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Predicting chronic wasting disease 
in white‑tailed deer at the county 
scale using machine learning
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Nicholas A. Hollingshead 1, James G. Booth 3, Joe Guinness 3, Christopher S. Jennelle 4, 
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Kathryn M. Benavidez Westrich 11, Emily McCallen 11, Christine Casey 12, Lindsey M. O’Brien 13, 
Jonathan K. Trudeau 13, Chad Stewart 14, Michelle Carstensen 15, William T. McKinley 16, 
Kevin P. Hynes 17, Ashley E. Stevens 17, Landon A. Miller 17, Merril Cook 18, Ryan T. Myers 18, 
Jonathan Shaw 18, Michael J. Tonkovich 19, James D. Kelly 8, Daniel M. Grove 20, 
Daniel J. Storm 21 & Krysten L. Schuler 1

Continued spread of chronic wasting disease (CWD) through wild cervid herds negatively impacts 
populations, erodes wildlife conservation, drains resource dollars, and challenges wildlife 
management agencies. Risk factors for CWD have been investigated at state scales, but a regional 
model to predict locations of new infections can guide increasingly efficient surveillance efforts. 
We predicted CWD incidence by county using CWD surveillance data depicting white‑tailed deer 
(Odocoileus virginianus) in 16 eastern and midwestern US states. We predicted the binary outcome 
of CWD‑status using four machine learning models, utilized five‑fold cross‑validation and grid 
search to pinpoint the best model, then compared model predictions against the subsequent year 
of surveillance data. Cross validation revealed that the Light Boosting Gradient model was the most 
reliable predictor given the regional data. The predictive model could be helpful for surveillance 
planning. Predictions of false positives emphasize areas that warrant targeted CWD surveillance 
because of similar conditions with counties known to harbor CWD. However, disagreements in 
positives and negatives between the CWD Prediction Web App predictions and the on‑the‑ground 
surveillance data one year later underscore the need for state wildlife agency professionals to use a 
layered modeling approach to ensure robust surveillance planning. The CWD Prediction Web App is at 
https:// cwd‑ predi ct. strea mlit. app/.

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that infects members of the 
Cervidae  family1. The disease stems from the misfolding of prion proteins, leading to neurodegeneration, weight 
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loss, altered behavior, and eventual  death2. Since first detected in the 1960s, CWD continues to spread through 
wild and captive cervids across North  America3. To date, 34 United States (US) state wildlife agencies and four 
Canadian provincial wildlife agencies have detected CWD in at least one wild cervid  herd3.

Wildlife agencies in North America have established surveillance programs to detect CWD in wild cervid 
 populations4. Such programs focus on identifying locations most likely to harbor CWD and provide the best 
opportunity to manage the disease while prevalence is  low5; however, these programs constitute an enormous 
monetary and human resource cost to  agencies6. Accordingly, post hoc evaluation of existing surveillance data 
has focused on pinpointing variables in association with the emergence and spread of CWD to further inform 
the next year of  surveillance7.

Anthropogenic factors such as transport and  captivity5,8, 9 of cervids and natural  movements8 of cervids 
can contribute to initial introduction of CWD. Persistence of prions in the  environment10, soil  types11, baiting 
and  feeding12, forest  cover13,  water14, cervid  density15, and natural  movements8 contribute to disease spread. 
Authority for non-imperiled terrestrial wildlife, including most deer species, resides with state and provin-
cial  governments16,17; as a result, management and surveillance efforts for CWD are highly variable between 
jurisdictions.

Important and complex questions are driving rapid development, refinement, and use of technology in 
 ecology18,19. Among these technologies are machine learning (ML)  techniques20, which are already revolution-
izing analyses in wildlife  conservation21,22. For example, deep learning has used wildlife imagery to propel detec-
tion, inventory, and classification of  animals23. Full implementation of ML technologies into wildlife science, 
however, is slowed by our limited ability to rapidly generate high-resolution and standardized data across complex 
 ecologies24. Nevertheless, ML is a promising tool for detecting or tracking  diseases25,26.

