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Strain dynamics of contaminating bacteria
modulate the yield of ethanol biorefineries

Felipe Senne de Oliveira Lino 1,6, Shilpa Garg 1,6, Simone S. Li1,2,
Maria-Anna Misiakou1, Kang Kang 3, Bruno Labate Vale da Costa4,
Tobias Svend-Aage Beyer-Pedersen 1, Thamiris Guerra Giacon 5,
Thiago Olitta Basso 5, Gianni Panagiotou 3 &
Morten Otto Alexander Sommer 1

Bioethanol is a sustainable energy alternative and can contribute to global
greenhouse-gas emission reductions by over 60%. Its industrial production
faces various bottlenecks, including sub-optimal efficiency resulting from
bacteria. Broad-spectrum removal of these contaminants results in negligible
gains, suggesting that the process is shaped by ecological interactions within
the microbial community. Here, we survey the microbiome across all process
steps at two biorefineries, over three timepoints in a production season.
Leveraging shotgun metagenomics and cultivation-based approaches, we
identify beneficial bacteria and find improved outcomewhen yeast-to-bacteria
ratios increase during fermentation. We provide a microbial gene catalogue
which reveals bacteria-specificpathways associatedwith performance.Wealso
show that Limosilactobacillus fermentum overgrowth lowers production, with
one strain reducing yield by ~5% in laboratory fermentations, potentially due to
itsmetabolite profile. Temperature is found tobe amajor driver for strain-level
dynamics. Improved microbial management strategies could unlock environ-
mental and economic gains in this US $ 60billion industry enabling its wider
adoption.

To date, contaminant microbes have been characterised at limited
genomic resolution using culture-based methods that did not capture
true microbial diversity, as well as meta-barcoding of microbial com-
munities, albeit only at selected process steps and providing limited
insight into the consequences of observed changes in composition1–6.

The true impact of non-yeastmicrobes on industrial fermentation
performance is unclear – that is, whether it is effected by strains,
species or at community level, as well as the underlying functions and
ecological factors that enable this. Indeed, laboratory studies of lactic
acid bacteria indicate their effects on yeast are species-specific, and

some could in fact be beneficial (e.g. Lactobacillus amylovorus)7–9.
However, accurate assessment of bioconversion performance in an
industrial context is complicated by the fluctuating nature of the
system10. It is accepted that current methods centred on ethanol yield
are oversimplified and should be considered in the context of, for
example, viability of the yeast cells and other resident microbiota in
the fermentations11.

Biofuels have assisted in the transition from fossil fuels to an
electrified transportation grid in developing economies. Use of bioe-
thanol as an alternative source of energy supply is a major focus of
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global strategies to reduce greenhouse gas (GHG) emissions. In Brazil,
considered to have the most successful biofuels programme in the
world, its use in place of gasoline is estimated to have lowered GHG
emissions by >60%12,13.

Over 80% of renewable fuels worldwide comes from bioethanol
derived from yeast fermentation, which entails the conversion of
sugars in plant feedstock (such as sugarcane or corn) to ethanol14.
However, yield levels have been hampered by factors intrinsic to the
bioprocess at industrial scale. Continual changes in oxygen levels,
temperature, pH, sugar andethanol concentration, for example, create
a non-optimal environment for yeast to thrive15.

Industrial bioethanol production is driven by the yeast Sacchar-
omyces cerevisiae, in the presence of other microorganisms from the
raw biomass. Mainly comprised of bacteria, these microbes are often
regarded as contaminants that compete for resources and lower fer-
mentation efficiency16, causing an estimated 3% reduction in ethanol
yield (equating to over 960 million litres per year in Brazil alone)1.
Biorefineries often mitigate this by including an acid-wash step to
remove bacteria from the yeast biomass before re-introducing it to the
fermentation vessels15. Other approaches include the use of broad-
spectrum antibiotics and other antimicrobial compounds. However,
these approaches do not fully address the issue and an effective
strategy that is economically and environmentally sustainable remains
elusive7,15–17.

