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Feasibility of a Sprague–Dawley Rat Model  
for Investigating the Effects of Seated  

Whole-body Vibration
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Vehicular whole-body vibration (WBV) can have long-term adverse effects on human quality of life. Animal models can be 
used to study pathophysiologic effects of vibration. The goal of this study was to assess animal cooperation and well-being 
to determine the feasibility of a novel seated rat model for investigating the effects of WBV on biologic systems. Twenty-four 
male Sprague–Dawley rats were used. The experiment consisted of an acclimation phase, 2 training phases (TrP1 and TrP2), 
and a testing phase (TeP), including weekly radiographic imaging. During acclimation, rats were housed in pairs in stand-
ard cages without vibration. First, experimental (EG; n = 18) and control group 1 (C1; n = 3) rats were placed in a vibration 
apparatus without vibration, with increasing duration over 5 d during TrP1. EG rats were exposed to vertical random WBV 
that was increased in magnitude over 5 d during TrP2 until reaching the vibration signal used during TeP (15 min, 0.7 m·s−2 
root mean square, unweighted). C1 rats were placed in the vibration apparatus but received no vibration during any phase. 
Control group 2 (C2; n = 3) rats remained in the home cages. Cooperation was evaluated with regard to rat-apparatus inter-
actions and position compliance. Behavior, weight, and fecal glucocorticoid metabolite concentrations (fGCM) were used 
to evaluate animal well-being. We observed good cooperation and no behavioral patterns or weight loss between phases, 
indicating little or no animal stress. The differences in fGCM concentration between groups indicated that the EG rats had 
lower stress levels than the control rats in all phases except TrP1. Thus, this model elicited little or no stress in the conscious, 
unrestrained, seated rats.

Abbreviations and Acronyms: C1, control group 1; C2, control group 2; EG, experimental group; fGCM, fecal glucocorticoid 
 metabolite; TeP, testing phase; TrP1, training phase one; TrP2, training phase 2; RMS, root mean square; WBV, whole-body  
vibration
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Introduction
Vehicular whole-body vibration (WBV) exposure is part of 

daily life for most modern-day individuals, whether it involves 
vehicular operation work or commuting to work.16,21,49,50 A 
previous publication15 summarized studies that investigated 
whether occupations that expose persons to WBV caused injury, 
specifically to the lower back. Two other studies21,49 reviewed 
health disorders related to WBV and the epidemiologic and 
etiological aspects of low back pain in seated vibration envi-
ronments, such as off-road vehicles, road vehicles, and aircraft, 
and found that most of these environments expose seated 
individuals to WBV.

Animals have been used to study the pathophysiologic effects of 
WBV. The vertebral anatomy and biomechanics of rats are similar 
to those of humans, and therefore, rats have been routinely used 
for studies of vertebral  biomechanics.6,18,20,22,23,25,34,36,39,44,47,48,52,54 
Most studies on the effects of WBV on the vertebral column 
involve using unrestrained rats placed on vibrating platforms, 
resulting in transverse distribution of vibration along the 
spine.10,30,31 Studies investigating the effects of sagittal vibration 
used animals that were either restrained in prone2,54,55 or supine33 
positions or were standing upright.18

Models should be designed to represent as closely as possible 
the type of exposure that humans will experience. The current 
study considers the exposure of a seated individual to WBV. 
Although other positions might give some insights into the ef-
fects of WBV, exposure of a seated animal might more closely 
represent the seated human. Other than in studies that used 
subhuman primates,9,38,42,43 we are not aware of a study that 
used seated rats. We designed a seated model to allow the WBV 
to be transmitted more directly in the plane of the vertebral axis 
with less transverse force perpendicular to the vertebrae. The 
seated model also allows vibration to be applied directly to the 
spine without initial absorption of vibration force by the limbs.
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Animal well-being and cooperation are important consid-
erations with regard to animals used in research and could 
influence the practicality of the model. Factors that may affect 
animal well-being and cooperation include environmental 
stressors (such as noise, temperature, light, vibration, etc.), the 
apparatus that the animal is required to interact with, the posi-
tion of the animal, level of consciousness, and the procedure(s) 
performed during the experiment. Previous studies have 
documented evidence of comfortable ranges for certain environ-
mental conditions for rats; these include noise levels below 80 
decibels,5,26 temperatures between 20 and 26 °C,33 and humidity 
between 30% and 70%.32 The goal of this study was to determine 
the feasibility of exposing a seated rat to WBV, based on animal 
cooperation (whether the rats remain seated) and well-being 
(whether rats experienced acute stress).

