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Associativewhitematter tractsselectively
predict sensorimotor learning
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Human learning varies greatly among individuals and is related to the microstructure of major white
matter tracts in several learning domains, yet the impact of the existing microstructure of white matter
tracts on future learning outcomes remains unclear.Weemployed amachine-learningmodel selection
framework to evaluate whether existingmicrostructure might predict individual differences in learning
a sensorimotor task, and further, if the mapping between tract microstructure and learning was
selective for learning outcomes. We used diffusion tractography to measure the mean fractional
anisotropy (FA) of white matter tracts in 60 adult participants who then practiced drawing a set of 40
unfamiliar symbols repeatedly using a digital writing tablet. We measured drawing learning as the
slope of draw duration over the practice session and measured visual recognition learning for the
symbols using an old/new 2-AFC task. Results demonstrated that tract microstructure selectively
predicted learning outcomes, with left hemisphere pArc and SLF3 tracts predicting drawing learning
and the left hemisphereMDLFspl predicting visual recognition learning. These results were replicated
using repeat, held-out data and supported with complementary analyses. Results suggest that
individual differences in the microstructure of human white matter tracts may be selectively related to
future learning outcomes.

Human learning is a complex phenomenon that varies greatly among
individuals1. Individual differences in learning may be related to individual
differences in the structural architecture of the brain2–16. The structural
architecture of the brain contains large bundles of myelinated fibers called
white matter tracts that carry communications among cortical regions. The
connectivity of these white matter tracts dictates which cortical regions
directly or indirectly communicate. The microstructure of these white
matter tracts–their cellular tissue properties–are related to other commu-
nication parameters, for example, the speed of communication among
cortical regions. Here, we tested the possibility that individual variability in
the microstructure of major white matter tracts could predict individual
variability in learning. We tested the selectivity of the mapping between
tracts and learning outcomes by evaluating the relationship between the
microstructure of major white matter tracts and individual differences in
learning to draw and visually recognize previously unknown symbols.

Drawing is a sensorimotor learning experience that leads to at least two
measurable learning outcomes: drawing learning and visual recognition
learning. First, drawing practice increases the ability to perform the drawing
task itself. As adults practice drawing forms, such as objects, shapes, or

symbols, the drawings produced become increasingly recognizable17. In
youngchildrenwhoare just learning towrite letters of the alphabet,writing a
letter of the alphabet becomes easier and faster18,19 and their productions
become more legible with practice20. Second, drawing practice leads to
changes in visual processing andmemory for the symbols produced, effects
that can occur implicitly without direct training21–26. For example, practice
with drawing commonobjects increases visual recognition of those objects21

and practice writing pseudo-letters from a novel alphabet increases visual
recognition for the practiced pseudo-letters26. As an individual practices
repeatedlydrawing a form, theynotonlybecomebetter at drawing that form
but also become better at visually recognizing that form.

A network of major white matter tracts connects cortical processing
regions that co-activate during drawing and visual recognition of learned
symbols (Fig. 1a)27–35. Within the dorsal motor cortex, the superior long-
itudinal fasciculus (SLF, separable into SLF1 and 2 and SLF3) directly
connects frontal andparietal cortices36.Within the ventral perceptual cortex,
the inferior longitudinal fasciculus (ILF) directly connects occipital and
temporal cortices37,38 while the inferior fronto-occipital fasciculus (IFOF)
connects occipital and prefrontal cortices37,39. Between the dorsalmotor and
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ventral perceptual cortices, the long segment of arcuate fasciculus (Arc) and
tracts within the posterior vertical pathway (PVP) directly connect the
temporal cortex with dorsal motor-oriented cortical regions. The Arc
directly connects temporal and frontal cortices40,41 while tracts within the
PVP directly connect temporal and parietal cortices42. The PVPmay be best
thought of as a collection of tracts, including the posterior arcuate (pArc),
the temporal-parietal connection (TPC), the middle longitudinal fasciculus
connection to the angular gyrus (MDLFang), and the middle longitudinal
fasciculus connection to the superior parietal lobe (MDLFspl) (Fig. 1b).
When an individual draws or visually processes learned symbols, these
major tracts allow for direct and indirect communications among coacti-
vatedbrain regions, suggesting that themicrostructureof these tractsmaybe
related to the effectiveness or ineffectiveness of neural communications for
learning.

The relationship between white matter and learning has been inves-
tigated using at least three broad approaches. The first is a cross-sectional
approach that evaluates the relationship between current white matter and
current behavioral abilities. Current white matter is indicative of white
matter alterations that occurred in response to prior experiences and,
similarly, current behavioral abilities are indicative of behavioral learning
that occurred in the past43). A vast number of investigations have demon-
strated correlations between white matter and behavior using this cross-
sectional approach (for review44,45:. The second approach requires repeated
sampling and evaluates the relationship between current white matter and
future learning outcomes. Again, current white matter is considered indi-
cative of alterations that occurred in response to prior experiences, but this
second approach explicitly measures learning outcomes, often using an
intervention or training protocol, rather than relying on current behavioral
abilities to index prior learning. Results from this approach have demon-
strated that white matter connectivity predicts learning sensorimotor tasks,
such as learning to play novel piano sequences6,8, and that the micro-
structure of major white matter tracts can be used to predict future learning
in multiple domains, such as semantic learning10,11, foreign language
learning12,46, auditory learning4,47, visuomotor adaptation7, and face-name
learning9. The third approach also requires repeated sampling but explicitly
measures both white matter and learning outcomes over time, often by
evaluating changes inwhitematter in response to an interventionor training
protocol. Results from this approach have demonstrated that micro-
structural alterations can occur rather quickly in some areas, such as the
hippocampus48, but require long and/or intensive training paradigms to
effect measurable changes in the microstructure of major white matter
tracts49–52. Although this third intervention approach is arguably the gold

standard, the second approach that uses existing white matter to predict
learning is advantageous for investigatingmajor whitematter tracts because
it explicitly measures learning outcomes while avoiding long and/or
intensive training paradigms.

