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Abstract

Purpose Leukemia-associated fusion genes are closely related to the occurrence, development, diagnosis, and treatment of
leukemia. DNA microarrays and second-generation sequencing have discovered multiple B-ALL fusion genes. We identi-
fied a novel MEF2C::SS18LI1 fusion gene in a child diagnosed with B-ALL. This study investigates the oncogenicity and
prognosis of this fusion gene in B-ALL.

Methods A child with B-ALL who has a MEF2C::SS18LI fusion is reported as a newly discovered case. Compared
the breakpoints, structural domains, clinical phenotypes, and differential expression genes of MEF2C::SSI8L1 and
MEF2D::5518.Using “ONCOFUSE” software, the carcinogenicity of MEF2C::SSI8LI is predicted. Using whole tran-
scriptome sequencing, we analyze the breakpoints and the secondary structure of the fusion protein. Further, we compared
the structures, differentially expressed genes, and clinical phenotypes of MEF2D and MEF2C fusion genes by DESeq, GO
functional enrichment, and flow cytometry immunophenotyping analysis.

Results Whole transcriptome sequencing identified a MEF2C::SS18L1 fusion transcript in a 3-year-old child with B-ALL.
The MADS box, MEEF structural domain, HJURP_C structural domain, and TAD I structural domain of MEF2C, and the
QPGY structural domain of SS/8LI, make up the fusion protein. “Oncofuse” found a 0.99 Bayesian probability that the
fusion gene drives cancer. The breakpoint positions, fusion protein secondary structures, differentially expressed genes, and
clinical characteristics of this patient were identical to those with MEF2D::SS18 fusion gene.

Conclusion We identified a novel MEF2C::SS18LI fusion gene in childhood ALL, which shares similar structural and clini-
cal characteristics with MEF2D::SS518. Further studies with more samples should be conducted in future.
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Introduction

Acute lymphocytic leukemia (ALL), a common malignancy
in children, often arises from interactions between exoge-
nous (e.g., environmental exposure) or endogenous (e.g.,
genetic susceptibility) factors. Usually, genetic mutations
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evidence suggesting that gene fusion is initial event in onco-
genesis (Mitelman et al. 2007) and plays an important role in
cases of aggressive cancer (Villanueva 2012). Early fusion
interferes with the expression of hematopoietic-related genes
and oncogenes, contributing to the development of B-ALL.
In recent years, many new fusion genes have been detected
in the development and relapse of B-ALL by DNA microar-
ray and second-generation sequencing. These fusion genes
are mainly involved in B-cell developmental processes such
as cell cycle, apoptosis, proliferation, autophagy, and epige-
netic regulation (Collins-Underwood and Mullighan 2010;
Mullighan et al. 2007; Forero-Castro et al. 2016; Zakaria
et al. 2017).

In our study, we describe a case with MEF2C::SSI8L1, a
novel fusion gene unprecedentedly detected in a 3-year-old
boy diagnosed with B-ALL. We analyzed the oncogenicity
of MEF2C::SS18L1I and its association with the prognosis of
B-ALL. Our study sheds new light on the possible pathogen-
esis of B-ALL associated with MEF2C (myocyte enhancer
factor 2C) fusion.

Materials and methods
Case

A 3-year-old child with primary B-ALL was included.
Transcriptome analysis confirmed the presence of the
MEF2C::SS18LI fusion. Peripheral blood (PB) and bone
marrow (BM) samples were collected from the patient for
diagnosis and medical analysis. This study was approved by
the Ethics Committee of the Children’s Hospital of Nanjing
Medical University. The patient’s parents provided written
informed consent to participate in this study.

Karyotyping and fluorescence in situ hybridization
(FISH)

Conventional karyotyping was performed after short-term
culture, and every 20 metaphase cells after G-binding were
analyzed. Karyotypes were described according to the
International System for Human Cytogenetic Nomencla-
ture (ISCN 2016). FISH was carried out on every 500 inter-
phase cells using the Vysis LSI JAK?2 dual-color break-apart
probe (Abbott Laboratories) according to the manufacturer’s
recommendations.