Materials and Methods
Ethical considerations. Ethical approval was obtained from 

the University of Pretoria Animal Ethics Committee (AEC; ap-
proval no. 736/2020). All experimental protocols complied with 
the requirements of the University of Pretoria AEC.

Study sample group. The study used the lowest number of 
rats needed for valid statistical analyses. A power analysis us-
ing G*Power version 3.1 indicated that the comparison of the 
means of repeated measurements with an effect size of 0.25, 
α = 0.05, and 1 – β = 0.80 would require 3 groups and 6 repeated 
measurements with a total sample size of 24.

The study therefore comprised 24 10-wk-old conventional 
male Sprague–Dawley rats (Rattus norvegicus). The rats used 
were bred by and obtained from the South African Vaccine 
Producers in Johannesburg, South Africa. With the use of ran-
dom assignment, 3 rats were allocated to each of the 2 control 
groups (C1 and C2) and 18 were allocated to the experimental 
group (EG).

Animal housing. Rats were housed in pairs at Onderstepoort 
Veterinary Animal Research Unit (OVARU) in the conventional 
rodent unit. Housing consisted of Techniplast1400U rat cages 

obtained from OVARU with ad libitum reverse osmosis water 
and rodent pellets purchased from EPOLin South Africa. The 
room was maintained between 22 and 24 °C with a relative hu-
midity of 40% to 60%. The room was maintained on a 12:12-h 
light:dark cycle. Rats were housed on dust-free sawdust bed-
ding with autoclaved tissues, cardboard, egg containers, and 
wooden sticks as enrichment as purchased by OVARU from a 
general pet store in Pretoria, South Africa.

Seated rat-vibration apparatus.  The seated rat vibration 
apparatus was designed to expose a seated rat to a desired 
vibration with a focus on animal cooperation and well-being. 
Figure 1 shows the apparatus used to expose a seated rat to the 
vibration apparatus, the individual components, and the main 
dimensions of the animal–apparatus interface. Rats are seated 
in capsules that consist of a base, cylinder, cap, and limit cap. 
All capsule components were manufactured from nylon poly-
mer purchased from Maizey Plastics in South Africa. A vertical 
front face opening was used for offering the reward and for 
monitoring the rat, and 2 bottom openings accommodated the 
tail and legs and provided adequate ventilation. The seat had 
a diameter of 33 mm and a height of 15 mm. The vertically ad-
justable limit cap prevented the rats from standing upright. The 
capsules and base were suspended on a spring and constrained 
to move vertically by the linear guide. They were connected to 
an electrodynamic exciter (modal 50; MD Dynamics) via the 
capsule–exciter interface. The vibration signal was sent from the 
function generator (Helios PC/104 SBC; Diamond Systems) to 
the power amplifier (PA500L; LDS0) and then to the exciter. A 
triaxial accelerometer (CXL04GP3; MEMSIC) measured vibra-
tion in 3 translational directions. Data were recorded at a sample 
rate of 1 kHz on the data acquisition system (Helios PC/104 
SBC; Diamond Systems).

