
Sequence analysis

Flexible parsing, interpretation, and editing of technical 
sequences with splitcode
Delaney K. Sullivan 1,2 and Lior Pachter 2,3,�

1UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 
90095, United States 
2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States 
3Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, United States
�Corresponding author. Division of Biology and Biological Engineering and Department of Computing and Mathematical Sciences, California Institute of 
Technology, 1200 E California Blvd, Pasadena, CA, 91125, United States. E-mail: lpachter@caltech.edu (L.P.) 
Associate Editor: Can Alkan

Abstract
Motivation: Next-generation sequencing libraries are constructed with numerous synthetic constructs such as sequencing adapters, barcodes, 
and unique molecular identifiers. Such sequences can be essential for interpreting results of sequencing assays, and when they contain infor
mation pertinent to an experiment, they must be processed and analyzed.
Results: We present a tool called splitcode, that enables flexible and efficient parsing, interpreting, and editing of sequencing reads. This versa
tile tool facilitates simple, reproducible preprocessing of reads from libraries constructed for a large array of single-cell and bulk sequenc
ing assays.
Availability and implementation: The splitcode program is available at http://github.com/pachterlab/splitcode.

1 Introduction
The reads that result from next-generation sequencing librar
ies can contain many types of synthetic constructs, or techni
cal sequences, including adapters, primers, indices, barcodes, 
and unique molecular identifiers (UMIs) (Kivioja et al. 2011, 
Martin 2011, Kebschull and Zador 2018, Melsted et al. 
2019, Johnson et al. 2023, Booeshaghi et al. 2024). These oli
gonucleotide sequences are defined by the technicalities of 
sequencing-based assays and experiments, with each se
quence being either a completely unknown sequence, a 
known sequence, or an unknown sequence that is a member 
of a set of known sequences. There are many read preprocess
ing tools for editing and extracting information from such 
sequences, including the widely used tools cutadapt (Martin 
2011), fastp (Chen et al. 2018), and Trimmomatic (Bolger 
et al. 2014) for adapter and quality trimming, UMI-tools 
(Smith et al. 2017), and zUMIs (Parekh et al. 2018) for UMI 
processing, BBTools (https://sourceforge.net/projects/bbtools/) 
(Bushnell et al. 2017), and reaper for more general filtering 
operations, INTERSTELLAR for read structure interpreta
tion (Kijima et al. 2023), Picard (https://github.com/broadin 
stitute/picard), and fgbio (https://github.com/fulcrumgenom 
ics/fgbio) for many read manipulation operations, among 
many other tools (Kong 2011, Roehr et al. 2017, Liu 2019, 
Battenberg et al. 2022, Cheng et al. 2024). Many of these 
tools define a “read structure” to describe the layout of a 
read; e.g. fgbio uses a sequence of <number><operator>
operators where the number of the length of a segment and 

the operator describes how the segment should be processed. 
However, no one tool can adequately address all technical se
quence preprocessing tasks. Some methods, such as adapter 
trimming methods, can only remove identified technical 
sequences from reads but lack the ability to store information 
about technical sequences that are relevant to the provenance 
of the read. Other methods can extract and store technical 
sequences from reads but are limited to only extracting 
sequences at defined positions of defined lengths within 
reads, and may present limited options for handling variable 
position and variable length segments. Still other methods are 
designed for only a specific type of assay, such as single-cell 
RNA-seq. Technologies such as (long-read) SPLiT-seq 
(Rosenberg et al. 2018, Rebboah et al. 2021), SPRITE 
(Quinodoz et al. 2018, 2022), and Smart-seq3 (Hagemann- 
Jensen et al. 2020), contain complex, multifaceted technical 
sequences that currently are processed by custom scripts or 
specific use-case modifications to existing tools.