In this study, we describe and compare the microbial popula-
tions of the industrial bioethanol process across all unitary steps at
two major biorefineries in Brazil. Sampled at 3 time points over a
single production season, we use a combination of shotgun meta-
genomics and cultivation-based methods to interrogate the micro-
biome at multiple taxonomic and functional levels and identify
ecological factors underpinning community dynamics and bio-
conversion efficiency. We link increased temperatures with growth
of specific bacteria that impede yeast viability and fermentation
performance. Furthermore, strains from the same bacterial species
showed distinct effects, most likely driven by metabolic differences,
that can be beneficial or detrimental to ethanol yield. Our findings
motivate the adoption of higher resolution methods to holistically
monitor the microbial communities in industrial-scale fermentation
processes in order to maintain performance. We also suggest stra-
tegies towards the development of strategies to control the growth
of undesirable microbes, which will make bioethanol production
more cost-effective and thus encourage greater adoption of this
renewable energy source.

Results
A comprehensive resource to study microbiome impact on
bioethanol production yields
A total of 56 samples were collected from two independently operated
sugarcane ethanol biorefineries in Brazil, hereafter referred to as Mills
A and B (Fig. 1A, Methods, Supplementary Data 1). The mills were
selected as they have similar production capacity, are situated in
regions of comparable climate, and use sugarcane harvested from
different areas. Both biorefineries deploy the Melle-Boinot fermenta-
tion process, whereby ethanol is produced via fast, high cell-density,
fed-batch fermentations in a series of unidirectional steps15—providing
defined sampling points for our study. Notably, yeast biomass is
recovered after each cycle and reused (following dilution with water
and an acid-wash step) for as many as 750 fermentation batches per
year18. To account for potential differences caused by seasonal varia-
tion, we sampled each mill at three distinct timepoints over a single
production season (Supplementary Data 1).

Shotgunmetagenomic sequencingwas applied to the 56 samples,
providing >2.8 × 105 Gbp of high-quality data (Methods, Supplemen-
tary Data 2). These were assembled into contiguous sequences, from
whichwe created a non-redundant catalogue of 296,257 genes derived

from the bioethanol production processmicrobiome (Methods). Gene
lengths ranged from 18–5,822aa (mean 162.8 ± 165.3) (Supplemen-
tary Fig. 1).

Measurements commonly used by the industry to assess bioe-
thanol production process quality were collected at each sampling to
describe each fermentation batch (Supplementary Data 1). Important
tomention that, due to confidentiality reasons, not all processdata has
been provided, leading to possible confounders without proper data
available. To facilitate evaluation and fair comparison of performance
across the different batches, we devised a composite metric that
accounted for ethanol yield, quality of biological catalysts as well as
potential inhibitors of fermentation performance (Methods). This
enabled the three batches from each biorefinery to be ranked by
performance: low, mid and high.

Dynamics between yeast and bacteria drive industrial fermen-
tation performance
To capture the diversity of the microbial communities involved in
bioethanol production, we used a bioinformatic approach to detect
known and putative eukaryotic, bacterial and archaeal species, uti-
lising small and large subunit rRNA genes detected across our
metagenomic samples (Fig. 1B, Methods). This method of taxonomic
profiling revealed the microbiome to be primarily comprised of
eukaryotic and bacterial populations in fluctuating quantities across
the industrial process (Mill A: 52.7 ± 36.3% and 44.2 ± 37.5%; Mill B:
58.3 ± 39.6% and 36.4 ± 42.4%, respectively; Supplementary
Data 1 and 2). The composition of the starting broth (mixture of
sugarcane molasses and concentrated juice) showed highest intra-
and inter-variability across our samples. Saccharomyces species were
most prevalent and abundant across the production process (Mill A:
52.6 ± 36.3%, Mill B: 58.1 ± 39.9%), and we observed that acid-wash
steps resulted in reduction (but not complete removal) of bacteria
(Fig. 1B, Supplementary Data 1 and 2). Surprisingly, high-performing
batches were not characterised by a dominance in eukaryotes; low-
performing batches were not necessarily dominated by bacteria. In
both biorefineries, we observed that better performance was linked
to an increasing eukaryote-to-bacteria ratio during fermentation,
irrespective of which of the two microorganisms was initially more
abundant (Fig. 1C).

