

sentations that describe 128-bp bin size, aligning with the 146-bp

distance between nucleosome core particles.22 This design allows

information sharing across distal regulatory interactions (128 3

27 3 2 ¼ 32,000). We applied seven layers of dilated convolutions

to encompass these 128-bp bin representations, transforming

every sequence feature (131,000) and the epigenetic signals into

a length of 1,024-bp subsequence representations. Our previous

work24 has demonstrated that training on the complete features

from the ENCODE dataset42 outperforms the training on individ-

ual features. Therefore, we trained these sequence features across

all 204 chromatin assays. We evaluated the performance on the

validation and testing sets based on the Pearson’s correlation coef-

ficient (r) of predicted and real epigenetics features. Each assay’s

predicted epigenomic intensity was computed individually. Lastly,

we fine-tuned the hyperparameters, learning rate, and batch size

and stopped training when there was no reduction in r in the vali-

dation set loss over 15 consecutive epochs.

To evaluate the peak binary classification, we followed the

Basenji22 model to evaluate the peak binary classification compari-

son with one well-known method, Model-based Analysis of ChIP-

Seq (MACS2).43 We transformed the training and testing datasets

to binary peak calls on shorter sequences. Each 131,000 (�1,024

binned subsequence 3 128 bps/bin) sequence was segmented

into subsequences of 1,024 bin features, with each subsequence

encapsulating a 128-bp binned representative of the functional

element. The aim of this deep learning model is to accurately pre-

dict the read coverage in 128-bp bins. We identified peaks within

the central 256 bps of the subsequences for each dataset by

applying a Poisson model to the smoothed, normalized counts.

This model was parameterized by the higher value of a global and

local null lambda, akin to theMACS2methodology.We then estab-

lished a 0.01 false discovery rate (FDR) cutoff to define the ground

truth. The area under the precision-recall curve (AUPRC) was used

to measure the model performance of prediction. More details

about the model can be found in the Basenji model.22
SAD score
The DeepFace model is crafted to forecast the functional impacts

of sequence alterations at a single-nucleotide resolution. For

each variant, DeepFace considers contextual information within a

1,024-bp subsequence transformed froma131-kb sequence, predict-

ing the epigenomic activity probability for sequences containing

the reference allele or alternative allele. In this context, activity

denotes the binding affinity forDNase-seq or histonemodifications,

respectively. To assess the variant’s impact, we employed the

SAD, SAD ¼ SAðalt alleleÞ � SAðref alleleÞ, where SAðalt alleleÞ
and SAðref alleleÞ are from the predicted matrices, to represent the

predicted SNP activity for the alternative allele and the reference

allele sequence, respectively. An elevated positive SAD score for

genetic variants denotes that the alternative allele augments the

epigenetic signal in comparison to the reference allele. Conversely,

a negative SAD value denotes a diminution of the epigenetic signal.

Notwithstanding the collective training of DeepFace models utiliz-

ing an extensive dataset, the functional score predicted for each

variant is distinct and autonomous.
Motif mapping and visualization
We used the R package ‘‘atSNP’’ to search the potential transcrip-

tion factor (TF) binding motif of variants in the JASPAR44 and
Hu
ENCODE42 motif databases. We utilized the ‘‘ComputePValues’’

function within the atSNP toolkit to calculate the p values for all

potential motifs. We identified significant motifs as those with

Benjamini-Hochberg procedure-adjusted p values <0.05 in either

the JASPAR or ENCODE database. Additionally, we employed the

‘‘plotMotifMatch’’ function from the atSNP package to visualize

the motif pattern of the significant SNPs.

Cell-type specificity analysis of OFC-sign SNP set
Considering the epigenomic data of DeepFace are limited to the

tissue of embryonic craniofacial development, we used two in-

house methods, web-based cell-type-specific enrichment analysis

of genes (WebCSEA)37 and DeepFun24,25 to contextualize the

most relevant cell types of OFC-sign genes. WebCSEA (https://

bioinfo.uth.edu/webcsea/) curated a total of 111 single-cell RNA-

seq panels of human tissues and 1,355 tissue cell types from 61

different general tissues across 11 human organ systems and

used the decoding tissue specificity algorithm35 to measure the

enrichment for each cell type.37 We input the most nearby genes

of the OFC-sign SNP set and visualized the most enriched cell type

with a nominal significance of 1 3 10�3.

