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X-ray sources have undeniably revolutionized science; however,
paradoxically, their potential has only been partially exploited thus far.
Recent technological advancements have propelled the development of
“ultrafast” x-ray sources,1,2 capable of emitting x-ray pulses lasting
femtoseconds or even shorter. These groundbreaking x-ray sources
introduce new, previously unexplored avenues for time-resolved
experimental techniques, marking a significant leap forward in scien-
tific exploration.

The evolution of ultrafast x-ray sources has been gradual with
noticeable acceleration in the past decade. Initially, the predominant
method for generating short x-ray pulses, lasting approximately
100ps, involved operating synchrotrons in single-bunch mode.3

Subsequently, this approach was refined by implementing a femtosec-
ond (fs) laser to selectively isolate the x-ray emission associated with a
fraction of the electron bunch (the “laser-slicing” technique).4,5 This
advancement led to a remarkable reduction in pulse duration to tens
of femtoseconds, albeit at the expense of x-ray pulse intensity. In the
late nineties, alternative laboratory methods based on high-order har-
monics generation (HHG) emerged.6 The HHG sources utilize table-
top laser beams to produce femtosecond or attosecond soft x-ray
pulses with photon energies up to hundreds of electron volts (eV)
from high-pressure waveguides or gas jets.7 In the late 2000s, the x-ray
free electron laser (FEL) technology became available.8,9 The techno-
logical innovation of FELs has provided access to high peak power,
highly coherent, femtosecond soft and hard x-ray pulses with polariza-
tion control and narrow bandwidth.10,11

However, the development of new ultrafast x-ray sources has not
ceased with the availability of FELs. Recent progress in laser-driven
plasma acceleration has resulted in compact betatron x-ray sour-
ces,12,13 capable of generating intense, broadband and collimated hard
x-ray beams lasting femtoseconds in laboratory settings.14

Additionally, noteworthy is the conceptual design of a picosecond
megahertz (MHz) synchrotron source currently under consideration
at Elettra,15,16 based on the transverse deflecting cavities (TDCs)

scheme.17 This design enables the production of 1–5ps (FWHM)
x-ray pulses from a vertically tilted electron bunch isolated within a
“dark gap” of approximately 80ns from the rest of the bunches accu-
mulated in the synchrotron ring.

The future of ultrafast x-ray sources is poised to be shaped by
plasma acceleration technology, offering research institutions the capa-
bility to operate cost-effective, space-efficient, intense, tunable, ultrafast
x-ray sources.18 A pivotal player in this technological transition is the
EuPRAXIA European project, under way.19 This ambitious initiative
aims to construct the first free electron laser (FEL) facility driven by a
compact plasma acceleration source20 and make it accessible to the
broader scientific community. This exciting prospect encourages
scientists to expand conventional x-ray techniques into the time
domain, providing unprecedented access to ultrafast dynamics of
matter constituents, including electrons, atoms, and other relevant
quasi-particles such as magnons, polarons, and excitons. Among
these techniques, x-ray absorption spectroscopy (XAS) emerges as
particularly promising due to its unparalleled chemical selectivity,
sensitivity to both electronic and local atomic structures, and
remarkable versatility. With the capability to resolve timescales
from sub-picoseconds to attoseconds, time-resolved XAS (TR-
XAS) represents a unique experimental approach that has recently
found application in diverse scientific investigations, unveiling its
tremendous potential.

This special topic aims to highlight the significant progress
achieved thus far by TR-XAS methods and promote the use of TR-
XAS in the scientific community, showcasing selected works recently
conducted by expert scholars in the XAS field.

TR-XAS has arisen as a valuable tool for elucidating ultrafast
mechanisms underlying specific functionalities in materials. The work
presented by Marangos and collaborators21 demonstrates the applica-
tion of TR-XAS in soft x-rays to monitor ultrafast processes triggered
by the absorption of visible light in organic photovoltaic devices. The
sensitivity of TR-XAS to the ultrafast modification of electronic
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structures at specific atomic sites enables the detection of excitons and
charge transfer dynamics, which are fundamental to material function-
ality. In this context, TR-XAS can be complemented by other time-
resolved core-hole spectroscopies. An illustrative example is provided
by the work of Chergui and colleagues,22 who utilize time-resolved res-
onant inelastic scattering (TR-RIXS) to unveil an ultrafast ligand-to-
metal charge transfer in a-I2IrO3.