Here, we evaluated the relationship between current white matter and
future learning outcomes.More specifically, we investigated the relationship
between the current microstructure of major white matter tracts and indi-
vidual differences in performance on two learning outcomes following a
single sensorimotor training task (Fig. 1). The sensorimotor training task
was learning to draw unfamiliar symbols and the two learning outcomes
measured were drawing and visual recognition learning. To test the possi-
bility that the microstructure of major white matter tracts could selectively
predict individual variability in learning (i.e., tract-selectivity), we employed
a machine learning and model selection framework to select the group of
tracts whose microstructure was most predictive of drawing learning and,
separately, visual recognition learning. Measuring two learning outcomes
allowed us to test the selectivity of white matter tracts to different learning
outcomes (i.e., task-selectivity). Prior studies testing the relationship
between tractmicrostructure and future learning outcomes have focusedon
tracts of interest (investigating only oneor a few tracts) andhave often tested
a single learningoutcome (investigating a single taskwithout testing transfer
of learning across behaviors). Furthermore, prior studies investigating the
relationship between whitematter and learning have rarely investigated the
PVP tracts, excepting cross-sectional studies that have demonstrated a
relationship between the microstructure of the pArc and drawing ability53

and reading ability52,54–59, suggesting that thePVPwhitematter tractsmay be
predictive of individual variability in drawing and visual recognition
learning.

Results
We investigated the mapping between the microstructure of white matter
tracts and two learning outcomes that arose from the same training
experience to test both tract- and task-selectivity.Wemeasuredwhitematter
microstructure in 60 adult participants who later completed a sensorimotor
training task that required them to practice drawing a set of 40 unfamiliar
symbols repeatedly using a digital writing tablet. After the training, parti-
cipants were tested on their ability to visually recognize the 40 symbols that
were previously unknown to them (Fig. 2a). We measured current white
matter microstructure by averaging fractional anisotropy (FA) across each
tract to produce onemeasure of FA for each tract and each participant at the
start of the experiment. We estimated drawing learning by measuring the
draw duration for each symbol drawing trial and calculating the slope of

Fig. 1 | Background. aMajor white matter tracts
connect motor-oriented and perceptual-oriented
cortical regions that coactivate during drawing and
visual recognition of symbols. Connections allow for
direct and indirect communication pathways
between coactivated cortical processing regions.
b The posterior vertical pathway (PVP) includes at
least four major white matter tracts that allow for
direct communication between motor-oriented
parietal cortex and perceptual-oriented temporal
cortex. SLF superior longitudinal fasciculus, separ-
able into SLF1and2 and SLF3, ILF inferior long-
itudinal fasciculus, IFOF inferior fronto-occipital
fasciculus, MDLFspl middle longitudinal fasciculus
connection to the superior parietal lobe, MDLFang
middle longitudinal fasciculus connection to the
angular gyrus, TPC temporal to parietal connection;
pArc posterior arcuate fasciculus.
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draw duration over the practice session. We estimated visual recognition
learning by measuring accuracy in an old/new 2-alternative forced-choice
(2-AFC) visual recognition task (Fig. 2b). Accuracy was selected over
reaction time because both metrics demonstrated learning and accuracy
capturedmore individual variability than reaction time (see Supplementary
Information).

We employed relaxed-lasso (RL) regression methods60,61 to investigate
the hypothesis that the microstructure of major white matter tracts could
predict learning (in cross-validation terms) and, more specifically, that we
would be able to identify a subset of tracts that together would be more
predictive of learning than other tracts, i.e., tract-selectivity (Fig. 2c). TheRL
method tests a large space of potential models with different parameters
(e.g., different combinations of tracts) and quantitatively selects the unique
combination of parameters that explain themost variance in the dependent
variable (i.e., learning outcome). Critically, RL does not guarantee identifi-
cation of a small subset of tracts and is capable of selecting all tracts, if that
provides the bestfittingmodel61.Weperformed two separate RL regressions
to identify the group of tracts that best predicted drawing learning and to
identify a group of tracts that best predicted visual recognition learning.We
directly compared the models selected for drawing learning and visual
recognition learning to investigate the hypothesis that tract microstructure
would be selectively related to learning outcomes, i.e., task-selectivity. We
evaluatedhowwell themodel selected topredict drawing learning fromtract
microstructure would transfer to predicting visual recognition learning.

We directly tested a set of 22 white matter tracts that connect cortical
regions known to support motor and sensory processing during symbol
drawing27–30,32,33,35,62,63 (Fig. 1a): the first and second segment of the Superior
Longitudinal Fasciculus combined (SLF1and2), the third segment of the
Superior Longitudinal Fasciculus (SLF3)36, the Inferior Longitudinal Fas-
ciculus (ILF)37,38, the Inferior Fronto-Occipital Fasciculus (IFOF)37,39,64, the
arcuate fasciculus (Arc)40,41, and the PVP tracts that included the Posterior
Arcuate (pArc), the Temporal-to-Parietal Connection to the Superior
Parietal Lobe (TPC), theMiddle Longitudinal Fasciculus Connection to the
Angular Gyrus (MDLFang), and the Middle Longitudinal Fasciculus
Connection to the Superior Parietal Lobe (MDLFspl)42. We also included
two additional vertical tracts, theVertical-Occipital Fasciculus (VOF) in the
posterior cortex and the Frontal Aslant Tract (FAT) in the anterior cortex.
The left and right hemispheres were kept separate for each of these 11 tracts,
for a total of 22 white matter tracts tested. All analyses were also conducted
with amore extended set of tracts using the same approach, and results were
consistent with the theory-driven selection of 22 tracts that we report in the
main text. We report the results of the analyses with a more extended set of
tracts in Supplementary Table 1.