A branch of ML is classification, where the goal is to appropriately sort phenomena into categories. Well 
known classifiers include random forest (RF), decision tree (DT), gradient boosting (GB), and light gradient 
boosting (LGB) algorithms. A RF is an ensemble of decision trees, where each tree classifies the phenomenon, 
then votes on the final  classification27. A DT uses decision rules to divide data further and further into ultimate 
 classifications28. The GB is another tree-based ensemble classifier that uses a gradient descent optimization much 
like binary regression  problems29. Finally, the LGB functions like GB but with faster computing and improved 
 accuracy30.

Statisticians compare ML classifiers using a host of performance summaries. A confusion matrix illustrates 
the distribution of true negatives (TN), true positives (TP), false negatives (FN), and false positives (FP). Subse-
quent metrics to assess the performance of ML classifiers use information from the confusion matrix, including 
accuracy, sensitivity, specificity, precision, recall, F1-score, the receiver-operating-characteristic-area-under-curve 
(ROC), and area-under-the-curve (AUC)31,32.

Our goal was to apply ML classifiers to a regional CWD surveillance dataset to develop a novel model that pre-
dicts CWD incidence in wild white-tailed deer (Odocoileus virginianus) in counties of 16 states in the midwestern 
and eastern US. Our objectives were to (1) fit ML classifiers to historical surveillance data, (2) use performance 
metrics to identify the best classifier, (3) assess which cofactors contribute to the prediction of CWD-status at 
the county level, and (4) program a user-friendly website application containing the predictive model.

Results
The Pooled Dataset consisted of 31,636 combinations of counties (1438) and season-years (22), spanning over 
two decades (1 July 2000–30 June 2022). The Pooled Dataset included variables depicting disease introduction 
risk (Cervid_facilities, Taxidermists, Processors, Captive_status), regulations surrounding disease introduction risk 
(Breeding_facilities, Hunting_enclosures, Interstate_import_of_live_cervids, Intrastate_movement_of_live_cervids, 
Whole_carcass_importation), disease establishment risk (Buck_harvest, Doe_harvest, Total_harvest), environ-
mental variables (Latitude, Longitude, Area, Forest_cover, Clay_percent, Streams, Stream_Length), diagnostic 
tallies (Tests_positive, Tests_negative), and regulations surrounding both introduction and establishment risk 
(Baiting, Feeding, Urine_lures). Details of each variable appear in the data  readme33. Of the 31,636 records, 
1.98% (626/31,636) depicted counties with at least one case of CWD in deer (CWD-positive) and 98.02% 
(31,010/31,636) depicted counties where CWD had not been detected (CWD-non detect).

The Orthogonal Dataset consisted of 1438 combinations of counties (1438) and season-years (1) spanning the 
time period from 1 July 2019–30 June 2020. The Orthogonal Dataset included variables depicting disease intro-
duction risk (Cervid_Facilities, Captive_status), regulations surrounding introduction risk (Hunting_enclosures, 
Whole_carcass_importation), disease establishment risk (Total_harvest), environmental variables (Forest_cover, 
Clay_percent, Streams), and regulations surrounding both introduction risk and establishment risk (Baiting, 
Feeding, Urine_lures). Details of each variable appear in Table 1. Of the 1,438 records, 5.91% (85/1438) depicted 
CWD-positive counties, 94.09% (1353/1438) depicted CWD-non detect counties (Fig. 1).

The Balanced Orthogonal Dataset consisted of a subset of 158 counties depicting conditions in the 2019–20 
season-year. Of the 158 counties, 50% (79/158) represented CWD-positive counties and 50% (79/158) repre-
sented randomly selected CWD-non detect counties. All counties in the Balanced Orthogonal Dataset contained 
values for hunter harvest (although that value could have been zero). [Note that of the 85 total positive counties 
available in the Orthogonal Dataset, six counties in the US state of Mississippi were excluded from the Balanced 
Dataset due to missing Total_harvest values.] The Training Dataset consisted of 126 (80%) records randomly 
selected from the Balanced Orthogonal Dataset while the Testing Dataset consisted of the remaining 32 (20%) 
records of the Balanced Orthogonal Dataset. Summary statistics for each variable in the Pooled, Orthogonal, 
Balanced Orthogonal, Training, and Testing Datasets are provided in the Supplement.