Placement into and removal of the rat from the capsules 
were performed horizontally. The rat was placed in the capsule 
from the side of the base with the cap and limit cap in place 
(Figure 2A). Once a rat was inside the capsule, the capsule was 
secured to the base while avoiding pinching the rat’s tail by 
holding it in the tail opening. After capsule 1 was secured, the 
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Figure 1. (A) Isometric view of seated rat vibration apparatus. (B) Sectioned view with the capsule’s main dimensions of importance with 
respect to the animal–apparatus interface.
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next rat was loaded into capsule 2, followed by capsule 3. This 
loading process is shown in Figure 2B. Once the rats were in their 
respective capsules, the capsules with their shared base were 
connected to the exciter via the capsule–exciter interface. Each 
limit cap was adjusted so that it would deter rats from standing 
up on their hind legs yet avoid continual contact with the rat to 
prevent injury and/or influence effects on the rat biodynamics. 
Rats were removed from the capsule on the cap side, as rats are 
inclined to move forward (Figure 2C). Removal began with the 
rat in capsule 3 and ended with capsule 1. The design of the 
3-capsule layout allowed access to feed and monitor for all 3 
rats from the same side.

Vibration.  The vibration was based on vertical seat accel-
eration measured in a Range Rover Evoque eD4 Sports Utility 
Vehicle on a 4-poster test rig.13 The time history and power 
spectral density function of the acceleration of the capsules 
are shown in Figure 3. The magnitude of the vibration was 
quantified as the root mean square (RMS) of the unweighted 
acceleration time history a(t) with S number of samples (Equa-
tion 1). Another metric used for quantifying vibration severity 
is the fourth power vibration dose value (VDV; Equation 2). 
The VDV better accounts for the duration of vibration (Ts) 
compared with RMS14 The cumulative exposure to several 
acceleration time histories, N, is quantified by the cumulative 
VDV (VDVcum; Equation 3).

 S [ ]( )( )= ∑



 ⋅ −a tRMS 1/ m s

2 1/2 2
 (1)

 
S [ ]( ) ( )= ∑



 ⋅ −T a tVDV / m sS n

4 1/4 1.75
 (2)

 S∑ [ ]( ) ( )= ∑



 ⋅=

−T a tVDV / m si

n
S n

cum
1

4 1/4 1.75  (3)

The vibration used in this study was applied for a duration 
of 15 min with a magnitude of 0.68 m·s−2, RMS and a VDV of 
5.5 m·s−1.75 of the unweighted capsule acceleration (Figure 3). 
The vibration was weighted using the frequency weighting 
Wb3 to compare it to the ranges reported for different vehicle 
categories in another study.35 The frequency-weighted vibration 
magnitude of the vibration used in this study is 0.6 m·s2, RMS. 
Among the 14 vehicle categories considered in the aforemen-
tioned study35 weighted vertical vibration magnitude (in m·s−2, 
RMS) ranged as follows: cars, 0.16 to 0.78; vans (0.30 to 0.57); 
lorries (trucks), 0.33 to 1.04; tractors, 0.29 to 0.98; busses, 0.31 
to 0.65; and dumpers (dump trucks), 0.54 to 1.29. The vibration 
used in the current study was near the upper end of the levels 
reported for cars, vans, and busses; midrange for lorries and 
tractors; and near the lower end for dumpers. Readers who are 
not familiar with the vibration concepts presented above can 
refer to the following.3,14

Procedure. The experimental procedure consisted of a 10-d 
acclimation phase with radiographs taken on day 11, 2 training 
phases lasting a total of 14 d (with rest on the weekends), and 
a testing phase lasting 39 d (with radiographs but no vibration 
on Fridays and weekends for rest) (Figure 4). Testing began at 

Figure 2. (A) Capsule entry from side of base with cap and limit cap in place. (B) Images taken showing the order in which the capsules are 
secured to the base. (C) The cap and limit cap are removed allowing the rat to exit the capsule. The base remains in place. Exit begins with the 
rat in capsule 3 and ends with capsule 1.
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the approximate age of 14 wk (average weight of all 3 groups 
of rats in the study: 338 ± 25 g). The rats were euthanized at the 
end of the testing phase at the age of 19 wk and 5 d by using 
an isoflurane overdose. The average weight of all 3 groups was 
361 ± 25 g.