Flow cytometry (FCM) immunophenotyping
and fusion gene detection

Heparin-anticoagulated BM samples were used for the

immunophenotyping. For each tube, at least 3 x 10° leu-
cocytes were stained with the following monoclonal
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antibodies: CD34, CD117, CD10, CD19, CD20, CD79a,
CD2, CD4, CDS, CD3, CD7, CD5, CDI13, CD33, CDI4,
CD64, CDI11b, HLA-DR, MPO, and CD45. Then, 2 x 10*
target cells were obtained by the FACS Canto Plus flow
cytometer (BD Biosciences). The immunophenotypes of
abnormal juvenile cells were analyzed using the FACSDiva
software (BD Biosciences). BM leucocytes were enriched
using ACK lysis buffer, and total RNA was extracted with
Trizol. Then 500 ng of RNA was transcripted into cDNA
by random primers and Moloney Murine Leukemia Virus
Reverse Transcriptase (Progema, Beijing). Based on qRT-
PCR, a multi-fusion gene detection system, and the 43
Fusion Gene Screening Kit (Yuanqi Biopharmaceutical,
Shanghai, China), was used to screen transcripts.

RNA sequencing (RNA-Seq) and fusion validation

Ribosomal RNA was removed from the total RNA by the
Ribozero method and then subjected to cDNA synthesis.
cDNA was used as a template to construct the library for
sequencing. Whole messenger transcriptome sequencing
was performed on the [llumina Hiseq X sequencing plat-
form. Sequenced fragments were aligned with the UCSC
hg19 reference genome by STAR software. FusionCatcher
was used for gene fusion prediction. The downstream genes
of the fusion gene were analyzed by variant effector pre-
diction (VEP). The fusion gene was annotated in databases
including Clinvar, dbSNP, 1000genome, genomeAD, ExAC,
COSMIC, etc. RNA-Seq results were validated by RT-PCR,
followed by Sanger sequencing.

Oncofuse to predict oncogenic potential

Oncofuse (http://www.unav.es/genetica/oncofuse.html) is
employed to predict the oncogenic potential of fusion genes
found by Next-Generation Sequencing in cancer cells. It
is a post-processing step to validate in silico the predic-
tions made by fusion detection software.The pipeline was
executed by simply running a Java or Groovy script with
some parameters on a standardized input file (all required
packages were installed automatically via Groovy or Grape).
The parameters are set based on features present in known
oncogenic fusions. A complete list of features was shown in
paper of Shugay et al. (Shugay et al. 2013). We provided IDs
of fusion gene partners as well as locations of breakpoints
(intron/exon ID and coordinate) within the major Refseq
transcript of each gene.

Gene expression analysis
The quality of FastQ data for this patient was assessed by

FastQC and controlled by Trim-Galore. Then the reads were
mapped to the GRCh38 reference genome by Hisat2. The
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dataset GSE11504 was downloaded from the GEO, and
gene expression data in children and adult bone marrows
were collected. The dataset GSE11504 contained 25 cases
of healthy children, adolescents and adults aged 2 months
to 28 years. Since the gene expression in this dataset was
detected by microarray, the batch effect was removed by the
SVA package.

DEGs and enrichment analyses

The DEGs were calculated by the DESeq?2 package accord-
ing to | log2-fold-change |I>5 and adj. P-value < le-10. To
pinpoint the DEGs induced by MEF2C::SS18L1 fusion, we
constructed a protein—protein interaction network based on
the STRING database, then filtered out the DEGs connected
to MEF2C or SS18LI for further analysis. The biological
function of these DEGs was evaluated with GO analysis
from the clusterProfiler package.