The Balanced Orthogonal Dataset set contained non-linear data and outliers, so we analyzed the Training 
and Testing Datasets using four supervised ML algorithms: Random Forest (RF), Decision Tree (DT), Gradient 
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Boosting (GB), and Light Gradient Boosting (LGB)27–30. We used k-fold validation to determine the best hyper-
parameters and avoid overfitting the model (see Supplement). We found that the LGB was the best model among 
those evaluated due to its balance between training and testing performance across multiple validations. While 
RF and GB initially appeared strong due to high training performance and testing performance, the overfitting 
concern diminished their appeal when compared to LGB, which demonstrated a more balanced performance and 
superior capacity for generalization. Light Gradient Boosting achieved correct classification of CWD-positive 
counties in 71.88% of the records in the Testing Dataset (with the highest average accuracy across the fivefold 
validation of 76.25%; see Supplement). Similarly, the LGB achieved a F1-score of 68.75%, precision of 73.33%, 
recall of 64.71%, and ROC of 78.82%, implying strong consistency, specificity, sensitivity, and discriminative 
power (see Supplement). Due to its superior performance in the cross validation, we deemed the LGB to be the 
strongest performer in predicting the status of CWD at the county level in the midwestern and eastern US given 
these data. Further assessment of the LGB model revealed that the most influential variables included in the 
model for these predictions of CWD (Fig. 2) included regulations surrounding risk of anthropogenic introduc-
tion of infectious materials (use of urine lures and importation of whole carcasses) and natural deer movement 
to reach water (distance to streams; see Supplement).

Investigation of the LGB model revealed good accuracy when we compared CWD Prediction Web App pre-
dictions to the results of the field-based surveillance from the subsequent year (i.e., the season-year 2020–21). 
Relative to the CWD-status from on-the-ground surveillance in 2020–21, the CWD Prediction Web App predic-
tions contained 75% accuracy, 82% sensitivity, 74% specificity, 29% F1-score, 82% recall, and 78% ROC. The 
CWD Prediction Web App showed 946 TNs, 70 TPs, 15 FNs, and 325 FPs relative to known data from the 2020–21 
season-year (Table 2; Fig. 2).

The CWD Prediction Web App had 70 TPs for the 2020–21 season-year, 66 of which constituted counties 
already known to be CWD-positive in white-tailed deer from the 2019–20 surveillance data. The remaining four 
TPs depicted counties that indeed turned positive in white-tailed deer for the first time in the 2020–21 season-
year, just as the model predicted (Dakota county, Minnesota; Shawano, Washington, and Wood counties, Wis-
consin). The CWD Prediction Web App had 325 FPs relative to surveillance data from the 2020–21 season-year.

The CWD Prediction Web App had 946 TNs for the 2020–21 season-year. The CWD Prediction Web App had 
15 FNs for the 2020–21 season-year, 13 of which were counties the CWD Prediction Web App knew were positive 
from the 2019–20 but incorrectly assigned to be negative in the 2020–21 season-year. The remaining two coun-
ties (Wyandot county, Ohio; Lauderdale county, Tennessee) were negative in 2019–20 and detected a positive 

Table 1.  Definitions of variables in the Orthogonal Dataset, borrowed with  permission33. Definitions of 
variables in the Pooled Dataset are in the Supplement.

Details Variable name Definition

Positive Number
0 ≤ x ≤ ∞

Cervid_Facilities
Number of privately owned premises in the management area that maintain cervids in captiv-
ity for the purposes of breeding, farming, display, and/or enclosed (fenced) hunting operations 
known to the wildlife agency in the given season-year or in the most recent prior season-year 
for which the number is  known33

Total_harvest
Number of wild white-tailed deer harvested by hunters in the management area in the season-
year or in the most recent prior season-year for which the number is known and reported to 
the wildlife  agency33

Streams
Average distance in meters from any location within a management area to the nearest high 
order stream (Strahler order 4 or greater) as defined in the National Hydrography Dataset 
(NHD) Plus; derived by intersecting the NHD Plus and USCB Cartographic Boundary  File33