TR-XAS proves to be a versatile tool suitable for monitoring
dynamics in molecular or nanoscale samples, even when diluted in sol-
vents for practical or functional reasons. For instance, Milne et al.23

utilize TR-XAS to investigate the migration of holes in ZnO nanopar-
ticles following exposure to a femtosecond laser pump. Notably, they
compare TR-XAS measurements conducted in single-bunch mode at a
synchrotron with those obtained at the SACLA FEL. Sokaras and col-
laborators24 showcase a sophisticated setup operated at the SSRL syn-
chrotron, coupling the MHz repetition rate of x-rays delivered in
single-bunch mode with a recirculating liquid jet sample delivery sys-
tem. Their study reveals the light-induced excited spin state trapping
in a prototypical spin crossover iron aqueous complex on a timescale
of hundreds of picoseconds. In another study, W€orner and col-
leagues25 employ attosecond transient absorption spectroscopy at the
C K-edge to probe the few-femtosecond electronic and structural
dynamics in the methane cation driven by the Jahn–Teller effect. This
experiment utilizes an HHG table-top apparatus capable of delivering
ultrashort soft x-ray pulses (t< 200attoseconds) with a cutoff energy
of approximately 400 eV.

The experiments on matter in extreme conditions of temperature
and pressure, transiently induced by high peak power optical pumps,
necessitate ultrafast methods for monitoring the resulting nonequilib-
rium samples on the sub-picosecond timescale. TR-XAS proves to be
an effective tool for this purpose. In a comprehensive review, Dorchies
et al.26 detail their recent TR-XAS single-shot experiments conducted
on metals excited to the warm dense matter regime. They demonstrate
the utilization of laser–plasma x-ray sources and betatron sources for
TR-XAS experiments, showcasing the remarkable potential of femto-
second near-edge soft x-ray absorption spectroscopy. Additionally,
Beye and collaborators27 present an ultrafast XAS experiment on
nickel conducted at the EuXFEL. By varying the fluence of the FEL on
the sample across the nickel L3-edge, they induce pronounced changes
in the spectra, which reflect the rearrangement of the electronic struc-
ture of the sample under extreme conditions.

The interpretation of TR-XAS experiments necessitates robust
theoretical calculations capable of providing meaningful insights into
the experimental findings. Therefore, the development of efficient and
reliable theoretical methods for analyzing TR-XAS spectra is crucial.
Penfold and colleagues28 propose an innovative machine learning
approach employing a deep neural network (DNN). Their neural net-
work learns the structure-dependent differences between the higher
and lower levels of time-dependent density functional theory (TD-
DFT) and, after this learning process, becomes capable of optimizing
the spectra obtained through rapid low-level DFT calculations. This
approach mitigates computational costs while preserving accuracy in
theoretical predictions. Similarly, Coriani and colleagues29 employ
TD-DFT and the coupled cluster singles and doubles method to calcu-
late the TR-XAS of a small BT-1T molecule typically found in organic
electronic devices. In this system, XAS variations are expected due to a
light-induced charge transfer mechanism. Their findings indicate that

changes in XAS after light exposure primarily stem from the rear-
rangement of electronic populations rather than modifications in
atomic structure. This insight not only facilitates a reduction in com-
putational time but also broadens the applicability of the approach to
larger molecular systems.

The outstanding papers21–29 included in this special topic witness
the advent of TR-XAS. As we look to the future, the continued evolu-
tion of this technique, supported by robust theoretical methods and
cutting-edge technologies, promises to unveil even deeper insights into
the ultrafast mechanisms governing the properties and functionalities
of materials and molecules. Collaborative efforts among researchers
and institutions worldwide will be crucial in fully realizing the potential
of this powerful technique. The involvement of young researchers
embarking on TR-XAS for the first time is particularly essential, as
they bring fresh perspectives and innovative approaches that will
undoubtedly accelerate progress in this field.

The author would like to extend sincere gratitude to all the
contributors and reviewers whose invaluable efforts have made this
special topic on time-resolved x-ray absorption spectroscopy
possible. Special thanks to the esteemed colleagues who responded
positively to his invitation to contribute, producing articles of
remarkable quality. The author also wished to thank Alexandra
Giglia of the editorial staff, who participated with enthusiasm and
professionalism in the preparation of this special topic, providing
constant advice and editorial support.
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