Here, we present splitcode which introduces versatile new 
features for general preprocessing needs. splitcode is a flexi
ble solution with a low memory and computational footprint 
that can reliably, efficiently, and error-tolerantly preprocess 
technical sequences based on a user-supplied structure of 
how those sequences are organized within reads. For exam
ple, splitcode can simultaneously trim technical sequences, 
parse combinatorial barcodes that are variable in length and 
inconsistent in location within a read, and extract UMIs that 
are defined in location with respect to other technical sequen
ces rather than at a set position within a read. These features 

Received: 12 December 2023; Revised: 14 March 2024; Editorial Decision: 16 April 2024; Accepted: 12 June 2024 
# The Author(s) 2024. Published by Oxford University Press.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics, 2024, 40(6), btae331 
https://doi.org/10.1093/bioinformatics/btae331 
Advance Access Publication Date: 14 June 2024 
Applications Note 

https://orcid.org/0000-0002-8359-6705
https://orcid.org/0000-0002-9164-6231
http://github.com/pachterlab/splitcode
https://sourceforge.net/projects/bbtools/
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://github.com/fulcrumgenomics/fgbio
https://github.com/fulcrumgenomics/fgbio


make splitcode a suitable tool for processing variable length 
staggers at the start of reads; such staggers are often intro
duced to enhance nucleotide diversity during the early cycles 
of sequencing, preventing monotemplate issues that would 
arise from sequencing identical nucleotides during those 
cycles. The technical sequences that splitcode may be useful 
for identifying include not only barcodes or UMIs but also li
gation linkers, integrase attachment sites, and Tn5 transpo
sase mosaic ends. Moreover, splitcode can seamlessly 
interface with other command-line tools, including other 
read sequencing read preprocessors as well as read mappers, 
by streaming the pre-processed reads into those tools. Thus, 
splitcode can eliminate the need to write an entirely new file 
to disk at every step of preprocessing, a practice that cur
rently results in inefficient use of time and disk space. 
Furthermore, splitcode can stream reads into itself, enabling 
multiple preprocessing steps to be performed in sequence for 
more complicated assays.

2 Materials and methods
2.1 Tag sequence identification
Each sequence in the splitcode config file along with all 
sequences within the sequence’s allowable hamming distance 
and/or indel error tolerance is indexed in a hash map. Each 
sequence is associated with the tag(s) from which it origi
nated. Reads in FASTQ files are scanned from start to end to 
identify tags based on hash map lookups. Additionally, users 
can specify locations and conditions within which a specific 
tag may appear and only tags satisfying such conditions are 
identified. Further, by restricting tag identification to only 
specific regions of reads, the number of hash map queries is 
reduced therefore improving runtime.

2.2 Final barcode sequences
Each combination of tags is assigned a numerical ID, which 
begins at 0 and is incremented for every newly encountered 
combination. Each numerical ID, a 32-bit unsigned integer, 
can be converted to a unique 16-bp final barcode sequence by 
mapping each nucleotide to a 2-bit binary representation as 
follows: A¼00, C¼ 01, G¼ 10, T¼11. It follows that the 
numerical ID can be represented in nucleotide-space based on 
the integer’s binary representation. For example, the numeri
cal ID 0 is AAAAAAAAAAAAAAAA, the numerical ID 1 is 
AAAAAAAAAAAAAAAT, and the numerical ID 30 is 
AAAAAAAAAAAAACTG. This interconversion between nu
merical IDs and nucleotide sequences facilitates simplifying 
complex barcodes.

2.3 Software
The splitcode software is written in Cþþ11 and is freely 
available and open source under the BSD-2 clause license. 
The framework for splitcode is a Cþþ header file making the 
direct incorporation of splitcode into a software project that 
involves processing sequencing reads possible. The GUI for 
the software is implemented as an HTML webpage and uses 
Emscripten for compilation of the software to WebAssembly. 
No new data were generated or analyzed for this article de
scribing the splitcode software. Documentation for the soft
ware is available at https://splitcode.readthedocs.io/.