We tested our hypothesis that a select group of white matter tracts
would predict learning in three separate analysis steps (Fig. 2c). In the first
analysis, we specified an initial model that we called the original drawing
learning model using an RL regression to select a set of white matter tracts
that explained themost variance in drawing learning. In the second analysis,

Fig. 2 | Experimental procedure, measurements,
and modeling approach. a Overall procedure. All
participants completed an MRI session before
completing a session of drawing training and
recognition testing. On Day 1, diffusion MRI data
were collected in order to perform diffusion tracto-
graphy and estimate tissue microstructure. On Day
2, participants completed 30 min of drawing train-
ing, including 40 symbols each drawn 10 times in
random order (drawing training) followed by an
old/new 2-AFC visual recognition test (recognition
testing). bCalculations of white matter and learning
measurements. First, a measurement of mean frac-
tional anisotropy (FA) was obtained for each tract
using a tractprofiles approach and averaging across
the tract profile. Second, a measurement of drawing
learning was obtained by estimating the linear slope
of draw duration over trials. Third, a measurement
of visual recognition learning was obtained by esti-
mating the proportion of correct responses on the
visual recognition test. The white matter measure-
ments on day 1 were then used to predict the mea-
surements of drawing learning and visual
recognition learning on day 2. cModeling approach.
A relaxed lasso regression was used to identify the
group of tracts that wasmost predictive of individual
differences in drawing learning and, separately,
most predictive of visual recognition learning. After
predictors were selected for drawing learning and
for visual recognition learning separately, we tested
to see if the drawing learning model transferred to
visual recognition learning (Transfer model). We
found that the Transfer model was worse at pre-
dicting visual recognition learning than the model
selected for visual recognition learning (Original
model), demonstrating task-selectivity because the
model selected for learning to draw symbols did not
also predict learning to visual recognize symbols.
Colors inb and c represent an individual participant;
not all participants are depicted to save space.
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we constructed a second model that we called the original recognition
learning model using a second RL regression to select tracts that explained
the most variance in visual recognition learning. In the third analysis, we
evaluated whether the relationship between pre-training white matter
microstructure and drawing learning found in the first analysis would
translate to a second learning outcome, namely visual recognition learning.
We report a complementary analysis using simple (marginal) linear
regressions in to evaluate the ability of the microstructure of any tract to
independently predict each learning outcome, reporting findings that are
consistent with the results of the RL analyses reported in the main text (see
Supplemental Figs. 1 and 2 and Supplemental Table 2 and 3).

First analysis
Predicting drawing learning from the microstructure of major white
matter tracts. We used an RL regression and model-selection via cross-
validation to identify the subset of white matter tracts that best predicted
sensorimotor learning, i.e., drawing learning. We hypothesized that the
microstructure of a select group of white matter tracts prior to learning
would predict individual differences in learning to draw unfamiliar
symbols.

Results of theRLanalysis supportedourhypothesis: themicrostructure
of a select group of white matter tracts prior to learning predicted drawing
learning. The RL regression optimized to predict drawing learning revealed
that two left hemisphere tracts explained the most variance in drawing
learning: the left pArc and left SLF3 (Table 1; Fig. 3). These two tracts were
selected from 22 potential tracts and from multiple competing models61,
suggesting tract-selectivity. With drawing learning as the dependent vari-
able, the winning model included only the left pArc and the left SLF3, with
an OLS R2 = 0.1180 for the final selected model. The relationships between
the microstructure of the left pArc and left SLF3 were positive, such that
participants with higher FA in those tracts were participants who were the
quickest at learning to draw the unfamiliar symbols.

This result was replicated in a held-out, repeat dataset where the same
analysis identified a winning model that, again, included only left pArc and
the left SLF3, with an OLS R2 = 0.0969. We found similar results in a
complementary series ofmarginal linear regressions that, again, suggested a
relationship between the microstructure of the left pArc and the left SLF3
and individual differences in drawing learning (see Supplemental
Figs. 1 and 2 and Supplemental Table 2 and 3).

Second analysis
Predicting visual recognition learning from the microstructure of
major white matter tracts. Drawing training also results in changes in
visual recognition for the practiced symbols that can occur during symbol
drawing training even in the absence of directly training visual recog-
nition for the symbols26.We, therefore, performed a secondRL regression
andmodel-selection via cross-validation procedure to identify the subset
of white matter tracts that best predicted visual recognition learning
(Fig. 2b). Similar to the first analysis, we hypothesized that the

microstructure of a select group of tracts prior to learning would predict
individual differences in visual recognition learning for the practiced
symbols.

An RL model was specified that predicted visual recognition learning
(accuracy) given the 22 predictors previously used to select the model for
drawing learning. Results of the RL analysis supported our hypothesis: a
select group of tracts prior to learning predicted individual differences in
visual recognition learning. More specifically, two left hemisphere tracts
were selected to predict visual recognition learning: left MDLFspl and left
TPC, with an OLS R2 = 0.0662 (Table 1; Fig. 3). The relationship was
negative, such that participants with higher FA in the left MDLFspl and left
TPC were participants who demonstrated the lowest visual recognition
learning.

This result was partially replicated in the held-out dataset; the same
analysis applied to a repeat dataset identified only the leftMDLFspl, with an
OLS R2 = 0.0416. The only tract identified for visual recognition learning in
both the original and repeat datasets was the left MDLFspl; however, this
tract was not significantly related to visual recognition in the com-
plementary simple (marginal) linear regressions (see Supplemental
Figs. 1 and 2 and Supplemental Table 2 and 3). The results of the marginal

Table 1 | Models selected for each learning outcome using
relaxed lasso regression

Response Variable Predictor β S.E. R2

Drawing learning Left pArc 0.2118 0.2654 0.1180

Left SLF3 0.1772 0.2600 —

Drawing learning (repeat dataset) Left pArc 0.1968 0.2517 0.0969

Left SLF3 0.1448 0.2569 —

Visual recognition learning Left MDLFspl -0.6290 1.4424 0.0662

Left TPC -0.4025 1.1971 —

Visual recognition learning
(repeat dataset)

Left MDLFspl -0.7562 1.4981 0.0416

Summary statistics are estimated via OLS using the final model predictors.