During the 10-d acclimation phase, all rats remained in cages. 
An additional 14 d (including weekends) were used to accustom 
rats to the seated position in the capsule (for EG and C1 rats) 
with exposure to vibration for EG rats. Training was performed 
using a mixture of ad-lib reverse osmosis water, normal fat 
yogurt, and Bokomo ProNutro (a South-African powdered 
wheat-based porridge) as rewards. These can all be purchased at 
any general store in South Africa. These ingredients with a 1:1:1 
ratio by volume in a bowl to produce approximately 300 mL. 
The mixture was offered to rats by using a 100-mL syringe.

In training period 1 (TrP1), rats were at first allowed to roam 
freely on a platform with the apparatus in proximity for a few 
minutes. They were then lured into the capsules by placing 
a small drop of the reward mixture at the far end inside the 
capsule. The bottom cap was positioned once the rats entered 
their respective capsules.

To familiarize the rats with being inside the capsules, they 
were exposed daily to the vibration apparatus by placing 3 of 
the EG rats at a time into capsules. The C1 rats were placed in 
separate, stationary capsules that were not transferred onto 
the vibration apparatus. This allowed the EG and C1 rats to 
be trained simultaneously. When rats assumed the correct 
position, they were positively reinforced with Cerelac (instant 
baby cereal), yogurt, or purity (puréed baby food) as rewards. 
The rats spent 7 min inside their capsule on day one. This du-
ration was increased by 2 min each day for 5 d, resulting in a 
final seating time of 15 min (Figure 4). The rats were monitored 
continuously and rewarded each time they displayed correct 
seating or interfacing.

TrP2 began as soon as the rats appeared to be accustomed 
to being inside the capsules. TrP2 involved subjecting the EG 
rats to 15 min of vibration at 20% of the full signal. The vibra-
tion was subsequently increased daily over 6 d. The C1 rats 
also spent 15 min in their capsules but were not subjected to 
vibration. (Figure 4).

After the rats finished TrP2, they entered a 6-wk test phase. 
At this time, they were approximately 14 wk old. Rats were al-
located to their groups of 3 each week based on their weights 
to ensure an overall similar average weight across groups. The 
C1 rats were placed in the static capsule on a separate table for 2 
sets of 15-min sessions a day. The EG rats were exposed to 2 sets 
of 15-min WBV sessions a day. These 2 groups underwent the 
testing procedures daily for 24 d on every Monday to Thursday 
(39 d, including Fridays and weekends). On Fridays, rats were 
evaluated radiographically. The rats were closely monitored to 
ensure their well-being.

Radiographic imaging. Evidence that WBV can affect the mate-
rial properties of the spine (specifically the lumbar spine).11,50 
Therefore, we included radiographic imaging to determine 
whether we had produced a realistic animal model for investi-
gating the effects of WBV on the spine. Rats were anesthetized 
with sevoflurane for imaging. Imaging was performed weekly; 
rodents have a faster metabolic aging cycle than humans and 
could potentially show spinal effects from WBV faster than 
humans would.1,40

Animal cooperation and well-being.  Cooperation was 
 evaluated based on how the rats interacted with the vibration 
apparatus and their willingness to remain in the desired posi-
tion. The desired seating position was reinforced using food 
rewards (by Bokomo ProNutro and yogurt). Good coopera-
tion was defined as remaining seated, with continual contact 
between the seat and the rat’s ischial surface. Contact between 
the seat and the hind legs (such as standing or crouching) was 

Figure 3. Time history and power spectral density function of the unweighted capsule vibration [0.05-Hz frequency resolution, 126 df].



320

Vol 63, No 3
Journal of the American Association for Laboratory Animal Science
May 2024

considered to be poor cooperation and was not rewarded. The 
seating position is important to ensure that the vibration is ap-
plied directly to the vertical plane of the spine and not absorbed 
by the limbs, thereby allowing the model to study possible 
effects of WBV on the spine.