Proportion
0 ≤ x ≤ 1
Where 0 indicates no forest, and 1 indicates all forest

Forest_cover

Proportion of the area (including inland waters) classified as forest in the North American 
Land Change Monitoring  System33. Land cover classes included as “forest” include: class 1 
(temperate or sub-polar needleleaf forest), class 2 (sub-polar taiga needleleaf forest), class 3 
(tropical or sub-tropical broadleaf evergreen forest), class 4 (tropical or sub-tropical broadleaf 
deciduous forest), class 5 (temperate or sub-polar broadleaf deciduous forest), class 6 (mixed 
forest), class 7 (tropical or sub-tropical shrubland), class 8 (temperate or sub-polar shrubland), 
and class 14 (wetland)33

Percentage
0 ≤ x ≤ 100
Where 0 indicates no clay, and 100 indicates all clay

Clay_percent Average percentage of clay in the upper 50 cm of soil, as calculated using the clay content at 
standard  depths33

Ordinal
x ∈ {0, 0.5, 1}
0: Governing officials restrict this activity
0.5: Governing officials partially restrict this activity
1: Governing officials allow this activity

Hunting_enclosures Indicates whether captive cervid hunting is allowed in the administrative  area33

Feeding
Indicates whether feeding of cervids, defined as the placement of substances, including grains, 
minerals, hay, or other food materials, used to attract cervids for non-hunting purposes is 
allowed in the administrative  area33

Whole_carcass_importation Indicates whether the administrative area allows importation of whole cervid carcasses from 
other administrative  areas33

Baiting
Indicates whether baiting of cervids, defined as the placement of substances, including grains, 
minerals, hay, or other food materials, used to attract cervids for the purpose of hunting is 
allowed in the administrative  area33

Urine_lures Indicates whether the use of urine lures, defined as natural or synthetic urine-based attractants 
for hunting purposes, is allowed in the administrative  area33

Binary
x ∈ {0, 1}
0: CWD has never been confirmed
1: CWD has been confirmed

Captive_status
Indicates whether CWD has been detected at one or more captive cervid facilities in the man-
agement area in the given season-year or in any prior season-year and reported to the USDA 
 APHIS33
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in 2020–21, but the CWD Prediction Web App did not successfully predict that transition in CWD-status. The 
CWD Prediction Web App is at https:// cwd- predi ct. strea mlit. app/. The code is available at https:// github. com/ 
sohel 10/ lgbm.

Discussion
Despite the governing autonomy of management agencies, free-ranging wildlife spans jurisdictional bounda-
ries. Consequently, wildlife agencies across North America would benefit from cooperative efforts designed to 
understand shared risk factors of disease. Our study was the first to use regional data that represent a single spe-
cies exposed to diverse management goals, herd dynamics, habitat types, and regulations spanning 16 US states. 
As well, our cutting-edge application of ML techniques to wildlife health data enabled us to identify counties 
that contain characteristics similar to counties around the midwestern and eastern US with confirmed CWD.

Our results from the LGB algorithm revealed that regulations have a bearing on the CWD predictions shown 
in Fig. 2. Indeed, wildlife professionals have long pointed to risk factors for CWD introduction from human-
assisted movement of prions via live cervids, carcasses, trophy heads, deer parts, and urine  lures8,9. Consequently, 
wildlife agencies have installed a variety of regulatory measures to limit or extinguish avenues for introduc-
tion from anthropogenic  sources34. Our results from the LGB algorithm further corroborates prior knowledge 
that natural movements of  deer35 (here specifically to visit water sources) is an important feature driving the 
predictions of CWD-status. However, we strongly caution that these features and their importances may be 
phenomena of the data and not absolute. Afterall, the other three candidate algorithms performed similarly 
with these data (see Table S2 in the Supplement), and their results hinged on entirely different sets and ranks of 
factor importances. Specifically, the RF algorithm ranked hunter harvest (a proxy for deer density)36, clay-based 
 soils37–41, forest  cover13, and then distance to  streams35 as the most important features driving its predictions of 