Fig. 3 | Associative whitematter tracts selectively predict learning. aRelaxed lasso
(RL) regressions were performed to select the group of tracts that best predicted
drawing learning and visual recognition learning separately. The bar plot depicts the
OLSR2 values for themodel selected to predict drawing learning (left) and themodel
selected to predict visual recognition learningmodel (right). The bar plot also depicts
the OLS R2 values for a transfer model that was constructed to test if the model
selected for drawing learning might also predict visual recognition learning. Relative
to the original drawing learning model and the original visual recognition learning
model, the transfer model was very poor. A Cox test and a J-test both confirmed that
the model selected for drawing learning did not transfer to predicting a second
learning outcome, i.e., visual recognition learning. b Tracts selected to predict
drawing learning, included the left SLF3 and the left pArc. Tracts from one repre-
sentative participant are displayed. c Tracts selected to predict visual recognition
learning included the left MDLF-spl in the original and repeat dataset. Tracts from
one representative participant are displayed. We note that the model R2 values
depicted in the plot are consistent with the results reported in Table 1; therefore, the
R2 value for the original dataset includes both the leftMDLFspl and the left temporal-
to-parietal connection to the superior parietal lobe (TPC) while the R2 value for the
repeat dataset includes only the left MDLFspl. SLF 3: third segment of the superior
longitudinal fasciculus, pArc posterior arcuate, MDLFspl middle longitudinal fas-
ciculus connection to the superior parietal lobe.
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linear regressions did not reveal a significant relationship between the
microstructure of the left MDLFspl or any other individual tract and visual
recognition learning.

Third analysis
Directly testing the task-selectivity of major white matter tracts for
drawing learning. Our third analysis tested task-selectivity by evaluating
if the model selected for drawing learning could also predict a different
learning outcome, namely visual recognition learning. Drawing and
visual recognition learning were two different learning outcomes that
occurred during the same sensorimotor training session and, therefore,
make for a strong test of selectivity to learning outcomes. We hypothe-
sized that the relationship between white matter and individual differ-
ences in drawing learning would not transfer to individual differences in
visual recognition learning, that tracts predictive of drawing learning
would demonstrate a selectivity for drawing relative to visual recognition.

To evaluate if the model selected from drawing learning could transfer
to visual recognition learning, we evaluated if the predictors selected for
drawing learning could explain any variance in visual recognition learning
beyond the variance explained by the original predictors originally selected
for visual recognition learning using a Cox test for non-nested models to
(Fig. 2c)65. The Cox test assesses if any variance in an original dependent
variable that is not explained by the original set of predictors could be
explained by a different set of predictors. This is the most appropriate
approach; directly comparing the predictors selected for drawing learning
and the predictors selected for visual recognition learning would be circular
because the RL regression already demonstrated that the predictors selected
for visual-recognition learning produce better fits for visual recognition
learning than the other potential predictors, including the predictors
selected for drawing learning. Rather, the most appropriate test is to test if
the predictors selected for drawing learning could explain any additional
variance in visual recognition learning that is not already explained by the
predictors selected for visual recognition learning.

The Cox test was performed in two steps. First, we obtained the fitted
values from the original visual recognition model by regressing the original
dependent variable, visual recognition learning in this case, on the original
predictors identified for visual recognition learning (i.e., the left MDLFspl
and left TPC). Second, we constructed a transfer model by regressing the
fitted values from the original visual recognition model on the predictors
originally selected for drawing learning (i.e., the left pArc and left SLF3).
This second step evaluates if the predictors selected for drawing learning
could explain any variance in visual recognition learning that was not
explained by the original visual recognition model. If the fit of the transfer
model can explain variance remaining from the original visual recognition
model, such a result would suggest that the tracts selected asmost predictive
of drawing learning might transfer to visual recognition learning and are,
therefore, not likely specific for drawing. On the other hand, if the transfer
model is unable to explain additional variance, such a result would suggest
that the drawing learning predictors do not transfer to visual recognition
learning.We also performed a Cox test to evaluate if the predictors selected
for visual recognition learning might transfer to drawing learning using the
same analysis approach.

Results suggested that the relationship between white matter and
drawing learning did not transfer to visual recognition learning, and vice
versa (Fig. 3). The Cox-test demonstrated that the predictors originally
selected for drawing learning (i.e., with predictors corresponding to the left
pArc and left SLF3) were not able to explain additional variance in visual
recognition learning beyond the variance explained by the original recog-
nition model (i.e., with predictors corresponding to the left MDLFspl and
the left TPC), z = 0.1382, p = 0.890, and that the predictors originally
selected for visual recognition learning were not able to explain additional
variance in drawing learning beyond the variance explained by the original
drawing learning model, z = -3.3122, p = 0.0009. We performed a com-
plementary J-test that produced results consistent with the results of the
Cox-test reported here (see Supplementary Information). In sum, results

suggest that predictors originally selected for one learning outcomewere not
transferable to a second learning outcome, indicating some selectivity
between tracts and learning outcomes.

These results were replicated in a held-out repeat dataset; the same
analyses suggested that the predictors originally selected for drawing
learning were unable to explain additional variance in visual recognition,
z = 5.4093,p = 6.3 × 10-8, and that thepredictors originally selected for visual
recognition learning were unable to explain additional variance in drawing
learning, z = 0.2548, p = 0.7988. Results of the J-test were again consistent
with results of the Cox test (see Supplementary Information).

Discussion
The current work employed a machine-learning model selection approach
to demonstrate selectivity of the mapping between the existing micro-
structure of major white matter tracts and future learning outcomes. We
used diffusion measurements of white matter tissue to predict individual
differences in two learning outcomes that arose from a single sensorimotor
training task. The sensorimotor training task consisted of drawing symbols
that were previously unknown, and the two learning outcomes included
learning to draw the novel symbols and learning to visually recognize those
symbols. Results suggested that two left hemisphere white matter tracts, the
left pArc and the left SLF3, selectively predicted individual differences in
learning to draw unfamiliar symbols but not learning to visually recognize
those same symbols. The relationship between the pre-training micro-
structureof these two left hemisphere tracts anddrawing learningwas found
using two independent datasets and two separate statistical analyses (see
Results and Supplementary Information). On the other hand, the rela-
tionship between pre-training microstructure and visual recognition
learning varied marginally depending on the dataset and statistical analysis
but suggested that the pre-trainingmicrostructure of the leftMDLFspl may
be related to visual recognition learning. Overall, results suggest that indi-
vidual differences in the microstructure of human white matter tracts may
be selectively related to learning outcomes, evenwhen those outcomes arise
from a single experience.