The DeepFun web server (https://bioinfo.uth.edu/deepfun/)

leverages a CNN architecture trained on approximately 8,000

chromatin feature assays from 225 distinct tissues or cell types

from the ENCODE and Roadmap projects. We input all OFC-

sign SNPs to the DeepFun web server to assess the SAD scores,

which is the normalized version (range from �1 to 1) of SAD

used in this study. For every SNP in each cell type, we calculated

the mean absolute SAD and then identified the cell types with

the highest absolute SAD values across the OFC-sign SNPs. The

top count of cell types was defined as the cell type most related

to the OFC-sign SNP set.
Results

Narrow peak epigenetic chromatin features had better

prediction than broad peak features

Following the DeepFace design in Figure 1, the trained 204

chromatin feature assays were evaluated for the prediction

performance on the r of predicted and real continuous epi-

genetics features (median ranging from 0.50 to 0.83) and

the AUPRC of the binary predicted peak and real peak called

by MACS (ranging from 0.54 to 0.81). As shown in

Figures 2A and 2B, both continuous and binary epigenomic

features shared the same trend over the chromatin features.

Specifically, H3K4me3 and H3K79me2 are on the top in

Pearson’s r and AUPRC values, respectively. The two broad

repressive marks, H3K27me3 and H3K9me3, have the

lowest medium performance across the samples over devel-

opment stages, suggesting that the narrow peak histone

modification features tend to have a more accurate predic-

tion than the broad histone modification features.24

OFC-sign variants show greater enrichment in

embryonic craniofacial development than other sets of

variants

We implemented our pretrained DeepFace model to

predict the SAD scores of curated SNP sets (OFC-sign,

OFC-medium, OFC-low, AD-sign, and SCZ-sign, see
man Genetics and Genomics Advances 5, 100312, July 18, 2024 3

https://bioinfo.uth.edu/webcsea/
https://bioinfo.uth.edu/webcsea/
https://bioinfo.uth.edu/deepfun/


Figure 1. Overview of DeepFace workflow
DeepFace is a dilated convolutional neural network (CNN) framework to contextualize the function of common orofacial cleft (OFC)
variants trained from 204 human embryonic craniofacial epigenomic arrays (six stages of craniofacial development and 12 histone
modification markers for enhancers, promoters, and gene bodies, Wilderman et al.28).
material and methods). As shown in Figure 2C, while

most SNP sets showed minimal variation in absolute SAD

scores for histone modifications, notable exceptions were

found in transcription regulation markers (H3K36me3,

H3K79me2, and H4K20me1). Among them, the AD-sign

and SCZ-sign SNP sets exhibited significantly higher me-

dian absolute SAD scores. Conversely, Figure 2D revealed

that the OFC-sign group consistently presented higher me-

dian absolute SAD scores across various variant categories,

particularly in intronic (OFC vs. AD pFDR ¼ 0.02; OFC vs.

SCZ pFDR ¼ 3.51 3 10�8), ncRNA_exonic (OFC vs. AD

pFDR > 0.05; OFC vs. SCZ pFDR ¼ 0.02), and upstream/

downstream regions (OFC vs. AD pFDR ¼ 1.01 3 10�5;

OFC vs. SCZ pFDR ¼ 6.82 3 10�9) (Figure S1). Meanwhile,

OFC-low or OFC-medium tends to be the lowest absolute

SAD score in any category. This observation suggested a

higher enrichment of functionally variant OFC-sign sets

affecting SAD scores when compared to the other groups.

Interestingly, the AD-sign set stood out with higher

median absolute SAD scores in the UTR3/UTR5 regions.

Moreover, the AD-sign set stood out with higher median

absolute SAD scores in the upstream; downstream category

as well. Figure S2 indicated a higher prevalence of SNPs in
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the exonic, ncRNA_exonic, UTR3/UTR5, and upstream/

downstream categories for both AD and SCZ groups, as

these variants may play a more significant role in altering

gene function. Coherent with Figure 2C, these genomic re-

gions are typically enriched with transcription regulation

signals (H3K36me3, H3K79me2, and H4K20me1). Conse-

quently, the elevated medium absolute SAD scores of

transcription regulation markers in AD and SCZ could be

attributed to the transcription regulation within the up-

stream, downstream, and UTR3, and UTR5 regions.