Figure 1.  The known status of chronic wasting disease (CWD) in wild white-tailed deer by county in the 
2019–20 season according to the results of surveillance testing by US state wildlife  agencies33. CWD Detected 
represents counties where governing wildlife officials confirmed at least one CWD-positive case in wild, white-
tailed deer in the 2019–20 season. CWD Not Detected represents counties where governing wildlife officials 
conducted CWD testing in 2019–20 in wild, white-tailed deer, but did not confirm CWD in any subject. Not 
Considered represents counties that did not exist in the Pooled  Dataset33. Map was created in QGIS (version 
3.32.2-Lima)60.

https://cwd-predict.streamlit.app/
https://github.com/sohel10/lgbm
https://github.com/sohel10/lgbm


5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14373  | https://doi.org/10.1038/s41598-024-65002-7

www.nature.com/scientificreports/

Figure 2.  Comparison of chronic wasting disease (CWD) status in free-ranging white-tailed deer in season-
year 2020–21 between the CWD Prediction Web App and state surveillance  data33. True Negatives (TNs) 
occurred when the CWD Prediction Web App prediction and the surveillance data agreed that CWD-status 
was CWD-non detect for the county in the season-year 2020–21. True Positives (TPs) occurred when the 
CWD Prediction Web App prediction and the surveillance data agreed that CWD-status was CWD-positive for 
the county in the season-year 2020–21. False Negatives (FNs) occurred when the CWD Prediction Web App 
predicted CWD-non detect, but the surveillance data declared CWD-positive for the county in season-year 
2020–21. False Positives (FPs) occurred when the CWD Prediction Web App predicted CWD-positive, but 
the surveillance data declared CWD-non detect for the county in season-year 2020–21. Excluded represents 
counties omitted from predictions because harvest data was either not collected or could not be approximated 
by-county. Not Considered represents areas omitted from the Pooled  Dataset33. Two sources of known error can 
cause predictions to deviate from reality: (1) model classification error and/or (2) error in CWD-status from 
surveillance. Specific to Minnesota, a third known error could cause predictions to deviate from reality: (3) error 
arising from the conversion of harvest data collected in Deer Permit Areas into county-approximations (see the 
Supplement for specific details). Map was created in QGIS (version 3.32.2-Lima)60.

Table 2.  The confusion matrix of the best Light Gradient Boosting (LGB) model when CWD Prediction Web 
App predictions were compared against on-the-ground surveillance in white-tailed deer in the season-year 
2020–21.

Model predictions

CWD-non detect CWD-positive

On-the-ground surveillance

CWD-non detect
True negative False positive

70% (946/1,356) 24% (325/1,356)

CWD-positive
False negative True positive

1% (15/1,356) 5% (70/1,356)
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CWD-status, in that order. The DT algorithm ranked hunter  harvest36, distance to  streams35, clay-based  soils37–41 
and then forest  cover13 as the top features of importance driving its predictions of CWD-status, in that order. 
And finally, the GB algorithm ranked hunter  harvest36, distance to  streams35, forest  cover13, and then clay-based 
 soils37–41 as the top features driving its predictions of CWD-status, in that order. With every algorithm, there is 
some way to corroborate the importances using prior research. These seemingly similar results beg the question: 
if accuracy was similar across LGB, RF, DT, and GB algorithms, then how did we pick the LGB algorithm to 
present in Fig. 2? The answer lies in the underlying mathematics: we recognized that we do not yet have enough 
data for the obvious superior predictor to emerge, so we chose the predictor with the highest current average 
accuracy (even when other algorithms outperformed LGB by random chance in any given singular instance). As 
well, the LGB demonstrated a more optimal balance between training and testing accuracy than the RF, DT, and 
GB options. As more data are incorporated into the future fitting of these ML models (see additional discussion 
below), performance averages will settle into the asymptotic means according to the Law of Large  Numbers42, 
and any of these four algorithms (with their corresponding feature importances and ranks) could emerge as the 
superior predictor of CWD-status.

Factor importances from the LGB, RF, DT, and GB algorithms arose from a spatially diverse dataset, and 
therefore, results offer additional insights relative to those obtained using more localized data. However, these 
factors emerged as important to these algorithms only out of the factors assessed, and other factors that may be 
intrinsic pathobiological properties of CWD were omitted from this study. For example, the Pooled  Dataset33 did 
not contain data on potentially relevant drivers of CWD-status like weather, prion strain, diagnostic test type, 
deer genetics, explicit dispersal of  deer35, management  strategies8, existence of sympatric susceptible  species43, 
illegal activities such as unapproved movement or release of captive cervids from CWD-positive  herds44,45, or 
geographical proximity to infections in neighboring  areas5.