Functional profiling of the microbial communities, using the
constructed gene catalogue, revealed 16 sets of genes (KEGGModules;
functional units within a pathway) that are linked to changes in fer-
mentation performance, observed consistently in both biorefineries
(FDR <0.1 in each mill) (Fig. 1D, Methods). Many were components of
pathways highly conserved in microbes, for example, amino acid bio-
synthesis and carbohydrate metabolism. Interestingly, genes involved
in lipopolysaccharide (LPS) biosynthesis and the phosphotransferase
(PTS) system, which are unique to bacteria and not found in eukar-
yotes, were associatedwith better performance. However, increases in
PTS and LPS were not directly linked to corresponding increases in
bacteria (Fig. 1B), suggesting that changes were also occurring within
the bacterial community. Together, these observations point to a
central role ofmicrobial community dynamics in driving the success of
the bioconversion process.

Lactic acid bacteria dominate the contaminant microbial com-
munity and their interplay influences process performance
To elucidate the role of bacterial populations on performance, we
profiled our samples using a higher resolution genome-based
approach (Fig. 2A, Methods). A total of 48 bacterial species, cover-
ing 5 phyla, were identified in our samples (Supplementary Table 1).
Comparing across all process steps and timepoints, we found that
stability of the bacterial community was not linked to batch per-
formance, and community composition also did not significantly
differ between the two biorefineries (p = 0.29, PERMANOVA).
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Fig. 1 | Microbial dynamics during fermentation influence the performance of
industrial bioethanol production. AOutline of study sampling strategy, repeated
3 times in a single production season at 2 independentmills. Freshmedia [1] are fed
into fermentation vessels for 3 h. Samples were collected at 0–1.5 h [2], 1.5–3 h [3]
and post-feeding [4]. Biomass is then centrifuged [5] and acid-washed [6] before re-
entering the vessels. Vector images were obtained from Flaticon (www.flaticon.
com), and figure as created using Adobe Illustrator. B Metagenomic profiling of
microbial communities, grouped by relative batch performance (columns) per mill
(row). Higher numbers of bacteria (blue) or eukaryotes (red) are not linked to
better production performance. One sample from Mill A (starting broth, high-
performing batch) did not contain sufficient DNA for sequencing. Error bars show
variation across multiple samples, where applicable. For samples containing more
than one datapoint, n = 3 biologically independent samples. Data are presented as
mean values +/- SD. C Eukaryote-to-bacteria ratios across the production process.
Each batch is connected by a line. In bothmills, eukaryotic populations increased in
the high-performing batches (orange, square) during fermentation steps (thick
line) and decreased in lower-performing batches (light and dark brown, circle and

triangle). Grey line denotes equal proportion of eukaryotes and bacteria (i.e. zero-
fold difference). The y-axis indicates the fold change in the eukaryote to bacteria
ratio. Higher fold values indicate a greater eukaryote abundance, and lower fold
values a higher prokaryote abundance. D Genes associated with changes in fer-
mentation performance. In both mills, the relative abundance of these 16 sets,
involved inmetabolismormembrane transport, differed between low- (brown) and
high-performing (orange) batches (FDR<0.1 for both mills). Increase in genes
linked to bacteria-specific pathways, e.g. lipopolysaccharide biosynthesis and the
phosphotransferase (PTS) system, is associated with better performance. Gene
modules are ordered by decreasing relative abundance. KEGG Module IDs are
provided in parentheses. For samples containing more than one datapoint, n = 3
biologically independent samples. The centre line denotes the median value (50th
percentile), while the box contains the 25th–75th percentiles of dataset. The
whiskers mark the 5th and 95th percentiles, and values beyond these upper and
lower bounds are considered outliers, marked with dots. Source data are provided
as a Source Data file.
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Bacteria in the starting broth were again the most diverse and dis-
tinct to other steps in the bioethanol production process (Supple-
mentary Fig. 2).