SAD scores offer the promise of interpretation function

of known OFC-related variants

SAD scores could link the function to OFC-sign variants

(Table S2). For example, rs117496742 (risk-allele A, lead

SNP) is an intronic variant located within the YAP1 on

chromosome 11q22.1. This variant has garnered genome-

wide significance in European populations, as documented

in CPO.14 Notably, within the CS20 stage, characterized by

active regulatory mark H3K4me1, rs117496742 boasts the

highest absolute SAD score (75.44), underscoring its poten-

tial regulatory impact. In contrast, during the CS14 stage,

the same variant exhibits the lowest SAD score (70.9)
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Figure 2. DeepFace performance
Boxplot indicates the minimum, 25th percentile, median, 75th percentile, and maximum values for each category.
(A) The Pearson’s correlation coefficient (r) of predicted and real epigenetics features among samples across developmental stages by each
chromatin feature.
(B) The area under the precision-recall curve (AUPRC) for predicted peak and real peaks called byMACS among the samples across devel-
opmental stages by each chromatin feature.
(C) SNP activity difference (SAD) scores of the variants in five different variant categories: AD-sign, SCZ-sign, OFC-low, OFC-medium,
and OFC-sign stratified by each chromatin feature.
The function epigenetic features in (A)–(C) are summarized: repressive marks (H3K27me3 and H3K9me3), promoter activation marks
(H3K4me3 and H3K9ac), transcription regulation marks (H3K36me3, H4K20me1, and H3K79me2), active regulatory marks
(H3K4me1, H3K4me2, H3K27ac, and H2A.Z), and open chromatin signal DNase.
(D) SAD scores of variants from five genetic background categories: AD-sign, SCZ-sign, OFC-low, OFC-medium, and OFC-sign stratified
by variant category.
within the H3K4me1 profile. Similarly, rs12543318 (risk-

allele C, lead SNP) is an intergenic variant proximal to

DCAF4L2 and MMP16 on chromosome 8q21. This variant

has been identified as nominally significant in multiethnic

populations, as reported in CL/P.7 Noteworthy is its

behavior within the CS13 stage, marked by active regulato-

ry mark H3K4me2, where it registers the highest absolute

SAD score (52.78), indicating its potential regulatory influ-

ence. Conversely, in the CS15 stage, this variant displays

the lowest SAD score (36.0) within the H3K4me2 profile.

SAD scores of SNPs may reflect temporal regulation

roles

The epigenomic assays from different developmental

stages provided us with opportunities to explore the
Hu
potential temporal epigenetic alteration by variant. We

hypothesized whether the SAD scores are associated with

the temporally regulatory roles of SNPs. Here, we mainly

explored the potential linear regulatory roles of SNPs

across the craniofacial development course. To this end,

we employed a generalized linear model to assess whether

the SAD scores for each SNP exhibited a significant linear

relationship with various developmental stages. The linear

model coefficient p values were further adjusted by Bonfer-

roni correction of the 1,590 nonzero SAD SNPs from 1,787

OFC-sign SNPs. This procedure revealed six SNPs with sig-

nificant linear association, suggesting their roles in influ-

encing features throughout the course of craniofacial

development. As illustrated in Figure 3, rs1339063 (A>T)

is an intronic variant in gene PAX7. The predicted SAD
man Genetics and Genomics Advances 5, 100312, July 18, 2024 5
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in H3K27me3 showed a significant decrease during the

pcw trajectory. The mapped motif is LEF1, a member of

the T cell factor/LEF1 family of high-mobility group TFs,

which is a downstream mediator of the Wnt/b-catenin

signaling pathway.45 The alternative allele (T) decreased

the binding affinity of LEF1 on this site. Figures 3D and

3E illustrate that pcw 10 exhibited a lower SAD score

when compared to pcw 4, suggesting that the variant

had a stronger effect during pcw 4. Both LEF1 and PAX7

were actively expressed in craniofacial tissue from CS13

to CS22, as shown in Cotney lab’s craniofacial Genome

Browser46 (Figures S3 and S4).