3 Results
3.1 Framework and usage
We refer to the synthetic constructs, or technical sequences 
that can be identified in reads as tags. Tags are described in 
the splitcode config file with several parameters including a 
tag ID, the sequence itself, the error-tolerance for identifying 
that tag, and options such as where the tag might be found 
within sequencing reads and conditions under which the tag 
should be searched for. A collection of tags forms a barcode, 
which can be used to demultiplex reads according to the tags 
identified within a read. Within the config file, a user can also 
specify extraction options to delineate how certain subse
quences within reads should be extracted. Subsequences can 
be extracted by using tags as anchor points or can be 
extracted at user-defined positions within reads. This feature 
is particularly useful for unique molecular identifier (UMI) 
sequences which are generally unknown sequences that exist 
at defined locations within reads. Additionally, in the config 
file, a user can specify read editing options including trim
ming and whether identified tags should be replaced with a 
particular sequence. Thus, identified technical sequences can 
be modified or trimmed in situ. Taken together, this array of 
options makes it possible for splitcode to parse data from a 
large variety of sequencing assays, including those with many 
levels of multiplexing (Fig. 1).

Following construction of the config file (Fig. 2), users can 
supply the config file to the splitcode program on the 
command-line. Users can further specify the output options 
for how the final barcode, the (possibly edited) reads, the 
extracted subsequences should be outputted. The program 
presents many options for outputting reads, allowing seam
less integration with many downstream tools. Importantly, 
the output can be interleaved and directed to standard out
put, which can then be directly piped into tools (including 
splitcode itself if another round of read processing is needed) 
that support such input. This feature makes it possible to 
send processed reads directly to a read mapper, therefore 
eschewing the inefficiencies of creating large intermediate 
files on disk.

3.2 Capabilities
The splitcode program has many options, some of which can 
be supplied in the config file and others of which (namely the 
output options) must be supplied on the command line. In 
the config file, a user can specify “sequence identification” 
options for finding tags in reads as well as editing reads in 
situ based on identified tags as well as “read modification 
and extraction” options for general read trimming and 
extracting UMI-like sequences. The latter option group is 
supplied in the header of the config file while the “sequence 
identification” options are supplied as tab-separated values 
in a tabular format in the file, an example of which is shown 
in Fig. 2. A list of some of the splitcode config file options is 
exhibited in Supplementary Table S1.

A graphical user interface (GUI) for splitcode facilitates the 
usage of splitcode (Supplementary Fig. S1). This GUI exists 
as a web page and helps a user create a config file which can 
then be downloaded. Additionally, this GUI enables live test
ing of configuration options on user-supplied sam
ple sequences.

2                                                                                                                                                                                                                    Sullivan and Pachter 

https://splitcode.readthedocs.io/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae331#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae331#supplementary-data


Finally, splitcode is efficient software: On 150-bp paired- 
end reads in gzip FASTQ format, splitcode can reach 
throughputs exceeding 10 million reads per minute with 
memory usage on the order of a few hundred megabytes on a 
standard laptop, although these performance results vary 
depending on the task at hand.

4 Discussion
The preprocessing of FASTQ files is an important first step in 
bioinformatics pipelines. This step is frequently inefficient, 
involving multiple steps with the creation of large intermedi
ate files or writing and running of custom unoptimized scripts 
which can be challenging with large-scale sequencing data. 
splitcode alleviates some of these inefficiencies via a modular 
and flexible design to effectively and efficiently handle intri
cate, hierarchical read structures produced by technologies 
with many layers of multiplexing. While many of splitcode’s 
features overlap with those of existing bioinformatics soft
ware, splitcode is not intended to fully recapitulate all the fea
tures of existing tools or to replace or outperform any one 
tool. Rather, splitcode is intended to serve as one additional, 
flexible and versatile tool in a bioinformatics arsenal, and has 
been designed to be interoperable with other tools. splitcode 
operates not as an alignment algorithm, but on a principle of 
dictionary lookups. In this approach, technical sequences 
along with their permissible mismatches are cataloged in a 
hash table. This makes splitcode apt for scenarios requiring 
identification, interpretation, and modification of short 
sequences within reads, and it effectively manages extensive 
lists of lookup sequences. Algorithms like cutadapt which use 
dynamic programming score matrix to optimize alignment, 
are more suitable for cases, such as general adapter trimming, 

that require finding the best possible alignment between two 
sequences or for finding long technical sequences (in 
which case, storing the allowable mismatches in a hash table 
is computationally infeasible). We anticipate that splitcode 
will be used in tandem with other preprocessing tools to 
provide an effective solution for many bioinformatics needs. 
Furthermore, we expect that splitcode will continue to 
expand in functionality based on user feedback, user needs, 
and possibly the introduction of more complicated read 
structures that may arise from the development of novel 
sequence census assays.