The current work is the first, to our knowledge, to demonstrate a
selective mapping between major white matter tracts and human learning.
Few studies have tested the mapping between white matter tracts and
multiple learning outcomes, leaving the current literature unable to con-
clude that some tracts are more related to learning than other tasks (tract-
selectivity) and more related to learning one task than other tasks (task-
selectivity)4,6–12. Our results add to prior human work that observed wide-
spread changes across multiple white matter tracts during an intensive
intervention52. Although interventions often target one learning outcome
(e.g., reading), they often impart learning in other domains that are not
directly targeted (e.g., attention, social interactions). The onset of an
intensive interventionmight promote widespread changes52 and our results
suggest that only a few of those changes are related to the targeted learning
outcome. By using tract microstructure to predict future learning and
assessing more than one learning outcome, our results demonstrate a
selective mapping between white matter tracts and learning outcomes that
likely emerges over time periods much longer than is typical intervention
timelines.

Two independent analyses demonstrated that the microstructure of
two left hemisphere white matter tracts selectively predicted drawing
learning: the left pArc and the left SLF3. The first analysis tested tract-
selectivity using a relaxed lasso regression to identify a groupofwhitematter
tracts that, together, predicted drawing learning from a set of 22 potential
tracts. Each tract entered into the relaxed lasso (RL) regression was selected
based on its unique anatomical connectivity in relation to the functional
responses observed during drawing in prior works27–30,35, including SLF 1
and 2 (combined), SLF3, pArc, TPC, MDLFspl, MDLFang, Arc, ILF, IFOF,
VOF, and FAT in the left and right hemispheres. The RL analysis indicated
that the left SLF3 indorsal cortex and the left pArc in thePVPcomprised the
group of tracts that explained the most variance in drawing learning. The
secondanalysis tested the task-selectivity of thedrawing learningmodel (i.e.,
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the left pArc and left SLF3) for drawing by evaluating if the predictors
selected for drawing learning might transfer to a second learning outcome,
visual recognition learning. Results revealed that the drawing learning
model did not transfer to visual recognition learning, suggesting a degree of
task-selectivity between themicrostructure of the left pArc and left SLF3 and
drawing learning. Furthermore, results from both analyses were replicated
in a held-out repeat dataset, providing strong evidence that individual dif-
ferences in the microstructure of the left pArc and left SLF3 are selectively
related to individual differences in learning to draw unfamiliar symbols.

Both white matter tracts selected to predict drawing learning were in
the left hemisphere, suggesting that learning to draw unfamiliar symbols
might be supported by left-lateralized communications conveyed along the
pArc and SLF3, consistent with evidence of left-lateralization of functional
processes during drawing. Literate adults engage a left-lateralized cortical
systemduring drawing, including regionswithin the frontalmotor, parietal,
and ventral temporal lobes27–35, and these regions are joined by the left pArc
and left SLF336,40,42. Furthermore, work in children has demonstrated that
thepArc is correlatedwith individual differences indrawingability in the left
but not the right hemispheres, even after controlling for age53. We and
others66–68 have suggested that the left-lateralization of white matter sup-
porting drawing learningmaybe related to the left-lateralizationof language
processing. In the current study, participants drew symbols that resembled
letters of the Roman alphabet and might have relied on the white matter
architecture that had been optimized for drawing through extensive life
experiences with handwriting letters of the alphabet, an unmistakably
language-oriented task. Comparing tract-selectivity in literate and non-
literate adultsmight provide further support for the role of life experiences in
individual differences in themicrostructure ofmajorwhitematter tracts that
support cortical communications during drawing learning.

The arcuate fasciculus (Arc) is often segmented into threewhitematter
tracts that allow for at least two different communication pathways,
including a long segment (connecting temporal and frontal cortices), an
anterior indirect segment (connecting parietal and frontal cortices), and a
posterior segment (connecting parietal and temporal cortices)40,41. This
segmentation is of great interest to language and reading research because it
allows for at least two neural communication pathways during language-
oriented tasks: the direct and indirect pathways. The direct pathway is the
long segment because it directly connects processing for language percep-
tion, such as graphemes (i.e., visual symbols), thought to occur in the
temporal cortex with motor processing for language production, such as
pronouncing phonemes (i.e., symbol sounds) or writing graphemes (i.e.,
symbol writing) thought to occur in the frontal motor cortex40. The indirect
pathway accomplishes the same connection between perceptual andmotor
processing but does so indirectly by passing through the parietal cortex. In
our segmentation approach, the direct pathway is captured by the left Arc
and the indirect pathway is captured by the left pArc and left SLF340–42,69,70.
The SLF3 is essentially one and the same with the anterior indirect segment
of theArc69–71 and the pArc is essentially one and the samewith the posterior
segment of the Arc42,71. Therefore, our results demonstrate that the indirect
pathway is predictive of drawing learning in adults suggesting that parietal
involvementmight be especially important for drawing learning because we
found that the indirect pathway (left pArc, left SLF3) selectively predicted
drawing learning but not the direct pathway (left Arc).

The current work suggests that segmenting the PVP into four white
matter tracts may reveal unique relationships with behavior and cortical
functioning. The PVP can be segmented into four white matter tracts,
however theutility of segmenting thePVP into these fourwhitematter tracts
has not yet been determined. For example, one study reported no difference
in the developmental trajectory of the microstructure of the PVP tracts53.
Our results demonstrate that the pArc and MDLFspl selectively predicted
different learning outcomes that arose from the same training task. While
the pArc predicted drawing learning, the MDLFspl predicted visual
recognition learning. The pArc connects the posterior ventral-temporal
cortex with the inferior parietal lobe (IPL) where processing is largely
associated with visually-guided actions with the hands72; the MDLFspl

connects the anterior ventral-temporal cortexwith the superior parietal lobe
(SPL) where processing is largely associated with visual attention73. Thus,
the pArc may predict drawing learning by supporting communication
between perceptual processing in posterior ventral-temporal cortex and
visual processing forhandactions in the IPLwhile theMDLFsplmaypredict
visual recognition learning by supporting communication between per-
ceptual processing in anterior ventral-temporal cortex and visual attention
in the SPL. Future work will be necessary to continue investigating the
mapping between the four PVP tracts and learning; however, the current
work suggests that segmenting the PVP into four major white matter tracts
is useful for investigating the relationship between brain and behavior
because we found that major tracts within the PVP had different relation-
ships with learning.