Results
Case presentation

This 3-year-old boy had suffered intermittent joint pain for
about a month, which was self-relieving. Two weeks later,
he was admitted to the hospital for persistent pain in the
left hand joint. Blood testing showed a white blood cell
count of 8.97x 10°/L, a hemoglobin level of 101 g/L, and a
platelet count of 332 x 10%/L. Morphologic examination of
BM smears disclosed markedly active BM and lymphatic
proliferation, with 93.0% of lymphocytes being primitive
and juvenile (Fig. 1A). FCM revealed that about 81.0% of
B lymphocytes in the BM were abnormally juvenile and
positive for CD19, cCD79a, cCD22, and CD22 (Fig. 1B).
The chromosomal karyotype was normal (Fig. 1C). FISH
analysis showed negative results about MLL rearrangement,
BCR/ABL fusion, ETV6/RUNXI fusion, PDGFRB isola-
tion, MYC disruption, and MEF2D disruption (Fig. 1D).
Multiplex-nested RT-PCR, designed to amplify 43 fusion
transcripts, was negative (Supplement Table 1). The copy
number variation (CNV) assay did not detect large fragment
deletions or duplications in IKZF1. MEF2C::SS18L1 fusion
transcripts and PTPNI] mutation were detected by next-
generation whole transcriptome sequencing. The child was
diagnosed with B-ALL, initially stratified as low-risk, and
treated with the CCCG-ALL2020 regimen with no signifi-
cant adverse effects. MRD on day 19 was 12.41%, and the
percentage of juvenile lymphocytes was 4.0%. Due to his
poor response to the initial treatment, the risk was elevated
to intermediate, according to CCCG ALL 2020. He was
then given CAT chemotherapy, with MRD <0.01% and the
MEF2C::SS18L1 fusion gene turning negative on day 46, as

well as a complete remission eventually achieved. The child
is now on sequential chemotherapy.

Identification of MEF2C::SS18L1 fusion transcript
by RNA-Seq

The primary BM sample was analyzed by RNA-Seq. We
identified a novel MEF2C::SS18L1 fusion in B-ALL. RNA-
Seq results indicated that the breakpoints were located in
exon 6 of MEF2C on chromosome 5 and exon 5 of SSI8LI
on chromosome 10 (Fig. 2A). The fusion protein consisted
of a MADS box and a MEF domain, a HIURP_C struc-
tural domain, a TAD I structural domain in MEF2C, and the
QPGY structural domain in SS/8L1 (Fig. 2B).

Predicted oncogenicity of MEF2C::SS18L1

We entered the breakpoint information of the
MEF2C::SS18L1 fusion gene into "Oncofuse", and dis-
covered that the fusion gene had a Bayesian probability of
0.99 of acting as an oncogenic driver (P <0.05). The predic-
tion results also demonstrate protein domains, respectively,
retained in the 5’ fusion partner gene and the 3’ fusion part-
ner gene (Table 1; Fig. 2B).

DEGs and GO annotations of MEF2C::SS18L1

The DEGs between normal and B-ALL tissues were
screened. We obtained 1782 up-regulated and 2429 down-
regulated genes using the DESeq?2 package, with thresholds
of | log2-fold-change > 5 and adj. P-value < le-10. The top
13 most significant DEGs (HOPX, NFATC2, HDACY, RBI,
SMARCEI, ATRX, ETSI1, MYL3, TEAD4, CEBPA, TEAD2,
KLF4, and SOX9) were shown on the volcano map (Fig. 3A).
In order to obtain the DEGs induced by the MEF2C::SS18L1
fusion, we identified 81 DEGs associated with MEF2C
or SSI18LI through the STRING database, including 32
down-regulated and 49 up-regulated, as shown in PPI maps
(Fig. 3B-C). In GO enrichment analysis, these DEGs were
associated with heart morphogenesis (GO:0003007), cell
fate commitment (GO:0045165), Notch signaling pathway
(GO:0007219), muscle tissue development (GO:0060537),
muscle cell differentiation (G0O:0042692), chromatin
remodeling (GO:0006338), regulation of hemopoiesis
(GO:1,903,706), and regulation of myeloid cell differentia-
tion (GO:0045637) (Fig. 3D).