Well-being was monitored using behavioral patterns, weight, 
and fecal glucocorticoid metabolite (fGCM) concentrations. 
Behavioral signs of stress included piloerection, excessive 
grooming, abnormal breathing, and porphyrin staining.17,37 Rats 
were weighed on arrival and once a week thereafter on Fridays.

Quantifying fGCM using enzyme immunoassay (EIA)  
techniques is often used to monitor responses to stressors  
in various animals.7,24,29,53 Fecal samples were collected in 
microfuge tubes twice daily (once in the morning during the 
daily weighing [AM] and once during afternoon rounds [PM]), 
Samples were collected and frozen at −10 to −20 °C immediately 
after defecation. Fecal samples were collected from individual 
rats while they were being handled.

For processing, samples were lyophilized, pulverized, and 
sifted using a mesh strainer.10 Then, 0.05 g of the fecal powder 
was extracted with 80% ethanol in water (3 mL) and measured 
for immunoreactive fCGM concentrations using a 5α-pregnane-
3β,11β,21-triol-20-one EIA.28,45,46

Data and statistical analyses. Weekly weights were compared 
with the previous week, with significant weight loss (10%) 
considered indicative of stress.8,27 Each rat served as its own 
baseline.

The fGCM concentrations were tested for normal distribution 
and equal variance using the Shapiro-Wilk and Levene tests, 
respectively. Normal distribution was obtained for all subsets, 
and subsequent analyses were conducted using parametric tests. 
The data indicated equal variance across groups of animals and 
phases. A repeated measures ANOVA test was used to test for 
differences between the 3 groups for each phase. If the ANOVA 
tests indicated that significant differences existed among groups, 
a Bonferroni post hoc test was used to identify the significant 
differences. Statistical analyses were conducted using IBM SPSS 
Statistics, Version 26.0 (IBM, Armonk, NY).

Results
Animal cooperation.  Rats acclimated almost immediately 

during each phase of training and experimentation and showed 
no behavioral signs of stress or discomfort. When the capsules 
were placed in front of them, they voluntarily entered with 
some yogurt as a lure initially and without lures later on. Rats 
left the capsules voluntarily during each phase after the cap-
sule was placed on a table next to their cage after each session. 
All rats remained seated during all phases. The 60-mm inner 
diameter insert accommodated the rats for the duration of the 
study. Figure 5 shows observed hind leg positions. Suboptimal 
positioning did not appear to result in weight bearing and only  
lasted a couple of seconds. The positioning of the limit cap 
encouraged continued good seating.

Animal well-being. No stress-related behavior was observed, 
and healthy weight gain occurred (Table 1). Table 2 provides 
the descriptive statistics for fGCM concentrations of all 3 
groups; concentrations were higher than the baseline over 
the acclimation and TrP phases and fell over time during the 
experimental phase.

Results of the repeated measures ANOVA indicated signifi-
cant differences among the 3 groups during all phases except 
for TrP1 (Table 3). Post hoc Bonferroni tests (Table 4) showed 
that during the acclimation phase, C1 rats had significantly 
higher fGCM concentrations than C2 rats (P = 0.01) and had 
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Figure 5. Hind leg positions. (A, B) Optimal hind leg positions, with low probability that hind legs are weight bearing. (C) Suboptimal hind leg 
position, with the possibility that hind legs are weight bearing.

marginally higher concentrations during TeP (P = 0.06). C1 rats 
also had significantly higher fGCM concentrations than EG rats 
during the acclimation (P = 0.02) and TeP (P = 0.03) phases and 
marginally higher levels during TrP2 (P = 0.06). No significant 
differences were detected between EG and C2 rats for any phase.

Radiographic imaging. The rats underwent successful weekly 
imaging, followed by a weekend rest period. The fGCM con-
centrations indicated that even the imaging protocol did not 
adversely affect any of the groups.