Results from the LGB algorithm applied to the Pooled  Dataset33 revealed that regulations matter in predict-
ing CWD-status. However, the two specific regulations pinpointed by the LGB model (urine lures and whole 
carcass import) are confounded with the other regulations that we removed due to high correlation (breeding 
facilities, interstate import of live cervids, intrastate movement of live cervids). Due to covarying regulations (and 
our selection procedure regarding the variable to remove and the variable to retain, see methods), rather than 
taking variable names at face value, we recommend interpreting the importance of urine lures and whole car-
casses regulations as proxy for regulations depicting general human activities that could introduce contamination 
into the reservoir.

There are numerous potential improvements to this model. The North American Model of Wildlife Conserva-
tion recognizes science as the appropriate tool for directing wildlife resource  management46; however, it is within 
the purview of state wildlife agencies to determine the scientific methods that best meet their  needs16,17. Thus, the 
first challenge of this work was to find the spatial unit that was the ‘least common denominator’ across all states. 
Because many agencies represented in the Pooled  Dataset33 recorded county in their CWD testing (surveillance) 
data (and ancillary spatial data was collected at a unit such that we could confidently infer county from their 
reported locations), we elected to conduct our analysis at the county-scale. However, we acknowledge county 
may not be ecologically relevant to either the biology of cervid herds or the spatial unit of interest to wildlife 
managers. In addition, our selection of county presented problems for predictions in Minnesota (see discussion 
below). Nevertheless, there were several advantages to using county. First, the decision enabled us to leverage 
the power in the largest set of existing CWD surveillance data to create the first-ever regional model depicting 
predictions of CWD-status in North America. Second, the decision enabled us to compare CWD-status across 
myriad local configurations (i.e., management and policies) to pinpoint potential intrinsic properties of CWD. 
While there remains work to pinpoint the best algorithm for predicting CWD-status in North America, our 
results thus far suggest that regulations, hunter harvest (as a proxy for deer density), and habitat variables (forest, 
clay, and distance to streams) may play a role in CWD-status regardless of local management decisions and poli-
cies. Finally, county is the scale of interest to public health  departments47 who share interest in tracking CWD in 
wild herds. The ML method requires a single year of pooled data to train the model and the next year of pooled 
data to assess predictions. Accordingly, if other scales are of interest in surveillance planning, we suggest that 
agencies coordinate to collect information at the scale of interest for two consecutive years.

Disagreements in CWD-status between the CWD Prediction Web App predictions and surveillance data of 
the 2020–21 season-year are explainable for all participating states in one of two ways: (Case 1) the CWD Pre-
diction Web App predicted CWD-positive, the surveillance data reported CWD-non detect, and CWD truly did 
not exist in white-tailed deer in that county (and therefore the error was on the part of the model) and (Case 2) 
the CWD Prediction Web App predicted CWD-positive, the surveillance data reported CWD-non detect, but 
CWD truly existed in white-tailed deer in that county (and therefore the error was on the part of surveillance 
data). Disagreements specific to Minnesota are explainable in a third known way: (Case 3) the CWD Predic-
tion Web App predicted CWD-positive or CWD-non detect status for each county in Minnesota using harvest 
estimates that themselves deviated from reality. [Despite the lack of information to confidently convert harvest 
data across spatial scales in Minnesota, proportional allocation was  used33 to make county-based approxima-
tions of harvest from harvest tallies by Deer Permit Areas (DPAs). Sensitivity analysis of CWD Prediction Web 
App predictions relative to alterations in harvest revealed vulnerabilities in binary predictions. Specifically, 100% 
(52/52) of the predicted CWD-non detect counties and 94.3% (33/35) of the predicted CWD-positive counties 
in Minnesota hinged on the value of harvest obtained through the county-approximation. There is no way to 
know if or to what extent county approximations differ from reality. Nevertheless, the Supplement contains the 
county approximation value of hunter harvest used in predictions as well as the bifurcation point differentiating 
a CWD-positive prediction from a CWD-non detect prediction for each county in Minnesota.] Error reduction 
in (Case 1) is attainable by rerunning the model for a single season-year containing all the counties herein plus 
counties from additional states that have both CWD-positive and CWD-non detect herds (the model cannot be 
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improved by adding additional years of data from counties in states already depicted and cannot be improved by 
adding counties from new states that do not have CWD). Error reduction in (Case 2) is attainable by ensuring 
that sufficient samples are taken in each county to be 95% confident that CWD-non detect counties in the data 
are indeed free-from-disease48. Error reduction in (Case 3) case is attainable by pooling regional records with 
outright comparable units (or spatial scales) or using only records containing sufficient information for one-to-
one transformations between units (or spatial scales).