Discussion
In this study, we identified a novel MEF2C::SSI18LI fusion

gene associated with childhood B-ALL. After 19 days of
treatment, this three-year-old patient’s MRD was still 12.4%,
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Fig. 1 Morphology, karyotyping, FISH analysis, and Immunopheno-
type. A Bone marrow (BM) smear at admission; B Immunophenotyp-
ing of primary BM samples by FCM; C G-band karyotype of the BM

Table 1 Predicted oncogenicity of MEF2C-SS18L1

Genomic coordi-  5’FPG

nates

3’FPG  P-value Probability of being
a “driver”

chr5:88,044,886 ~ MEF2C SSISLI 0.01
> chr20:60,73

7,808

0.99

@ Springer

MEF2D

sample at admission; D Representative interphase nuclei in the pri-
mary BM sample

and the percentage of juvenile lymphocytes was 4.0%.
Response to early treatment (induction therapy) remains
the most reliable independent factor for predicting the prog-
nosis of childhood ALL, which is assessed internationally
based on the prednisone sensitivity test (Conter et al. 2010).
MRD is the strongest predictor for the long-term survival of
ALL patients (Schultz et al. 2007). A retrospective analysis
found that D19 MRD > 1% during the early induction phase
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of chemotherapy was an independent risk factor for poor
prognosis (Yu et al. 2020). The high MRD in the present
case suggests that the new fusion gene may affect patients’
responses to treatments. Thus, we further analyzed the
fusion gene with “Oncofuse”, finding that MEF2C::SS18L1
is a "driver" of ALL.

Currently, MEF2C::SS18 fusion has been reported in
microsecretory adenocarcinoma (MSA), a novel subtype of
salivary gland adenocarcinoma that tends to be less malig-
nant or appears as an inert salivary gland tumor (Bishop
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et al. 2019). MSA has characteristic histologic and immu-
nophenotypic features and most of MSA patients have
MEF2C::S518 fusion, which was identified as a typical
marker in this disease. In a clinical study conducted by Jus-
tin A. Bishop et al., a total of 24 MSA cases were collected,
and MEF2C::SS18 fusion was confirmed in 21 of them. The
tumors exhibited consistent histologic features including: (1)
microcystic ducts, (2) flattened intercalated duct-like cells,
(3) monochromatic oval hyperpigmented nuclei, (4) abun-
dant basophilic luminal secretions, (5) fibromuscular-like
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stroma, and (6) subtle infiltration of the periphery. These
tumors were uniformly positive for S100 (24 of 24) and p63
(24 of 24) (Bishop et al. 2021). SS18 (SS18 subunit of BAF
chromatin remodeling complex) is a gene with similar struc-
ture of SSI8LI (SSI8LI1 subunit of BAF chromatin remod-
eling complex). An analysis of SS18 and SSI8LI sequences
has revealed that both proteins contain an SS18 N-terminal
(SNH) domain and a QPGY domain (Kato et al. 2002).
Therefore, it is reasonable to infer that there is similarity
between MEF2C::SS18 and MEF2C::SS18L1. Although
there is not any reports of MEF2C::SS18L1 in hematologic
tumors at present, the presence of recurrent MEF2C::SS18
fusions in MSA suggests the importance and specificity of
this fusion in pathogenesis of malignant tumor. Notably,
all of these 24 MSA cases exhibited S100 and P63 positiv-
ity, which has also been reported to be associated with the
development and prognosis of hematologic neoplasms. In a
retrospective cohort study, a team of researchers evaluated
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the levels of inflammatory markers such as S100 protein in
128 children with pre-B ALL. They concluded that S100
could be used as a biomarker to assess ALL prognosis (Brix
et al. 2023). Meanwhile, P63, as a member of the P53 fam-
ily, shows different expression and function in different
types and stages of leukemia (Xie and Xie 2013; Pruneri
et al. 2005). However, whether S100 and P63 positivity are
equally present in children with MEF2C::SS18LI positive
ALL requires further validation.