Cell-type specificity analysis of OFC-sign SNP set

The pleiotropic nature of OFC genes underscores the ne-

cessity of understanding the specific tissue cell types and

contexts where disease-related variants predominantly

exert their effects. So far, no human craniofacial context

epigenomic data have been available in the current deep

learning framework. Therefore, we applied two alternative

methods, WebCSEA37 and DeepFun.24,25 The top three en-

riched cell types identified by WebCSEA were endothelial

cells, trophoblast cells, and stromal cells (Figure 4A). The

top three ranked primary cell types by DeepFun were fore-

skin_melanocyte, trophoblast_cell, and T-helper_2_cell

(Figure 4B). Both methods identified trophoblast cells

among the top three ranked cell types, suggesting that

OFC-risk genes manifest their function most during the

embryonic developmental stage.47 This cell type is associ-

ated with the embryonic stage of craniofacial develop-

ment,48 aligning with the finding of their similarity to

stem cells revealed by Wilderman et al.28 The melanocyte

cell originates from the neural crest, which itself emerges

from the neural tube. After formation, neural crest cells un-

dergo a process known as the epithelial-to-mesenchymal

transition, during which they detach from the uppermost

part of the neural tube.49 Recent studies50,51 have revealed

that endothelial cells and the vasculature play a pivotal

role in guiding tissue morphogenesis and cell differentia-

tion in various cranial structures. Additionally, genes

from the vascular endothelial growth factor (VEGF) family

have been observed in the mesenchyme surrounding

Meckel’s cartilage.52 Furthermore, rare variants in the

VEGFA gene have been associated with nonsyndromic

CL/P,53 underscoring the significant role of endothelial

cells in craniofacial development. In addition, our enrich-

ment analyses identified epithelial cells and stromal cells

(mesenchymal cells), both well documented for their

involvement in OFC disorders,54 as top related cell
(C–E) The best match reference sequence and alternative allele sequen
for the rs1339063 and its surrounding genes. The purple vertical line i
10 (E). (D) and (E) show the dynamic gain and loss of SAD scores for
around the rs1339063 in pcw 4 and pcw 10, respectively. The alterati
score dynamics were visualized in three rows. Top row: sequence logo
blue and red lines indicating the minimum (loss) and maximum (gai
and bottom: the quantities in the heatmap, which reflects the chang
allele.

Hu
types. Specifically, epithelial cells were ranked fifth and

fourth in the WebCSEA and DeepFun analyses, respec-

tively. This high ranking suggests that their signals are

prominent, as many genes play pleiotropic roles across

various cell types. Furthermore, the stromal cell type, a

subset of mesenchymal cells crucial for structural support

and craniofacial development, was ranked third in the

WebCSEA analysis, underscoring their importance in the

context of OFCs.
Discussion

So far, GWASs from both genotyping and genome

sequencing have been extensively performed, leading to

many thousands of variants with association signals of

the disease or traits under investigation. However, great

challenges remain because the roles of most of these

variants are not clear, impeding the understanding of mo-

lecular mechanisms of disease and further development of

disease prevention and therapeutic strategies. Therefore,

prioritizing potential causal variants, particularly the thou-

sands of noncoding variants with association signals, is

crucial for fully understanding pathogenic mechanism of

OFCs. In this work, we aimed to contextualize the function

of a comprehensive collection of OFC-related variants dur-

ing human craniofacial development. To achieve this, we

built a deep-learning-based framework, namely DeepFace,

by leveraging a spectrum of epigenetics features during

the key human embryonic craniofacial development

stages. Our DeepFace model pinpointed the high-risk

OFC coding and noncoding variants that tended to have

the largest predicted SAD scores in several variant cate-

gories, including intronic, ncRNA_exonic, and upstream/

downstream. Our temporal association analysis further

identified six high-risk craniofacial SNPs that exhibited a

significant linear relationship between epigenetic impact

and the craniofacial developmental process. Overall,

DeepFace leveraged the cis-regulatory features to provide

a high-resolution prediction on the functional changes

caused by OFC-related variants during human craniofacial

development. To our knowledge, this is the first deep

learning model specifically for craniofacial development

by leveraging 204 human functional genomics datasets.

As summarized in Table 1, two SNPs, rs1339063 and

rs56675509, were in the intronic region of gene PAX7,

which encodes paired box 7. PAX7 belongs to the paired

box gene family and plays a role in neural crest develop-

ment, contributing to various tissues, including craniofacial
ce for themotif LEF1 were visualized in (C) UCSC genome browser
ndicates the exact genomic region of 200 bps for pcw 4 (D) and pcw
all possible substitutions in each of the 200-bp genomic positions
on between (D) and (E) is relatively small in the figure. These SAD
weight by the loss of SAD across 200-bp sequence; middle row: the
n) changes among the possible substitutions from reference allele;
e in SAD after substituting the reference allele with the alternative
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Figure 4. Cell-type specificity analysis for OFC variants
(A) WebCSEA result: the red dashed line represents the Bonferroni-corrected significance threshold at �log10 p value cutoff 3.693 10�5.
The gray solid line marks the nominal significance level at �log10 p value cutoff 1 3 10�3. In every general cell-type category, each dot
represents a specific tissue cell type within that category, differentiated by color according to the column it belongs to. We highlighted
the top five tissue cell types.
(B) DeepFun results: for each of the SNPs from the OFC-sign SNP set, we calculated the mean absolute SAD and then identified the cell
types with the highest absolute SAD values. The count of primary cell types with the highest absolute SAD values is visualized in the bar
plot.
bones and cartilage.57,58 Several SNPs have been reported to