Despite a large dataset and powerful modeling tools, the data underlying the CWD Prediction Web App are 
wrought with statistical and ecological complications. For instance, the Pooled  Dataset33 reported presence and 
absence of CWD in a county directly from sample testing data, but did not account for sampling effort, latent 
introduction time, deer population growth rates, disease transmission, or detection  probability49. While the 
Pooled  Dataset33 constituted the best available regional information regarding CWD-status by county/season-
year, we acknowledge that counties deemed to be CWD-free may consist of too few samples to support such a 
declaration. Should this analysis be repeated with more agency partners, which we recommend, we suggest using 
data from counties for which there were sufficient samples taken to ensure statistical confidence in the CWD-
status. As well, there exists standardized diagnostics for CWD in captive cervid  herds50, but similar standards 
do not exist for wild cervids and CWD designation is made by state wildlife authorities. We further suggest the 
adoption of standardized terminology and definitions surrounding all CWD topics to facilitate comparability 
of data in future regional studies.

The CWD Prediction Web App constitutes an important new tool for CWD surveillance planning, especially 
when managers overseeing vast areas do not know where to begin testing for the disease. However, we caution the 
use of the CWD Prediction Web App in three ways. First, it might be tempting to use this tool to predict CWD-
status in geographical areas smaller than counties, such as Game Management Units. We do not recommend 
this use until the model underlying the CWD Prediction Web App is validated using a known dataset containing 
true positives and negatives at this geographical scale. Instead, we currently recommend using the Habitat Risk 
 model51 for such analyses, should the surveillance data in the area of interest have exact geographical locations. 
Second, due in part to our findings regarding FNs, the Web App should not be used in isolation to determine 
a sampling strategy nor to replace the collection and testing of tissues conducted by agencies each year in the 
field. And third, due to our findings of similar predictive performance yet differing feature importances among 
the four ML algorithms, we do not recommend interpreting the LGB feature importances as absolute truth in 
CWD-predictions.

The Pooled  Dataset33 did not contain data on distance to infection, yet the regional map revealed that many 
predictions of CWD-positive status are largely contiguous to known infections (Fig. 2). While agencies may 
already be searching for CWD in areas contiguous to core infections, the CWD Prediction Web App may be par-
ticularly helpful in illuminating counties vulnerable to CWD in non-obvious places. In noncontiguous counties 
predicted by the CWD Prediction Web App to be CWD-positive, we suggest using the CWD Prediction Web App 
in conjunction with other models that pinpoint conditions for in situ  outbreaks7,51, 52 for surveillance planning. In 
addition to the error reductions recommended above, we recommend that future ML models better characterize 
the spread of disease across the landscape by incorporating geographical proximity data or information from 
diffusion  models53 which we did not do.

Conclusion
The CWD Prediction Web App produced 325 FPs relative to the subsequent season-year of surveillance. Ostensi-
bly, this may appear to be too much inaccuracy. However, these FPs are quite helpful in understanding regional 
patterns and vulnerabilities to change in CWD-status. Specifically, the preponderance of FPs signals the counties 
that warrant increased CWD surveillance in upcoming years, as they share conditions with counties around the 
region known to harbor CWD. Alternatively, the CWD Prediction Web App should not be used in isolation for 
surveillance planning because it produced 15 FNs relative to the subsequent season-year of surveillance data. 
Hence, we recommend using the CWD Prediction Web App in conjunction with other models to ensure surveil-
lance does not miss introduction in assumed ‘low-risk’ counties. Indeed, a true measure of the accuracy of the 
CWD Prediction Web App will emerge as predictions are followed through time.