Lactobacillaceae species were the most abundant bacteria, as
supported by literature1,4,7,19,20, in all but one sample (Fig. 2A). Lacto-
bacillus amylovorus and Limosilactobacillus fermentum constituted
>50% of bacteria in these samples and are described as key con-
taminants in a number of ethanol fermentation processes1,21–23. How-
ever, in both mills we found higher production performance to be
associated with increases in L. amylovorus and Weissella species (W.
paramesenteroides, W. cibaria), and decreases in L. fermentum, Lenti-
lactobacillus buchneri, Lactiplantibacillus plantarum and other lactic
acid bacteria (Wilcoxon rank-sum test, FDR <0.1; Fig. 2B-C). Interest-
ingly, we also observed an inverse relationship between the two
dominant species during the fermentation steps,whereby decreases in
L. amylovorus coupled with an increase in L. fermentum (Spearman’s
ρ = −0.91, FDR = 4 × 10−14; Fig. 2B). This was especially evident in lower-
performingbatches and suggests ecological interplay between the two
bacteria (partially motivated by differences in physiology1 and ethanol
tolerance4) may play a role in driving the efficiency of bioethanol
production. Indeed, L. amylovoruswas previously described to interact
with S. cerevisiae via cross-feeding, benefiting yeast metabolism and in
turn increasing ethanol yield8.

Increases in L. fermentum and other bacteria are linked to fer-
mentation conditions detrimental to yeast
To identify potential drivers of high performance, pairwise correlation
analysis was conducted on the quality indicators collected for each
sample (Fig. 3A, Methods). We found that batches with lower acidity
titres were associated with higher ethanol yields (Spearman’s
ρ = −0.84, FDR = 2 × 10−5), consistent with laboratory-scale findings24.
Similarly, batches with more bacteria tended to have less viable yeast
cells (Spearman’s ρ = −0.72, FDR = 2 × 10−3). These results are in line
with previous findings6.

Incorporating these findings with our microbiome data revealed
potential links between observed changes in the microbial commu-
nities and batch performance (Fig. 3B, Methods). Of the 48 bacterial
species detected across our samples, seven (all Gram-positive Firmi-
cutes) were linked to increased acidity and/or bacterial cell count
during fermentation, with L. fermentum correlating most strongly
(acidity ρ = 0.64, FDR = 9 × 10−5; bacterial cell count ρ =0.63,
FDR = 2 × 10−4; Fig. 3C, D). This is supported by a recent study that
demonstrated the detrimental effects of acetic acid produced by L.
fermentum on yeast in corn-based fermentations9.

Our analysis also revealed bacteria with no known links to
industrial bioethanol production performance, such as Geobacillus
stearothermophilus. This species is a thermophile capable of

Fig. 2 | L. amylovorus and L. fermentum are the dominant bacteria in the
industrial bioethanol microbiome and their interplay is linked to production
performance. A Taxonomic profiling of bacterial populations detected across
process steps, grouped by relative batch performance (columns) per mill (row). L.
amylovorus (light blue) and L. fermentum (dark blue) strains comprise the majority
of bacteria across samples. Bacterial communities in the high-performing batch of
Mill A and low-performing batchofMill B undergo less change compared to others.
For visual clarity, the 10most abundant species are shown; beige colour represents
other bacteria. Average values were used in process steps where multiple samples
were collected. B Relative abundance of L. amylovorus and L. fermentum during
fermentation steps. In both mills, high-performing batches contained more L.