Although we were able to demonstrate that some tracts were more
related to learning than other tracts (tract-selectivity) and more related to
one learning outcome relative to another learning outcome (task-selectiv-
ity), we found that the amount of variance explained by the microstructure
of major white matter tracts was low. Finding a low amount of variance
explained is remarkable because our approach employed a relaxed lasso
regression that selected predictors that optimized the amount of variance
explained. Our approach was to select the group of tracts whose white
matter microstructure best explained drawing or visual recognition learn-
ing, yet even the best model could only explain approximately 12% of the
variance (Table 1). These results suggest that the white matter micro-
structure of major white matter tracts can only explain a relatively small
portion of individual variability in human learning. This is consistent with
prior work demonstrating that the best prediction of future reading out-
comes occurred when microstructural and functional activation measures
were both included74. Future work focused on optimizing brain-behavior
predictions will likely benefit from including brain function and other brain
measurements in addition tomicrostructuralmeasurements ofmajor white
matter tracts.

Methods
Participants
Adult participants (18-30 yrs., n = 60) were recruited through flyers posted
on the Indiana University campus, online e-flyers, and through word-of-
mouth. All participants were screened for neurological trauma, develop-
mental disorders, and MRI contraindications. All participants were right-
handed with English as their native language. Participants were compen-
sated with a gift card for each session that they commenced. Data from
participants were removed based on signal-to-noise (SNR), motion con-
cerns, or other artifacts (seeMagnetic resonance imagingdata analyses) and,
additionally, data from participants whose performance during training
and/or testing revealed a lack of engagement were removed (see Learning
rate calculations), leaving 48 subjects (age:M = 21.21 years, SD = 2.49 years,
Range = [18.25, 29.75], 26 F, 22M). All participants provided written
informed consent and all procedures were approved by the Indiana Uni-
versity Institutional Review Board.

Magnetic resonance image acquisition and procedure
Neuroimaging was performed at the Indiana University Imaging Research
Facility, housedwithin the Department of Psychological and Brain Sciences
with a 3-Tesla Siemens Prisma whole-body MRI using a 64-channel head
coil. Participants were instructed to stay as still as possible during scanning
and were allowed to watch a movie or listen to music of their choice during
scanning.

T1-weighted anatomical volumes (i.e., t1w) were acquired using a
Wave-CAIPI MP-RAGE pulse sequence (TR/TI/TE = 2300/900/3.47ms,
flip angle = 8°, acceleration factor = 3 in phase encoding direction × 3 in
slice-selective direction, scan time = 1'14”), resolution = 1mm isotropic.
The T2-weighted anatomical volumes (i.e., t2w) were acquired with a 3D
Wave-CAIPI pulse sequence (TR/TI/TE = 2300/900/3.47ms, flip angle =
8°, acceleration factor = 3 in the phase encoding direction × 3 in slice-
selective direction, scan time = 1'15”), resolution = 1mm isotropic.
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Diffusion data were collected using single-shot spin echo simultaneous
multi-slice (SMS) EPI (transverse orientation, TE = 87.00ms, TR = 3470
ms, flip angle = 78 degrees, isotropic 1.5 mm resolution; FOV= LR
210mm× 192mm× 138mm; acquisition matrix MxP = 140 × 128. SMS
acceleration factor = 4, interleaved). Diffusion data were collected at two
diffusion gradient strengths, with 38 diffusion directions at b = 1000 s/mm2

and 37 directions at b = 2,500 s/mm2, as well as 5 images at b = 0 s/mm2,
once in the AP fold-over direction (i.e., dwi-AP) and once in the PA fold-
over direction (i.e., dwi-PA).

Within-session repeat scans were collected for each data type to ensure
test-retest repeatability. For each participant, we collected two T1-weighted
anatomical images, two T2-weighted anatomical images, two diffusion
weighted images with AP phase-encoding, and two diffusion weighted
images with PA phase-encoding.

Magnetic resonance imaging data analyses
All analysis steps were performed using open and reproducible cloud ser-
vices on the brainlife.io platform75,76, including ezBIDS77, except for the
statistical analyses (see below) that were performed inMatlab R2019b using
customized code. All data and analysis services are freely available on
brainlife.io (Table 2). The code for the relaxed lasso regression is available
here: https://github.com/svincibo/learning-white-matter. The code for all
other statistical analyses is available here: https://github.com/svincibo/wml-
wmpredictslearning.

Anatomical images were aligned to the ACPC plane with an affine
transformation using HCP preprocessing pipeline78 as implemented in the
Align T1 to ACPC Plane (HCP-based) app on brainlife.io79 for t1w images
and as implemented in the Align T2 to ACPC Plane (HCP-based) app on
brainlife.io79 for t2w images. ACPC aligned images were then segmented
using the Freesurfer 6.080 as implemented in the Freesurfer App on
brainlife.io81 to generate the cortical volume maps with labeled cortical
regions according to the Destrieux 2009 atlas82.

All diffusion preprocessing steps were performed using the recom-
mended MRtrix3 preprocessing steps83 as implemented in the MRtrix3
Preprocess App on brainlife.io84. AP phase-encoded and PAphase-encoded
images were combined first and susceptibility- and eddy current-induced
distortions aswell as inter-volume subjectmotionwere also corrected in this
step. PCA denoising and Gibbs deringing procedures were then performed
and the volumes were subsequently corrected for bias field and rician noise.
Finally, the preprocessed dMRI data and gradients were aligned to each
participant’s ACPC-aligned anatomical image using boundary-based
registration (BBR) in FSL85.

Diffusion data were removed from the sample if the Signal-to-
Noise Ratio (SNR) was less than 15 or if the Framewise Displacement
(FD), a widely used measurement of head movement86,87, was greater
than 2 mm or if an artifact was apparent. This resulted in a removal
of 6 participants.