Discussion
The seated rat model aims to investigate the biologic effects of 

WBV by better representing a seated individual; in comparison, 
previous studies used either free-roaming animals on vibrating 
platforms or animals that were restrained in a prone posi-
tion.2,12,18,30,31,33,54,55 These positions may be less representative 
of the seated individual than our seated rat model. Transmission 
of vibration along the spine can be affected by the limbs or the 
orientation of the spine relative to the direction of vibration. 
A previous study25 investigated the effects of WBV direction, 
frequency, and application regimen on lumbar spine properties 
in ovariectomized rats. Their results indicated that the spine can 
be affected differently based on the direction and frequency of 
vibration. To apply the vibration along the long axis of the spine, 
some studies have used anesthetized or euthanized rats that 
are held in a prone position with restraints under the shoulders 
and above the hips.2,19,54,55 In contrast, our seated rat model 
does not require restraint and avoids its potential influence on 
the biodynamic response or well-being of the rat. Anesthetized 
and euthanized rats were probably used to maintain the correct 
position during the vibration. However, the effects of anesthet-
ics on the physiologic interactions of bone are not well known 
and anesthesia could therefore potentially influence results, 
especially in studies over longer periods. Furthermore, the use 
of anesthetics may decrease muscle tone, potentially altering 
biomechanics and natural responses of the musculoskeletal 
system. Testing conscious animals allows the simulation of a 
natural biomechanical response to WBV and eliminates possible 
anesthetic effects. Testing conscious animals provides a better 
simulation of natural biomechanical responses to WBV.

Our qualitative observations with regard to animal coopera-
tion indicate that the dimensions of the capsule and seat appear 
to be adequate to promote a good seating position of the rat. 

Rats are naturally comfortable in tight dark environments41 
and quickly acclimated to the capsules. The limit cap promoted 
good hind leg positioning and seating posture. The positive 
reinforcement with food also assisted in having rats maintain 
the correct seated position. Less reinforcement was required 
as the study progressed. Rats could be prompted to adopt the 
optimal hind leg position by gently moving the stray leg to the 
side of the seat. In a previous study,18 rats stood upright on their 
hind legs on a vibrating platform to provide vibration along the 
long-axis of the spine. This study evaluated the transmission of 
vibration between the vibrating platform and the lumbar spine 
(L5 region) of 2 rats. Results indicated that the frequency at L5 
was similar to that of the platform, with 64% and 77% of the 
magnitude transmitted for a 45 and 90 Hz sinusoidal vibration, 
respectively. This shows the possible dampening effect of the 
legs and implies that the legs were weight bearing, similar to 
our suboptimal hind leg positions (Figure 5).

Our seated animal model did not seem to cause signs of acute 
stress, indicating animal well-being. The fGCM concentrations 
were significantly different among groups for all phases except 
for TrP1. In all phases where differences were observed between 
groups, the descriptive data and post hoc tests show that C1 
rats had significantly higher fGCM concentrations than did the 
other 2 groups. However, no significant differences were found 
between EG and C2 rats for any of the phases. This provides 
statistical support that the testing method we used did not cause 
adverse psychologic or physiologic stress in the experimental 
group. Weight steadily increased and subsequently stabilized, 
indicating a low-stress environment.4,27 The rats showed no 
notable changes in behavioral patterns, further indicating a 
low-stress environment.