increase the risk of nonsyndromic CL/P.59,60 Our finding

thus supported the utilities of the DeepFace model; howev-
8 Human Genetics and Genomics Advances 5, 100312, July 18, 2024
er, further experiment validation of the regulatory roles of

these two SNPs will be warranted. We further discuss their

roles below.



Table 1. Summary of six SNPs with significant linear association

SNP ID Chr Posa Minor allele Gene Motif Trait Reference (PubMed)

rs56675509 1 18971634 C PAX7 ZBTB14 CL/P_all_pop Mukhopadhyay et al.34

rs1339063 1 18989575 T PAX7 LEF1 CL/P_all_pop Mukhopadhyay et al. 34

rs2302304 19 3733651 A TJP3 Nkx2-5 cleft lip with or without cleft palate
x maternal periconceptional vitamin
use interaction (parent of origin effect)

Haaland et al.55

rs6495117 15 74899500 A CLK3 EGR1 nonsyndromic cleft lip with cleft palate Yu et al.56

rs11787407 8 129985440 G LINC00976/CCDC26 JUN/FOS csa_CL/P,eur_CL/P, CL/P_all_pop Mukhopadhyay et al.34

rs12075674 1 209995470 A IRF6 AFP csa_CL/P, CL/P_all_pop Mukhopadhyay et al.34

csa_CL/P, cleft lip with or without palate in Central/South Asian ancestry; eur_CL/P, cleft lip with or without palate in European ancestry; CL/P_all_pop, cleft lip
with or without palate in all populations (European and Central/South Asian).
ahg19.
The two representative significant motifs on rs1339063

and rs56675509 are LEF1 and ZBTB14, respectively

(Figures S4 and S5). Gene LEF1 is expressed in the neural

crest61 and plays a role in patterning the mesoderm and

ectoderm in Xenopus.62 In mice, Lef1 plays an important

role in epithelial-mesenchymal transition during palatal

fusion.63 ZBTB14 belongs to the zinc-finger and BTB/POZ

(broad-complex, tramtrack, and bric-a-brac/poxvirus and

zinc-finger) domain-containing protein family, which

regulates organ morphogenesis and development.64,65 In

Xenopus, Zbtb14 plays a crucial role in the formation of

dorsal-ventral and anterior-posterior axes by regulating

BMP and Wnt signaling pathways, both of which are

crucial to midfacial development.66,67

SNP rs2302304 (Figure S6) is an intronic variant in gene

TJP3 encoding tight junction protein 3, which is a member

of the family of membrane-associated guanylate kinase-

like proteins that are associated with intracellular junc-

tions.68 Silencing tjp3/zo-3 using morpholinos leads to

edema, loss of blood circulation, and tail finmalformations

in zebrafish embryos.69 The TF binding motif of this

variant is NK2 homeobox 5 (Nkx2-5), which has been

reported to play an important role in craniofacial develop-

ment in zebrafish through regulating the endothelin.70

Funato et al.71 also found that NKX2-5 is involved in

molecular function and biological pathways of CPO,

incomplete CP, and submucous CP.

SNP rs6495117 (Figure S7) is an intronic variant in gene

CLK3 encoding CDC-like kinase 3, which is a member of

the cdc2-like kinases with four isoforms.72 In Xenopus,

Clk3 knockdown leads to severe developmental defects

such as reduced head and eye size and a shortened ante-

rior-posterior axis.73 The TF binding motif of this variant

is early growth response 1 (EGR1), which is an EGR gene

that regulates the skeleton’s normal development.74,75 In

our previous work,76 using a developmental-stage-specific

network approach integrating TFs and microRNAs, our re-

sults showed that Egr1 was a crucial regulator in mice

embryogenesis from embryonic day (E) 11.5 to 13.5.