amylovorus strains. Across all batches and mills, L. fermentum increases and L.
amylovorus decreases by the end of fermentation. C Bacterial species associated
with changes in fermentation performance. High-performing batches showed
increases in L. amylovorus and Weisella species (top row), while other lactic acid
bacteria including L. fermentum, L.buchneri and L.plantarum decreased (bottom
row) (FDR<0.1 in both mills). Species are ordered by decreasing relative abun-
dance. For samples containing more than one datapoint, n = 3 biologically inde-
pendent samples. The centre line denotes themedian value (50th percentile), while
the box contains the 25th to 75th percentiles of dataset. The whiskers mark the 5th
and 95th percentiles, and values beyond these upper and lower bounds are con-
sidered outliers, marked with dots. Source data are provided as a Source Data file.
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producing a vast array of cellulolytic enzymes25. Its presence in the
fermentation process also suggests that this environment may be an
untapped source for novel industrially-relevant enzymes.

Metabolic differences drive strain-specific impact on fermenta-
tion performance
Given the link observed between L. fermentum and poor fermentation
performance, we sought to establish if this phenomenon applied to all,
or a subset of, L. fermentum strains. To elucidate the impact of strain
variation on ethanol yield, we performed static batch cultivations
using the industrial S. cerevisiae strain PE-2 and three unique L. fer-
mentum strains isolated directly from our samples, hereafter referred
to as strains A, B and C (Fig. 4A, Methods). Here, we conducted pair-
wise fermentations that simulated the conditions of a typical industrial
setup, using a chemically semi-defined medium that resembled
sugarcane molasses-based broth2,26 and yeast-to-bacteria ratio of
100:116. To contextualise our findings, we also included the five most
abundant bacteria identified in this study. Collectively, these six spe-
cies accounted for >80% of known bacteria across our samples (Sup-
plementary Data 3).

Our results indicated that different bacterial species can have
varied effects on bioethanol production (Fig. 4A). The addition of L.
amylovorus, L. buchneri or Pediococcus claussenii resulted in increased
ethanol yield, in contrast with negligible impact observed for Lacto-
bacillus helveticus and Zymomonas mobilis, when compared to stan-
dalone fermentation by yeast strain PE-2 (multiple t-test, p <0.05).
Both L. amylovorus and P. claussenii have a homofermentative meta-
bolism, which has been shown to be less detrimental to S. cerevisiae in
this fermentation setup1. Notably, L. buchneri strains have demon-
strated heterofermentative properties, producing considerable
amounts of ethanol and lactate from glucose27. Although this addi-
tional means of ethanol production can contribute to greater ethanol
titres and yields, overgrowth of L. buchneri is linked to increased
bacterial cell count and, in turn, decreased yeast viability, as observed
in our metagenomics analyses (Figs. 2B, 3A, B).

Strikingly, our L. fermentum isolates also displayed varying effects
on fermentation yield, with one strain reducing ethanol yield by
4.63 ± 1.35% (Fig. 4A; multiple t-test, p <0.05). Phylogenomic analysis
based on taxonomic bacterial marker genes (alongside published L.
fermentum genomes) suggests that although all three strains were
isolated from the same setting, this detrimental strain C belongs to a
separate clade to strains A and B (Fig. 4B, Supplementary Fig. 3, Sup-
plementary Data 3, Methods).

