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Abstract
Motivation: Next-generation sequencing libraries are constructed with numerous synthetic constructs such as sequencing adapters, barcodes, 
and unique molecular identifiers. Such sequences can be essential for interpreting results of sequencing assays, and when they contain infor
mation pertinent to an experiment, they must be processed and analyzed.
Results: We present a tool called splitcode, that enables flexible and efficient parsing, interpreting, and editing of sequencing reads. This versa
tile tool facilitates simple, reproducible preprocessing of reads from libraries constructed for a large array of single-cell and bulk sequenc
ing assays.
Availability and implementation: The splitcode program is available at http://github.com/pachterlab/splitcode.

1 Introduction
The reads that result from next-generation sequencing librar
ies can contain many types of synthetic constructs, or techni
cal sequences, including adapters, primers, indices, barcodes, 
and unique molecular identifiers (UMIs) (Kivioja et al. 2011, 
Martin 2011, Kebschull and Zador 2018, Melsted et al. 
2019, Johnson et al. 2023, Booeshaghi et al. 2024). These oli
gonucleotide sequences are defined by the technicalities of 
sequencing-based assays and experiments, with each se
quence being either a completely unknown sequence, a 
known sequence, or an unknown sequence that is a member 
of a set of known sequences. There are many read preprocess
ing tools for editing and extracting information from such 
sequences, including the widely used tools cutadapt (Martin 
2011), fastp (Chen et al. 2018), and Trimmomatic (Bolger 
et al. 2014) for adapter and quality trimming, UMI-tools 
(Smith et al. 2017), and zUMIs (Parekh et al. 2018) for UMI 
processing, BBTools (https://sourceforge.net/projects/bbtools/) 
(Bushnell et al. 2017), and reaper for more general filtering 
operations, INTERSTELLAR for read structure interpreta
tion (Kijima et al. 2023), Picard (https://github.com/broadin 
stitute/picard), and fgbio (https://github.com/fulcrumgenom 
ics/fgbio) for many read manipulation operations, among 
many other tools (Kong 2011, Roehr et al. 2017, Liu 2019, 
Battenberg et al. 2022, Cheng et al. 2024). Many of these 
tools define a “read structure” to describe the layout of a 
read; e.g. fgbio uses a sequence of <number><operator>
operators where the number of the length of a segment and 

the operator describes how the segment should be processed. 
However, no one tool can adequately address all technical se
quence preprocessing tasks. Some methods, such as adapter 
trimming methods, can only remove identified technical 
sequences from reads but lack the ability to store information 
about technical sequences that are relevant to the provenance 
of the read. Other methods can extract and store technical 
sequences from reads but are limited to only extracting 
sequences at defined positions of defined lengths within 
reads, and may present limited options for handling variable 
position and variable length segments. Still other methods are 
designed for only a specific type of assay, such as single-cell 
RNA-seq. Technologies such as (long-read) SPLiT-seq 
(Rosenberg et al. 2018, Rebboah et al. 2021), SPRITE 
(Quinodoz et al. 2018, 2022), and Smart-seq3 (Hagemann- 
Jensen et al. 2020), contain complex, multifaceted technical 
sequences that currently are processed by custom scripts or 
specific use-case modifications to existing tools.

Here, we present splitcode which introduces versatile new 
features for general preprocessing needs. splitcode is a flexi
ble solution with a low memory and computational footprint 
that can reliably, efficiently, and error-tolerantly preprocess 
technical sequences based on a user-supplied structure of 
how those sequences are organized within reads. For exam
ple, splitcode can simultaneously trim technical sequences, 
parse combinatorial barcodes that are variable in length and 
inconsistent in location within a read, and extract UMIs that 
are defined in location with respect to other technical sequen
ces rather than at a set position within a read. These features 
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make splitcode a suitable tool for processing variable length 
staggers at the start of reads; such staggers are often intro
duced to enhance nucleotide diversity during the early cycles 
of sequencing, preventing monotemplate issues that would 
arise from sequencing identical nucleotides during those 
cycles. The technical sequences that splitcode may be useful 
for identifying include not only barcodes or UMIs but also li
gation linkers, integrase attachment sites, and Tn5 transpo
sase mosaic ends. Moreover, splitcode can seamlessly 
interface with other command-line tools, including other 
read sequencing read preprocessors as well as read mappers, 
by streaming the pre-processed reads into those tools. Thus, 
splitcode can eliminate the need to write an entirely new file 
to disk at every step of preprocessing, a practice that cur
rently results in inefficient use of time and disk space. 
Furthermore, splitcode can stream reads into itself, enabling 
multiple preprocessing steps to be performed in sequence for 
more complicated assays.