Acknowledgements
We thank Benjamin T. Yeh (Caltech) and the laboratory of 
Mitchell Guttman (Caltech) for discussions which motivated 
this project. Some of the splitcode source code is derived 
from source code written by P�all Melsted (University of 
Iceland), and we are grateful to him for sharing his source 
code with us. Thanks to A. Sina Booeshaghi for helpful dis
cussions. Thanks to Nils Homer (Fulcrum Genomics LLC) 
and two other anonymous reviewers for constructive feed
back on the manuscript and the software. Illustrations were 
created with BioRender: http://biorender.com.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

Figure 1. Overview of the splitcode workflow. The splitcode program takes in a set of FASTQ files and a user-specified config file, which serves as a 
recipe describing how the reads should be parsed. The user executes splitcode on the command-line, specifying command-line options on how the 
output should be formatted. The output consists of one or more of the following: the original FASTQ files (possibly edited), the extracted sequences (e.g. 
UMI sequences which are unknown and need to be extracted by using location information or anchor points), and the final barcodes which are unique for 
each combination of identified tags. The output may take the form of FASTQ files, gzip-compressed FASTQ files, BAM files, or interleaved sequences 
directed to standard output, depending on what the user specifies.

Flexible parsing, interpretation, and editing of technical sequences with splitcode                                                                                                   3 

http://biorender.com
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae331#supplementary-data


Funding
This work was supported by the UCLA-Caltech Medical 
Scientist Training Program [NIH NIGMS training grant T32 
GM008042 to D.K.S.]; and in part by the National Institutes of 
Health (NIH) [U19MH114830, 5UM1HG012077-02 to L.P.].

References
Battenberg K, Kelly ST, Ras RA et al. A flexible cross-platform single- 

cell data processing pipeline. Nat Commun 2022;13:6847.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for 

Illumina sequence data. Bioinformatics 2014;30:2114–20.
Booeshaghi AS, Chen X, Pachter L. A machine-readable specification 

for genomics assays. Bioinformatics2024;40:btae168. https://doi. 
org/10.1093/bioinformatics/btae168

Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read 
merging via overlap. PLoS One 2017;12:e0185056.

Chen S, Zhou Y, Chen Y et al. fastp: an ultra-fast all-in-one FASTQ pre
processor. Bioinformatics 2018;34:i884–90.

Cheng O, Ling MH, Wang C et al. Flexiplex: a versatile demultiplexer 
and search tool for omics data. Bioinformatics 2024;40:btae102. 
https://doi.org/10.1093/bioinformatics/btae102

Hagemann-Jensen M, Ziegenhain C, Chen P et al. Single-cell RNA 
counting at allele and isoform resolution using Smart-seq3. Nat 
Biotechnol 2020;38:708–14.

Johnson MS, Venkataram S, Kryazhimskiy S. Best practices in design
ing, sequencing, and identifying random DNA barcodes. J Mol Evol 
2023;91:263–80.

Kebschull JM, Zador AM. Cellular barcoding: lineage tracing, screen
ing and beyond. Nat Methods 2018;15:871–9.

Kijima Y, Evans-Yamamoto D, Toyoshima H et al. A universal se
quencing read interpreter. Sci Adv 2023;9:eadd2793.

Kivioja T, V€ah€arautio A, Karlsson K et al. Counting absolute numbers 
of molecules using unique molecular identifiers. Nat Methods 2011; 
9:72–4.