What role does the MEF2C::SS18LI play in ALL?
Growing evidence suggests that MEF2C is essential for the
normal hematopoietic system, particularly the production
of immature and mature lymph-like cells (Schiiler et al.
2008). Integrated MEF2C and ectopic MEF2C expression
are found in 20% of patients with acute myeloid leukemia
(AML) (Schwieger et al. 2009). In a study based on gene
expression data from 117 patients with incipient T-ALL, a
new subpopulation named pre-T-cell (ETP) ALL has been
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identified, featuring early T-cell developmental arrest and
various chromosomal rearrangements leading to constitutive
activation of MEF2C (Homminga et al. 2011). The above
implies that ectopic expression of MEF2C is involved in the
development of T-ALL and AML. Strikingly, no MEF2C
aberrations in B-ALL have been documented in previous
studies. MEF2C is abundantly expressed in both hematopoi-
etic stem cells (HSC) and common myeloid progenitor cells
(CMPs). MEF2C expression gradually decreases during the
maturation of granulocyte-monocyte progenitors (GMPs)
and megakaryocyte-erythroid progenitors. Compared with
that in HSCs and CMPs, MEF2C expression is higher in
common lymphoid precursors (CLPs), and decreases when
the cells commit to the B-cell lineage. In contrast, MEF2C
expression is virtually absent in T cells (Canté-Barrett
et al. 2014). So, it is suggested that in normal development,
MEF2C helps to drive differentiation into the CLP lineage
or B-cell lineage. This lineage direction may be due to active
transcription as MEF2C cooperates with p300/CBP to acety-
late histones (Canté-Barrett et al. 2014).

A genomic study by Gu et al. identified fusions between
MEF2D (myocyte enhancer factor 2D) and five genes
(BCLY, CSFIR, DAZAPI, HNRNPULI, and SSI8) in 22
B-ALL cases (Gu et al. 2016). Among them, MEF2D::SS18
fusion has caught our eye. MEF2D and MEF2C belong to
the MEF?2 protein family, which consists of four members:
MEF2A, B, C, and D. MEF2 family members have multiple
splicing variants and share a conserved N-terminal MADS
box and MEF structural domain (Black and Olson 1998).
MADS box and MEF structural domain regulate the tran-
scriptional activity of MEF?2 by recruiting co-activators or
co-repressor factors (Black and Olson 1998). As mentioned
above, SS18 and SS18L1 sequences are similar and both of
them has a QPGY domain (Kato et al. 2002). The QPGY
domain is essential for transcriptional activation, while the
SNH domain acts as an interaction interface for a plethora
of proteins, several of which are involved in epigenetic
gene regulation, including SWI/SNF proteins (Bruijn and
Geurts van Kessel 2006). By comparing the breakpoints and
structural domains of MEF2C::SS18LI and MEF2D::SS18
fusion genes, we found that they retained the MADS box
and MEF structural domain in MEF2 and the QPGY domain
in SS18 (Fig. 2C). SS18 exerts its regulatory role through
protein—protein interactions, but both fusion genes have lost
their SNH domains; thus, we speculate that they might have
lost the functions of SS78. Gu et al. found that all MEF2D
fusion partners can augment MEF2D transcriptional activa-
tion (Gu et al. 2016). We notice a y region in some MEF2C
isoforms that functions to suppress the transcriptional activ-
ity of MEF2C and is spliced out in many tissues due to a
unique 3’-splice acceptor site in MEF2C. The activity of
the g domain is repressed by phosphorylation of serine 396
(S396), thus facilitating sumoylation at lysine 391 (K391)

of MEF2C and the recruitment of unknown co-repressors
to inhibit transcription (Kang et al. 2006). However, the
MEF2C::SS18L1I fusion gene has lost the exon that encodes
the y region, so we infer that MEF2C::SS18LI fusion might
also enhance MEF2C expression.