Metabolite profiling and co-cultivation experiments revealed
potential mechanisms underlying the distinct traits observed in the L.

fermentum isolates (Fig. 4C, Supplementary Table 1, Methods). We
found that strain C had a markedly different metabolite profile: it
did not produce ethanol and made twice as much lactate (as much as
21 g/L) with no corresponding change in acetate, thereby changing the
overall ratio between these organic acids. This, as well as higher
organic acid titres, was previously described to inhibit bioconversion
performance of S. cerevisiae9,21,28. Moreover, the isolates also demon-
strated strain-dependent effects on yeast growth. Co-cultivations
between yeast and strain C resulted in a reduction of >23% of the yeast
population, when compared to standalone controls (Supplementary
Table 2). By contrast, strains A and B reduced yeast cells by only 7.4%
and 6.5%, respectively. Taken together, our findings suggest that the
inhibition of yeast ethanol production by lactic acid bacteria is medi-
ated not by entire species but at strain-level, facilitated by differences
in organic acid production profile1 andmechanisms that allow them to
adapt more readily to a changing environment and influence yeast
growth and metabolism.

After observing the significant differences in ethanol yield
between the three L. fermentum strains during pairwise cultivations,
we sought to further explore how themetabolic profile of both these
isolates and the yeast strain might impact their physiology. We
compared the growth profiles (final OD and specific growth rate; μ)
of the yeast S. cerevisiae PE-2 inoculated in (1) diluted sugarcane
molasses (20 g/L TRS) against molasses previously fermented with
each of the 3 L. fermentum strains (2) with or (3) without the sup-
plementation of sugars (to restore the original sugar titres) and, (4)
with fresh molasses spiked with key bacterial metabolites (i.e. acetic
and lactic acids). As expected, the cultivation in fresh molasses
achieved the highest OD and μ values, and the lowest values were
observed in the depleted molasses from microbial cultivation.
However, there was a significant difference between the previously
lactobacilli fermented molasses supplemented with a mixture of
sucrose, glucose and fructose, and the fresh molasses spiked with
bacterial metabolites, where higher ODs were achieved in the latter
(Supplementary Fig. 4). Based on these observations, it seems that
the inhibition of yeast growth is not solely driven by organic acid
production by the bacteria, but probably by the lack of essential
nutrients in the media that was previously cultivated with bacteria,
suggesting competition for nutrients among them.

Final ODs (Supplementary Fig. 5) and specific growth rates
(Supplementary Fig. 6) presenteddivergent absolute values between
the different spent media produced by the 3 bacterial strains, with
strain C resulting in lower growth rate, but higher OD values in fer-
mented molasses supplemented with sugars, when compared to the
neutral strain B. This raises the question whether the inhibitory

Fig. 3 | L. fermentum and other bacteria are associated with indicators of low
fermentation performance. A Correlation matrix of industrial fermentation
parameters that showed strong associations throughout the production season (all
sampling timepoints). Size and colour of points show correlation strength and
direction, respectively. Low ethanol yield is associatedwith high acidity titres (dark
red, Spearman’s ρ = −0.84), and increased bacterial cell count is linked to lower

viability of yeast cells (orange, Spearman’s ρ = −0.72). Cross denotes correlations
with FDR>0.1. B Bacterial species associated with fermentation performance
parameters. Species are ordered by decreasing relative abundance. C Increased L.
fermentum is linked to higher acidity titres (Spearman’s ρ =0.64, FDR <0.05), and
increased bacterial cell count (D; Spearman’s ρ =0.63, FDR<0.05). Source data are
provided as a Source Data file.
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effect of such strain is not somewhat related with the production of
another inhibitory molecule, instead of simple nutrient depletion.

Considering the bidirectionality of microbial interactions, we
decided to further evaluate the impact of yeast metabolism on the
growth of the L. fermentum isolates. For that, the cultivation of the
isolates in (1) freshly diluted molasses (20 g/L TRS) was compared
against (2) depleted molasses from yeast cultivation; (3) depleted
molasses from yeast cultivation supplemented with a mixture of
sucrose, glucose and fructose (to restore the original sugar titres); and
(4) molasses spiked with yeast metabolites (i.e. ethanol and glycerol).
Interestingly, the results showed that the addition of yeastmetabolites
seemed to be beneficial for the growth of all isolates, when compared
to freshly diluted molasses (Supplementary Fig. 7). Potentially, gly-
cerol, being a reduced compound, acted as a carbon source for the
bacteria, allowing the population to sustain a higher final OD as com-
pared to the remaining culture media. In addition, the fact that in
depleted molasses supplemented with sugars all bacteria showed a