Figure 2. Example of splitcode usage. The structure of the reads from this hypothetical sequencing technology contains multiple regions that need to be 
parsed, including some of variable length. In the config file, each region that needs to be parsed is organized into groups and each “group” contains 
multiple tags. The tags in the grp_A group have the value 1 in the “distance” column, meaning a hamming distance 1 error tolerance. The values in the 
“next” column indicate that after a grp_A tag (i.e. Barcode_A1, Barcode_A2, or Barcode_A3) is found, we should next search only for tags in the grp_B 
group. The “maxFindsG” values of 1 mean that the maximum number of times a specific group can be found is 1 (e.g. after finding a tag in grp_A, stop 
searching for tags in grp_A). The “location” for grp_A tags have the value 0:0:5, meaning that the tag is found in file #0 (i.e. the R1 file) within positions 0– 
5 of the read; for grp_B tags, splitcode searches file #0 within positions 5–100. In the header of the config file, the @extract option contains an expression 
indicating that we should extract an 8-bp sequence, which we name umi, 3 bases following identification of a grp_B tag. The supplied @trim-3 option 
means that only 30-end trimming of 0 bases and 4 bases of the R1 file and the R2 file, respectively, should be performed. Thus, here, the output R1 file 
will contain the original R1 sequences (i.e. the entirety of Barcode A, Region 1, Barcode B, NNN, UMI, and Region 2) while the output R2 file will contain 
just the cDNA. The output “Final Barcodes” FASTQ file will contain a sequence uniquely identifying a combination of tags and the mapping file allows us 
to map the final barcode sequence back to the tag combination (the numbers in the right-most column of the mapping file represent how many reads 
that tag combination was found in). Finally, it is important to note that this is simply one of many ways to parse this read structure with splitcode and 
users can configure the options how they see fit. Further, users can also customize the output options. For example, users can choose to output reads 
that contain both grp_A and grp_B tags into one set of files and direct all other reads into a separate set of files, and users can choose whether to output 
the 8-bp UMI sequence into an independent file or to put it in the FASTQ header of the outputted reads. Users also have the option to output reads as a 
BAM file with the 8-bp UMI sequence encoded in a SAM tag.

4                                                                                                                                                                                                                    Sullivan and Pachter 

https://doi.org/10.1093/bioinformatics/btae168
https://doi.org/10.1093/bioinformatics/btae168
https://doi.org/10.1093/bioinformatics/btae102


Kong Y. Btrim: a fast, lightweight adapter and quality trimming program 
for next-generation sequencing technologies. Genomics 2011;98:152–3.

Liu D. Fuzzysplit: demultiplexing and trimming sequenced DNA with a 
declarative language. PeerJ 2019;7:e7170.

Martin M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet J 2011;17:10.

Melsted P, Ntranos V, Pachter L. The barcode, UMI, set format and 
BUStools. Bioinformatics 2019;35:4472–3.

Parekh S, Ziegenhain C, Vieth B et al. zUMIs—a fast and flexible pipe
line to process RNA sequencing data with UMIs. Gigascience 2018; 
7:giy059. https://doi.org/10.1093/gigascience/giy059

Quinodoz SA, Bhat P, Chovanec P et al. SPRITE: a genome-wide method 
for mapping higher-order 3D interactions in the nucleus using combi
natorial split-and-pool barcoding. Nat Protoc 2022;17:36–75.

Quinodoz SA, Ollikainen N, Tabak B et al. Higher-order inter- 
chromosomal hubs shape 3D genome organization in the nucleus. 
Cell 2018;174:744–57.e24.

Rebboah E, Reese F, Williams K et al. Mapping and modeling the geno
mic basis of differential RNA isoform expression at single-cell reso
lution with LR-Split-seq. Genome Biol 2021;22:286.

Roehr JT, Dieterich C, Reinert K. Flexbar 3.0 – SIMD and multicore 
parallelization. Bioinformatics 2017;33:2941–2.

Rosenberg AB, Roco CM, Muscat RA et al. Single-cell profiling of the 
developing mouse brain and spinal cord with split-Pool barcoding. 
Science 2018;360:176–82.

Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in 
unique molecular identifiers to improve quantification accuracy. 
Genome Res 2017;27:491–9.

# The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–5
https://doi.org/10.1093/bioinformatics/btae331
Applications Note

Flexible parsing, interpretation, and editing of technical sequences with splitcode                                                                                                   5 

https://doi.org/10.1093/gigascience/giy059

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	References