This research simultaneously demonstrates the opportunity and limitations of integrating ML into disease 
surveillance planning. While the first of its kind to rely on such a large initial dataset (31,636 records), by the 
time we transformed these data for use in the ML algorithms, usable records had diminished to ‘small data’54 
(158 records). Despite this limitation, we illustrated that it is still possible to build a predictive ML system to 
predict CWD occurrence across a vast geographical region. We recommend iterative improvements to this model 
through the inclusion of additional data as ML processes are recursive and responsive to added information. 
Continued enhancement of the CWD Prediction Web App via incorporation of additional data will hone predic-
tions, improve surveillance, and reduce costs for all.

Methods
We used CWD surveillance and ancillary data from the midwestern and eastern  US33. Here we refer to this data 
as the Pooled Dataset. The Pooled Dataset contains multivariate records in white-tailed deer from the US states 
of Arkansas, Florida, Georgia, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Mississippi, New York, 
North Carolina, Ohio, Tennessee, Virginia, and Wisconsin, and spans the season-years 2000–01 to 2021–2233. 
Definitions for each variable appear in the data  documentation33. Minnesota collected harvest data at the Deer 
Permit Area (DPA) spatial scale, so proportional allocation was used to convert their recorded harvest data into 
county-scale  approximations33.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14373  | https://doi.org/10.1038/s41598-024-65002-7

www.nature.com/scientificreports/

We checked all variable pairs for multicollinearity and high correlation, then removed one of the offending 
variables with correlation exceeding 0.755. When applicable, we weighed which variable to remove based on the 
total number of missing values or if one variable had a higher difficulty of collection in on-the-ground efforts. 
We removed linearly inseparable  data56 by retaining only records for the 2019–20 season-year. We chose the 
2019–20 season-year, because it was the period for which we had complete data for the largest number of unique 
counties. We called this subset of the Pooled Dataset the Orthogonal Dataset.

We deemed our response variable in the Orthogonal Dataset to be whether or not the source agency reported 
at least one wild deer to be CWD-positive in the county during the 2019–20 season-year (i.e., the Management_
area_positive variable). Imbalances in the binary outcomes (1 means the county is CWD-positive and 0 means 
the county is CWD-non detect) are known to skew predictions and introduce inaccuracies due to insufficient 
information about the minority  class57. We therefore checked for an imbalance in the number of CWD-positive 
and CWD-non detect counties in Management_area_positive, and if present, applied resampling techniques for 
the majority class (CWD-non detect) to balance the number of CWD-positive and CWD-non detect counties. We 
created the Balanced Orthogonal Dataset by taking all full records of CWD-positive counties and adding them 
to the same number of randomly selected CWD-non detect counties. We instructed the computer to randomly 
partition the Balanced Orthogonal Dataset into two subsets: a Training Dataset comprising 80% of the records 
[regardless of CWD-status] and a Testing Dataset with the remaining 20% of the records.

We built four ML models to predict the binary outcome of CWD in a  county58. We selected candidate ML 
algorithm(s) that aligned with the dataset’s characteristics. We used the Training Dataset to create a prediction 
classifier, then the Testing Dataset to assess the model’s performance in predicting the presence of CWD. We 
used k-fold cross-validation accuracy to select the hyperparameters of each  model56.

We used the sci-kit-learn (version 1.4.2)57 to assess the performance of each classifier by considering accuracy, 
F1-score, precision, recall, and ROC simultaneously. We chose the model that demonstrated the best balance 
between training and testing data, then used the predictor gain  method59 to evaluate the importance of variables 
contained in the model. We generated its confusion matrix relative to the subsequent season-year (2020–21) of 
surveillance data. We programmed the top model into the CWD Prediction Web App to predict CWD-status in 
each county.

Data availability
The data are publicly available at https:// doi. org/ 10. 7298/ 7txw- 2681.2. The CWD Prediction Web App is at 
https:// cwd- predi ct. strea mlit. app/.
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