lower OD as compared to molasses spiked with yeast metabolites
indicates that competition for nutrients might be an important factor
in yeast-bacteria interactions. Moreover, although the beneficial strain
B showed the highest final OD values (Supplementary Fig. 8), the
detrimental strain C was generally less affected by the spent yeast
media under all evaluated conditions as compared to the control
condition (Supplementary Fig. 7). These results suggest that this strain
might be fitter for faster growth during the fermentation, when com-
pared to other L. fermentum strains, and environmental conditions
might play a big role in definingwhich dominant strain would overtake
the L. fermentum population in the process.

Higher temperatures may encourage growth of detrimental L.
fermentum strains during fermentation
Our results indicated that some bacterial strains in the industrial fer-
mentation microbiome can have beneficial effects on bioconversion
efficiency. However, these are often removed from the process by the

Fig. 4 | Specific L. fermentum strains reduce bioethanol production yield,
possibly due to metabolic differences. A Ethanol yield from pairwise fermenta-
tions of industrial yeast strain PE-2 with 3 L. fermentum industrial isolates (blue) and
the 5most abundant bacteria in the bioethanol productionmicrobiome, compared
to standalone fermentation (white). Ethanol yieldswere enhancedby L. amylovorus,
P. claussenii and L. buchneri, and reducedonlyby L. fermentum strain (C) (*p <0.05).
For all experiments, n = 3 biologically independent samples. Data are presented as
mean values +/- SD. Final ethanol yields were compared by multiple t-test (statis-
tical significance analysis with alpha value of 0.05). B Cladogram of the 3 L.

fermentum isolates and other published L. fermentum genomes, based on the
alignment of 40 bacterial marker genes. L. fermentum strains broadly cluster into 4
groups; strain (C) belongs to a different clade than strains (A,B). Internal nodes are
labelled with bootstrap values from 500 resamplings. Image generated using
MEGAX, with the triangular root replaced for visual clarity. C Metabolite profiles
measured from the supernatant of the 3 L. fermentum industrial isolates. Strains A
and B showed similar production of acetate, lactate and ethanol. Strain C (dark
blue, right) produced no ethanol and almost twice asmuch lactate as strains A and
B. Source data are provided as a Source Data file.
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broad-spectrum methods employed by biorefineries. This motivates
the need formore targeted approaches that can be practicably applied
to current industrial setups to control populations of detrimental
bacteria29. Focusing on the retention of L. amylovorus and reduction of
L. fermentum, we found that the latter wasmore likely to flourish at the
end of the fermentation process, irrespective of batch performance or
vat temperature (Fig. 5A, B, Supplementary Fig. 8). As no link was
found between these two parameters, we posited that the bacteria
grew optimally at different temperatures. We tested this on our L.
amylovorus and L. fermentum isolates by comparing their growth at
30 °C and 37 °C (Fig. 5C, Methods). The growth rate of L. amylovorus
was found to be 14% higher at 30 °C, from 0.052 ± 0.026 to
0.045 ±0.005 h−1. In contrast, all L. fermentum strains favoured the
higher temperature, with increases as high as 5-fold (multiple t-test,
p <0.05; strain A: from 0.330 ± 0.001 to 0.211 ± 0.004 h−1; strain B:
0.082 ±0.002 to 0.143 ±0.004 h−1; strain C: 0.080 ± 0.002 to
0.217 ± 0.009 h−1). Vat temperature at the end stage of fermentation
could thus act as a viable predictor of the ratio between these two key
species, providing a means to reduce the impact of detrimental L.
fermentum strains.