Our experimental design began with a 5 d vibration introduc-
tion regimen at 20% of the eventual test target; this approach 
seemingly avoided potential stress and promoted cooperation. 
The magnitude of the vibration was increased logarithmically. 
We used a logarithmic increase rather than a linear increase 
to initially expose the rats to smaller increases, giving them 
a longer period to become familiar with the vibration before 
experiencing larger increases later in the study. A different vi-
bration introduction regimen might be required for vibrations 
with larger magnitudes and similar spectra or with similar 
magnitudes but different spectra. The former would require a 
smaller initial percentage and/or a longer period for acclima-
tion. However, a previous study with conscious free-standing 
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mice10 used peak acceleration from 4.9 to 19.6 m·s.−2 of the 90 Hz 
sinusoidal vibration during the first week of the experiment. 
The study did not report any observation indicating stress of 
the mice or differences in weight between the exposed and the 
control groups. Similarly, another study51 reported that con-
scious free-standing rats become accustomed to sinusoidal WBV 
of 13.3 m·s−2 at 15 Hz and 53.3 m·s−2 at 30 Hz (peak acceleration) 
within 2 to 3 d without any signs of stress such as weight loss 
or lack of grooming. Other studies that used conscious rats in 
a standing position did not mention any observation indicat-
ing that the sinusoidal WBV caused stress in the rats.12,18,30,31 
The sinusoidal WBV used in these studies had a much larger 
amplitude than the WBV used in the current study. A vibration 
introduction regimen is most likely only required when using 
conscious animals.

Table 2. fGCM concentrations (in µg/g dry weight) of the 3 
groups of rats for each phase

Group n Acclim n TrP1 n TrP2 n TeP
C1 12 12.23 ± 2.69 6 14.2 ± 4.52 9 14.24 ± 4.59 33 9.15 ± 3.12
C2 12 9.02 ± 2.08 9 10.32 ± 3.59 14 10.95 ± 3.90 33 7.69 ± 2.92
EG 74 10.11 ± 3.39 41 11.09 ± 3.93 72 11.27 ± 3.76 228 7.63 ± 3.39

Values are mean ± SD. C1/ C1, control group 1; C2, control group 
2; EG, experimental group; n, sample size; Acclim, acclimatization 
phase; TrP1, training phase 1; TrP2, training phase 2; TeP, test-
ing phase.

Table 3. Repeated measures ANOVA test output results determin-
ing whether differences exist in the fGCM concentrations between 
groups for each phase

Phase

Mauchly test of 
sphericity

Test for difference 
between groups

df P value F statistic P value
Acclim 2 0.18 5.54 0.01*
TrP1 2 0.79 2.70 0.12
TrP2 2 0.72 5.13 0.02*
TeP 2 0.57 11.11 <0.01*

Acclim, acclimatization phase; TrP1, training phase 1; TrP2, train-
ing phase 2; TeP, testing phase. *, P < 0.05, significant difference.

Table 4. Bonferroni post hoc tests comparing differences between 
fGCM concentrations of each group during each phase

Phase
Comparison  

between groups Bonferroni P value
Acclim C1 compared with C2 0.01*

C1 compared with EG 0. 02*
C2 compared with EG 0.69

TrP1 C1 compared with C2 0.39
C1 compared with EG 0.21
C2 compared with EG 1.00

TrP2 C1 compared with C2 0.15
C1 compared with EG 0.06†
C2 compared with EG 1.00

TeP C1 compared with C2 0.06†
C1 compared with EG 0.03*
C2 compared with EG 1.00

Acclim, acclimatization phase; TrP1, training phase 1; TrP2, train-
ing phase 2; TeP, testing phase; C1, control group 1; C2, control 
group 2; EG, experimental group. *, P < 0.05, significant difference; 
†, P = 0.05–0.1, marginally significant difference.
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Feasibility of a Sprague–Dawley rat model of whole-body vibration

Our novel seated rat model for spinal exposure to vibration 
was found to be feasible with respect to animal cooperation 
and well-being. The model uses conscious and unrestrained 
rats, thereby maintaining the natural biomechanical proper-
ties of the spine and providing a better representation of a 
seated individual. The model can be used to study the effects 
of WBV on individuals in a seated position (for example, 
driving posture). Future studies are needed to investigate the 
characteristics (magnitude, frequency, duration) of vibration 
that does not cause an unacceptable amount of stress. Future 
investigation will also be needed to assess the biofidelity of 
the rat model with regard to emulating the effects of WBV on 
the human spine.
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