2 Materials and methods
2.1 Tag sequence identification
Each sequence in the splitcode config file along with all 
sequences within the sequence’s allowable hamming distance 
and/or indel error tolerance is indexed in a hash map. Each 
sequence is associated with the tag(s) from which it origi
nated. Reads in FASTQ files are scanned from start to end to 
identify tags based on hash map lookups. Additionally, users 
can specify locations and conditions within which a specific 
tag may appear and only tags satisfying such conditions are 
identified. Further, by restricting tag identification to only 
specific regions of reads, the number of hash map queries is 
reduced therefore improving runtime.

2.2 Final barcode sequences
Each combination of tags is assigned a numerical ID, which 
begins at 0 and is incremented for every newly encountered 
combination. Each numerical ID, a 32-bit unsigned integer, 
can be converted to a unique 16-bp final barcode sequence by 
mapping each nucleotide to a 2-bit binary representation as 
follows: A¼00, C¼ 01, G¼ 10, T¼11. It follows that the 
numerical ID can be represented in nucleotide-space based on 
the integer’s binary representation. For example, the numeri
cal ID 0 is AAAAAAAAAAAAAAAA, the numerical ID 1 is 
AAAAAAAAAAAAAAAT, and the numerical ID 30 is 
AAAAAAAAAAAAACTG. This interconversion between nu
merical IDs and nucleotide sequences facilitates simplifying 
complex barcodes.

2.3 Software
The splitcode software is written in Cþþ11 and is freely 
available and open source under the BSD-2 clause license. 
The framework for splitcode is a Cþþ header file making the 
direct incorporation of splitcode into a software project that 
involves processing sequencing reads possible. The GUI for 
the software is implemented as an HTML webpage and uses 
Emscripten for compilation of the software to WebAssembly. 
No new data were generated or analyzed for this article de
scribing the splitcode software. Documentation for the soft
ware is available at https://splitcode.readthedocs.io/.

3 Results
3.1 Framework and usage
We refer to the synthetic constructs, or technical sequences 
that can be identified in reads as tags. Tags are described in 
the splitcode config file with several parameters including a 
tag ID, the sequence itself, the error-tolerance for identifying 
that tag, and options such as where the tag might be found 
within sequencing reads and conditions under which the tag 
should be searched for. A collection of tags forms a barcode, 
which can be used to demultiplex reads according to the tags 
identified within a read. Within the config file, a user can also 
specify extraction options to delineate how certain subse
quences within reads should be extracted. Subsequences can 
be extracted by using tags as anchor points or can be 
extracted at user-defined positions within reads. This feature 
is particularly useful for unique molecular identifier (UMI) 
sequences which are generally unknown sequences that exist 
at defined locations within reads. Additionally, in the config 
file, a user can specify read editing options including trim
ming and whether identified tags should be replaced with a 
particular sequence. Thus, identified technical sequences can 
be modified or trimmed in situ. Taken together, this array of 
options makes it possible for splitcode to parse data from a 
large variety of sequencing assays, including those with many 
levels of multiplexing (Fig. 1).