Themicrostructural properties ofwhitematter tissuewere estimated in
a voxel-wise fashion based on preprocessed multi-shell dMRI data. We fit
the diffusion tensor model (DTI) to the diffusion data to estimate the
fractional anisotropy (FA), a summary measure of tissue microstructure
that is thought to be related to the integrity of the myelin sheath and other
tissue properties of major white matter tracts, such as axonal packing88–90.

Probabilistic tractography (PT) was used to generate streamlines. We
used constrained spherical deconvolution (CSD) to model the diffusion
tensor for tracking91,92. Tracking with the CSD model fit was performed
probabilistically, using the tractography procedures provided by MRtrix3
Anatomically-constrained Tractography (ACT93–95; implemented in
brainlife.io96. We generated 2 million streamlines at Lmax = 8 and a max-
imum curvature = 35 degrees, parameters that were optimized for our
tractography needs. Streamlines that were shorter than 10mm or longer
than 200mmwere excluded. The tractogramwas then segmented using the
segmentation approach developed in42 and implemented on brailife.io97. All
the files containing the processed data used in this manuscript are available
here: https://doi.org/10.25663/brainlife.pub.36.

Streamlines that were more than 4 standard deviations away from the
centroid of each tract and/or 4 standard deviations away from the relevant
tract’s average streamline length were considered aberrant streamlines and
were removed using the Remove Tract Outliers App on brainlife.io98,99.

Tract-profiles were generated for each major tract99 as well as the
additional PVP tracts42 using the Tract Analysis Profiles app on
brainlife.io100. We first resampled each streamline in a particular tract into
200 equally spaced nodes. At each node, we estimated the location of the
tract’s ‘core’ by averaging the x, y, and z coordinates of each streamline at
that node. We then estimated FA at each node of the core by averaging
across streamlines within that node weighted by the distance of the
streamline from the ‘core’. An average white matter measurement was
obtained for each tract of interest by averaging across the central 160 nodes,
excluding the first and last 20 nodes to avoid partial voluming effects.

Behavioral procedures
Participantswere asked to return for a behavioral sessionwithin oneweekof
the neuroimaging session (Fig. 2). During the behavioral session, partici-
pants first performed a 30-min training session (i.e., Drawing training)
followed by a visual recognition test (i.e., Visual recognition testing). An
experimenter remained in the room with the participant throughout the
behavioral session that was completed within 1 h. Code for behavioral
procedures can be found here: https://github.com/svincibo/wml-beh.

Stimuli included200novel symbols.Usingnovel, unfamiliar symbols is
a well-documented approach that controls for individual differences in pre-
training symbol knowledge101–104 and allows for a cleaner manipulation of
visual, auditory, and motor experience with those symbols. The design and
selection criteria for these symbols is described in detail elsewhere26. The
training required 40 symbols and the visual recognition test required an

Table 2 | Data, description of analyses, and web-links to the open-source code and open cloud services used in the creation of
this dataset can be viewed in their entirety here: https://doi.org/10.25663/brainlife.pub.36

Application Github repository Open Service DOI Git Branch

Align T1 to ACPC Plane (HCP-based) https://github.com/brain-life/app-hcp-acpc-alignment https://doi.org/10.25663/bl.app.99 1.4

Align T2 to ACPC Plane (HCP-based) https://github.com/brain-life/app-hcp-acpc-alignment https://doi.org/10.25663/brainlife.app.116 1.4

Freesurfer Segmentation https://github.com/brainlife/app-freesurfer https://doi.org/10.25663/brainlife.app.462 7.1.1

dMRI Preprocessing https://github.com/brain-life/app-mrtrix3-preproc https://doi.org/10.25663/bl.app.68 1.7

NODDI model fitting https://github.com/brainlife/app-noddi-amico https://doi.org/10.25663/brainlife.app.365 1.3

Tractography and Tensor model fitting https://github.com/brain-life/app-mrtrix3-act https://doi.org/10.25663/brainlife.app.319 1.4

Tract Segmentation https://github.com/brainlife/app-wmaSeg https://doi.org/10.25663/brainlife.app.188 3.9

Tract Cleaning https://github.com/brainlife/app-removeTractOutliers https://doi.org/10.25663/brainlife.app.195 1.3

Tract Analysis Profiles https://github.com/brain-life/app-tractanalysisprofiles https://doi.org/10.25663/brainlife.app.361 1.13

Tract Statistics https://github.com/brainlife/app-tractographyQualityCheck https://doi.org/10.25663/brainlife.app.189 1.3
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additional 40 distractor symbols, for a total of 80 symbols. The other
160 symbols were used for counterbalancing; the set of 80 symbols selected
for each participant was counterbalanced across participants. Adobe Illus-
trator was used to create typed versions of these novel symbols. All symbols
were in ‘typed’ form in black ink on a white background.

Drawing training: When participants arrived, they were seated at a
deskwith adigitalWacomwriting tablet.Participantswere asked to copy the
novel symbols that we created using the tablet and instructed to make their
productions as quickly and as accurately as possible. A Matlab script dis-
playedone of the typed symbols at the top and center of the tablet screen and
a box simultaneously appeared below the symbol into which participants
were instructed to make their production of the symbol above. Only one
symbol was displayed per trial and each trial lasted 4 s. Each block included
40 symbols and therewere10back-to-backblocks, eachcontaining the same
40 symbols. After completing 5 blocks, participants were given amandatory
3-minute break to rest their hands and eyes before completing the final 5
blocks. The ordering of symbols within each block was randomized. Pro-
duction duration timewasmeasured for each symbol production trial as the
number of seconds between the initial pen-down to the final pen-up.