SNP rs11787407 (Figure S8) is an intergenic variant

nearby gene LINC00976/CCDC26, a long noncoding
Hu
RNA that is related to cancers,77 though its functions

remain to be elucidated. It is suggested that rs987525,

located near CCDC26, increases the risk of nonsyn-

dromic CL/P.78–80 The motif of the variant is FOS/JUN,

which is a transcriptional regulator consisting of mem-

bers of the Fos and Jun families.81 Fos disruption

causes craniofacial anomalies in zebrafish.82 The recent

single-cell RNA-seq and single-cell multiome studies in

mice also showed that Fos and Jun were involved in sec-

ondary palate development54 and all-trans retinoic-acid-

induced CP.83

SNP rs12075674 (Figure S9) is an intronic variant in gene

IRF6 encoding interferon regulatory factor 6, which is one

of nine TFs that share a highly conserved helix-turn-helix

DNA-binding domain.84 IRF6-related disorders, which are

caused by both common and rare variants, have a wide va-

riety of symptoms, including nonsyndromic CL/P and CPO

and Van der Woude syndrome (MIM: 119300) at the mild

end to the more severe popliteal pterygium syndrome

(MIM: 119500).85,86 The alpha-fetoprotein enhancer bind-

ing protein (AFP-1) motif currently lacks direct evidence

linking it to craniofacial development.

In summary, our DeepFace framework provided a quan-

titative measurement of craniofacial-related SNPs during

craniofacial development stages. We acknowledged that

these six SNPs only represent a monotonic trend of regula-

tory role. Although specifically trained and applied to

craniofacial development, DeepFace is limited by several

factors, including a limited number of functional

genomics datasets, low prediction performance on broad

repressive marks (H3K27me3 and H3K9me3), and a lack

of extensive comparison with many other tissues or devel-

opment stages. Although significant SNPs with temporal

effects were observed, their impacts were relatively small.

It is expected that manymore variants with significant cor-

relations between SAD score trends and developmental

stages can be identified. There are additional facets of

SNP characteristics that warrant further exploration. This

includes those SNPs with the strongest impact, those

with specific influences at specific development stages or

cell types, and those related to particular chromatin
man Genetics and Genomics Advances 5, 100312, July 18, 2024 9



features, all of which could be investigated in future

studies. Therefore, we provide the OFC-sign SAD matrix

(Table S2) to the research community, which is composed

by SAD scores for 204 epigenomic features by 1,787 OFC--

sign SNPs. Finally, as sequencing technologies are evolving

quickly, we expect that many more genomics datasets will

be generated, especially those by assay for transposase-

accessible chromatin with sequencing (ATAC-seq) and sin-

gle-cell multiome,54 in craniofacial development. Such

data will allow us to refine the DeepFace model for both ac-

curacy and precision toward the development stages and

tissue and cell types.
Conclusion

We trained a deep-learning-based model to in silico

evaluate the SNP alleles on epigenomic alteration across

human craniofacial development during embryonic stages

from pcw 4 to pcw 10. Our deep learningmodel, DeepFace,

identified that the OFC-related significant SNP set tended

to have stronger SAD scores in several variant categories

than other groups, suggesting that these high-risk variants

manifest their functional impact during these develop-

ment stages. We pinpointed six SNPs with a significant

linear relationship with SAD scores across developmental

progression. Those SNPs may have critical roles in OFCs,

and further investigation is warranted. Our study demon-

strates that DeepFace has great potential to harness the

long-range regulatory element signals from comprehen-

sive epigenomic assays and thus to prioritize, interpret,

and decode the dynamic influence of variants related to

OFCs and other traits.
Data and code availability

All datasets analyzed in this study are publicly available.

The 204 ChIP of post-translational histone modifications

from human embryonic craniofacial tissues were obtained

from GEO: GSE97752. The OFC-related variants were ob-

tained from the GWAS Catalog (https://www.ebi.ac.uk/

gwas/). Multiethnic craniofacial raw data for CL/P and

CP are available from dbGaP: phs000884.v2.p1. Other

data can be accessed from public resources described in

the material and methods. The source code for the pre-

trained DeepFace model and SAD scores are available at

the following GitHub repository: https://github.com/

bsml320/DeepFace/.
Web resources

dbGaP, https://www.ncbi.nlm.nih.gov/gap/

DeepFace, https://github.com/bsml320/DeepFace/

DeepFun, https://bioinfo.uth.edu/deepfun/

GWAS Catalog, https://www.ebi.ac.uk/gwas/

Online Mendelian Inheritance in Man (OMIM), https://

omim.org/

WebCSEA, https://bioinfo.uth.edu/webcsea/
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