Following construction of the config file (Fig. 2), users can 
supply the config file to the splitcode program on the 
command-line. Users can further specify the output options 
for how the final barcode, the (possibly edited) reads, the 
extracted subsequences should be outputted. The program 
presents many options for outputting reads, allowing seam
less integration with many downstream tools. Importantly, 
the output can be interleaved and directed to standard out
put, which can then be directly piped into tools (including 
splitcode itself if another round of read processing is needed) 
that support such input. This feature makes it possible to 
send processed reads directly to a read mapper, therefore 
eschewing the inefficiencies of creating large intermediate 
files on disk.

3.2 Capabilities
The splitcode program has many options, some of which can 
be supplied in the config file and others of which (namely the 
output options) must be supplied on the command line. In 
the config file, a user can specify “sequence identification” 
options for finding tags in reads as well as editing reads in 
situ based on identified tags as well as “read modification 
and extraction” options for general read trimming and 
extracting UMI-like sequences. The latter option group is 
supplied in the header of the config file while the “sequence 
identification” options are supplied as tab-separated values 
in a tabular format in the file, an example of which is shown 
in Fig. 2. A list of some of the splitcode config file options is 
exhibited in Supplementary Table S1.

A graphical user interface (GUI) for splitcode facilitates the 
usage of splitcode (Supplementary Fig. S1). This GUI exists 
as a web page and helps a user create a config file which can 
then be downloaded. Additionally, this GUI enables live test
ing of configuration options on user-supplied sam
ple sequences.
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Finally, splitcode is efficient software: On 150-bp paired- 
end reads in gzip FASTQ format, splitcode can reach 
throughputs exceeding 10 million reads per minute with 
memory usage on the order of a few hundred megabytes on a 
standard laptop, although these performance results vary 
depending on the task at hand.

4 Discussion
The preprocessing of FASTQ files is an important first step in 
bioinformatics pipelines. This step is frequently inefficient, 
involving multiple steps with the creation of large intermedi
ate files or writing and running of custom unoptimized scripts 
which can be challenging with large-scale sequencing data. 
splitcode alleviates some of these inefficiencies via a modular 
and flexible design to effectively and efficiently handle intri
cate, hierarchical read structures produced by technologies 
with many layers of multiplexing. While many of splitcode’s 
features overlap with those of existing bioinformatics soft
ware, splitcode is not intended to fully recapitulate all the fea
tures of existing tools or to replace or outperform any one 
tool. Rather, splitcode is intended to serve as one additional, 
flexible and versatile tool in a bioinformatics arsenal, and has 
been designed to be interoperable with other tools. splitcode 
operates not as an alignment algorithm, but on a principle of 
dictionary lookups. In this approach, technical sequences 
along with their permissible mismatches are cataloged in a 
hash table. This makes splitcode apt for scenarios requiring 
identification, interpretation, and modification of short 
sequences within reads, and it effectively manages extensive 
lists of lookup sequences. Algorithms like cutadapt which use 
dynamic programming score matrix to optimize alignment, 
are more suitable for cases, such as general adapter trimming, 

that require finding the best possible alignment between two 
sequences or for finding long technical sequences (in 
which case, storing the allowable mismatches in a hash table 
is computationally infeasible). We anticipate that splitcode 
will be used in tandem with other preprocessing tools to 
provide an effective solution for many bioinformatics needs. 
Furthermore, we expect that splitcode will continue to 
expand in functionality based on user feedback, user needs, 
and possibly the introduction of more complicated read 
structures that may arise from the development of novel 
sequence census assays.
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Figure 1. Overview of the splitcode workflow. The splitcode program takes in a set of FASTQ files and a user-specified config file, which serves as a 
recipe describing how the reads should be parsed. The user executes splitcode on the command-line, specifying command-line options on how the 
output should be formatted. The output consists of one or more of the following: the original FASTQ files (possibly edited), the extracted sequences (e.g. 
UMI sequences which are unknown and need to be extracted by using location information or anchor points), and the final barcodes which are unique for 
each combination of identified tags. The output may take the form of FASTQ files, gzip-compressed FASTQ files, BAM files, or interleaved sequences 
directed to standard output, depending on what the user specifies.
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