Visual recognition testing: Participants were asked to perform an old/
new recognition test immediately following the training session using an
iMac computer and standard keyboard with a key labeled ‘yes’ and a dif-
ferent key labeled ‘no’. Participants first performed a practice session that
consisted of individual letters of the alphabet and common shapes (e.g.,
square, triangle) and the participants were asked to press ‘yes’ for letters and
‘no’ for non-letters. The practice test helped orient participants to the testing
context and lasted approximately 2min. After the practice test, participants
began the recognition test. During recognition testing, participants were
presented with static, typed versions of the 40 learned symbols (i.e., target
symbols) along with 40 symbols that were not presented to them during
training (i.e., distractor symbols), one at a time and in random order. For
each symbol, they were instructed to press ‘yes’ for symbols that they had
practiced during training and ‘no’ for non-practiced symbols. Each trial
consisted of only one symbol. Each trial began with a 500ms fixation cross,
followed by a 500ms blank screen, and then a 25ms stimulus presentation
during which a stationary symbol was displayed in the center of the screen.
After the stimulus presentation ended, the symbol was replaced by a noise
mask until the participant responded or until the trial timed-out. Each trial
timed-out after 1 second when participants received feedback that
prompted them to respond faster in the next trial (i.e., “Too Slow!”). If the
participant respondedbefore the symbolwas replacedby thenoisemask, the
program advanced to the blank screen until the trial time-out criteria was
met beforemoving on to the next trial. Trials that reached the time-out limit
were re-presented at the end of the test. Only trials with a participant
response (i.e., trials that didnot reach the 1-second time-out limit)wereused
for analyses. Reaction time and accuracy were measured.

Learning calculations
Drawing learning: Learning rate of the sensorimotor task was calculated by
first measuring the amount of time it took a participant to draw an unfamiliar
symbol, i.e., the draw duration, and plotting this measurement across trials
(Fig. 2b). Trials with a draw duration of 3 standard deviations above or below
the within-participant mean were identified as outlier trials and removed.We
tested both linear and double exponential models to model the change in
draw duration over trials, given that both models have been used in the
literature to model learning8. The double exponential models returned fits
that were effectively linear despite aggressive efforts at bounding the fits, and
the linear fits were good fits across participants. The learning rate was cal-
culated across the 40 target symbols and 10 trials as the linear slope of draw
duration over trials. The final learning rate for each participant was calculated
by taking the slope across trials for that participant (Supplemental Fig. 3).

Visual recognition learning: Learning to visually recognize each sym-
bol was calculated as the accuracy during visual recognition testing.
Learning to visually recognize can be measured by their post-training
recognition performance because participants were being tested on symbols

that they had not been exposed to before they began drawing training.
Participants with a visual recognition accuracy of 50% or lower, indicating
that they were not performing above chance, were removed, resulting in the
removal of 2 participants. We elected to use accuracy and not reaction time
tomeasure visual recognition learning for three reasons: (1) an absence of a
speed-accuracy trade-off (beta = 0.05, p = 0.57; Supplemental Fig. 4), (1) an
absence of a ceiling effect for accuracy (0.55 < accuracy < 0.91), and (3)
slightly greater individual variability captured by accuracy (SD = 0.09) than
by reaction time (SD = 0.06).

Statistical analyses
We were interested in understanding if white matter tracts within the
posterior vertical pathway (pArc, TPC, MDLFang, MDLFspl) were more
predictive of learning than tracts within the dorsal (SLF3, SLF1and2) and
ventral (ILF, IFOF) cortices and, additionally, we were interested in
understanding if the tracts that were strong predictors of sensorimotor
learning were also predictive of visual perceptual learning. We included
three additional control tracts, the vertical-occipital fasciculus (VOF), the
frontal aslant tract (FAT), and the arcuate fasciculus (Arc) to control for the
fact that the four PVP tracts are vertical tracts while the dorsal and ventral
tracts are horizontal. TheVOF, FAT, andArc are vertical tracts that connect
ventral cortex with dorsal cortex, but they do not directly connect ventral
and parietal cortices. This resulted in a total of 22 tracts of interest, 11 tracts
in the left hemisphere and 11 tracts in the right hemisphere.

We used relaxed lasso regression to directly compare among tracts
(Fig. 2c).We entered the average FA for each tract as a predictor in a relaxed
lasso model60,61, resulting in 22 potential predictors, one for each tract of
interest (seeMethods: Magnetic resonance imaging data analyses for the
calculation of average FA of each tract). The relaxed lasso is a two-step
procedure that first applies lasso followed by ordinary least squares. The
ordinary lasso selects tracts that, together, explain the most variance in the
response variable but is subject to a constraint on the size of the resulting
coefficients, effectively shrinking the coefficient estimates. The relaxed lasso
removes this shrinkage, de-biasing the coefficient estimates. All variables
were standardized by dividing by their own variance to ensure that the
magnitude of the beta estimates from the sensorimotormodel and the visual
recognition model were directly comparable. The best lasso model was
selected based on leave-one-out cross-validation. We calculate the percent
variance explained from the final relaxed lassomodel, which uses only those
predictors selected by the initial lasso screening in an ordinary least squares
regression. This procedure was applied to the dependent variables of
drawing learning and visual recognition learning separately, resulting in two
final models, one for drawing learning and a second for visual recognition
learning.Wenote that the relaxed lasso procedure tends to result in lowerR2

values because it uses only a subset of all available predictors.
Additionally, we performed a series of simple linear (marginal)

regression analysis to complement the results of the relaxed lasso analysis.
Eachmodel included one tract as the predictor and one behavioral measure
as the response variable, resulting in 40 simple linear regression models for
20 tracts and 2 behavioral measures (Supplementary Information). We
tested the significance of the beta-value assigned to the predictor in each
model using t-test with alpha set to 0.05.

All analyses were applied to the additional repeat diffusion data to
support replicability and reproducibility (see Magnetic resonance image
acquisition and procedure). All statistical analyses were conducted using
Matlab v9.11.10 (R2021b), except for the relaxed lasso analysis that was
conducted using R v4.2.1 through RStudio 2022.02.1 build 461.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
MRI data are available on brainlife.io at https://doi.org/10.25663/brainlife.
pub.36.
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Code availability
The code for MRI data processing is available at https://doi.org/10.25663/
brainlife.pub.36 (see Table 2 for more detail). The code for the relaxed lasso
regression was conducted using R v4.2.1 through RStudio 2022.02.1 build
461 and is available here: https://github.com/svincibo/learning-white-
matter. The code for all other statistical analyses were conducted using
Matlab v9.11.10 (R2021b) and is available here: https://github.com/
svincibo/wml-wmpredictslearning.
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