It has been reported that MEF2D rearrangements can
enhance its transcriptional activity and lymphoid transfor-
mation, thus contributing to the development of a high-risk
leukemia (Gu et al. 2016; Yasuda et al. 2016). Fusion with
MEF2D can significantly up-regulate HDAC9 and HDACI 1,
activate the MAPK pathway, inhibit the expression of B-cell
differentiation-related genes, and hinder V(D)J rearrange-
ment, thereby blocking B-cell differentiation and maturation
(Zhang and Meng 2022). HDAC1I competes with P300 in
binding to MEF2, and p300/CBP can affect lineage direction
(Fig. 2B). The immunophenotype of MEF2D-rearranged
ALL is characterized by weak or absent expression of CDI0
and overexpression of CD38 antigens (26). However, low or
absent expression of CDI0 is a feature of MLL-rearranged
ALL. Both the 5-year event-free survival (EFS) and overall
survival (OS) rates are significantly lower in patients with
MEF2D fusion than in other ALL patients, indicating that
MEF?2D fusion is significantly associated with ALL progno-
sis (Gu et al. 2016; Zhang and Meng 2022; Ohki et al. 2019).
Although their response to steroids is sensitive, MEF2D
fusion patients still show a significantly worse prognosis,
with more than half experiencing relapse or dying within
1 year (Ohki et al. 2019).

Since these two fusion proteins have structurally similar
domains, would MEF2C::SS18LI1-positive B-ALL patients
have similar clinical, pathological, or genetic features as
MEF2D::SS18 positive patients? In our study, we found that
this patient with MEF2C::SS18L1I fusion also showed: (1)
high expression of HDACY, (2) deletion of CD10 and (3)
high expression of CD38. Coincidentally, this is consistent
with the performance of MEF2D::SS18 fusion positive ALL.
However, further in-depth studies are needed to determine
whether these two fusion genes have the same pathogenic
mechanism. In addition, whole transcriptome sequencing
revealed a mutation in the PTPNI1 gene in this patient. A
mutational analysis of RNAseq data showed that this muta-
tion was also found in MEF2D fusion-positive patients
(Gu et al. 2016). The co-occurrence of PTPNI11 mutation
and fusion gene indicated similar molecular mechanism of
MEF2D fusion with our present MEF2C gene fusion. How-
ever, further molecular experiments are still needed.

There are some limitations of the present study. First, we
have searched public databases and have not found whole
transcriptome sequencing data from the bone marrow of
healthy subjcts. Therefore, in the present DEGs analysis, we
used dataset GSE11504 as control set, which is microarray
data contained 25 cases of healthy children, adolescents and
adults aged 2 months to 28 years. This microarray contains
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47,000 transcripts, representing 38,500 human genes.
Expression information of this dataset can be widely used
for the discovery of new regulatory pathways, exploration
of disease mechanisms, and discovery of biomarkers (Vitari
et al. 2011). We also used SVA package to remove the batch
effect. Second, as MEF2C::SS18L1 fusion gene is a novel
identified fusion gene in the present ALL case, limited clini-
cal expression and clinical data could be obtained. Currently
we have only one clinical sample, and MEF2C::SS18 fusion
has only been reported in Microsecretory Adenocarcinoma
without public expression data. We will continue to follow
more ALL patients with MEF2C::SS18L1 fusion gene to
perform more analyses on gene expression, as well as their
clinical outcomes.

In summary, we identified a new MEF2C::SSI8LI
fusion gene in a child with B-ALL that has similar structure
and clinical features to MEF2D::SS18. Unlike those with
MEF?2D fusion, this patient showed high expression of the
ESTI gene. This patient has achieved complete remission
and is on sequential chemotherapy. We will continue to fol-
low him to further observe his prognosis. We suggest that
physicians should re-evaluate the risk once MEF2C fusions
are present in B-ALL. Meanwhile, we should further explore
the mechanism of this fusion gene and develop targeted
drugs to improve the prognosis of ALL patients.
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