Metagenome-assembled genomes analyses
For validation purpose, we implemented a metagenome-assembled
genomes (MAGs) pipeline that integrates state-of-the-art tools into a
streamlined, user-friendly system (Methods). The assembly perfor-
mance is noteworthy, with the resulting MAGs achieving an N50
sequence length exceeding 14 kilobases (Supplementary Data 3).
Subsequently, we conducted taxonomy profiling of the MAGs, which
revealed L. fermentum and L. amylovorus as abundant bacterial species

in 45 and 51 samples respectively (see last column in Supplementary
Data 3). Their abundances across samples are presented in Supple-
mentary Fig. 9A. This finding aligns with the results observed.

In this study, the gene annotations and metabolic characteristics
of three Lactobacillus fermentum strains are presented, using
metagenome-assembled genomes (MAGs) from various samples
(Supplementary Fig. 9B,Methods). The findings indicate a high level of
conservation in genes and metabolic pathways among these strains.
However, two unique genes, specific to M0060 module in category l,
were identified in strain IFO3956. The study also reinforces previous
observations that certain L. fermentum strains are associated with
decreased performance, demonstrating a link between specific bac-
terial strains and their biological impact.

Discussion
In this study, we have used high-resolution metagenomic sequencing
and physiological data from laboratory experiments, combined with
in-depth surveying of two independent biorefineries, to build a com-
prehensive map of the microbial ecology underlying industrial-scale
bioethanol production. We provide insights into how selective pres-
sures imposed by the fermentation process shape microbiome func-
tionality and ultimately, efficiency of the bioconversion process.

The unidirectional nature of the fermentation setup provided a
unique system to study the interactions within a complex microbial
community and how it changes in response to quantifiable changes in
its environment. We demonstrate in vitro that higher temperatures
encourage rapid growth of L. fermentum, which could drive the dom-
inance of bacteria over S. cerevisiae populations that may already be
under heat stress. This, along with increased competition for limited

Fig. 5 | Temperature has different effects on L. amylovorus and L. fermentum
growth rate during industrial fermentation. A L. amylovorus-to-L. fermentum
ratio at each stage of fermentation, summarised for both mills. Blue line denotes
equal proportion of the two bacteria (i.e. zero-fold difference). L. fermentum
populations can overtake L. amylovorus at the end of the bioprocess (right of blue
line). For samples containing more than one datapoint, n = 3 biologically inde-
pendent samples. The centre line denotes themedian value (50th percentile), while
the box contains the 25th–75th percentiles of dataset. The whiskers mark the 5th
and 95th percentiles, and values beyond these upper and lower bounds are con-
sidered outliers, marked with dots. B Vat temperature at each stage of fermenta-
tion, summarised for both mills. Temperature decreases as the bioprocess
progresses. For samples containing more than one datapoint, n = 3 biologically

independent samples. The centre line denotes the median value (50th percentile),
while the box contains the 25th – 75th percentiles of dataset. Thewhiskersmark the
5th and 95th percentiles, and values beyond these upper and lower bounds are
considered outliers, marked with dots. C Growth rates of L. amylovorus and L.
fermentum isolate strains A, B and C at 30°C and 37 °C. Higher fermentation tem-
peratures hamper L. amylovorus growth (left, striped) and favoured L. fermentum
strains (blue), with increases of up to 530%. Error bars denote variation across
experimental replicates (*p <0.05). For samples containing more than one data-
point, n = 3 biologically independent samples. Data are presented as mean
values +/- SD. Final ethanol yields were compared by multiple t-test (statistical
significance analysiswith alpha value of 0.05). Source data are provided as a Source
Data file.
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resources, likely reduces viability of the yeast cells. This interplay
motivates the adoption of sequencing technologies, in place of rough
estimations such as total cell counts, to evaluate and predict bio-
conversion outcome more accurately and thus improve process con-
trol of this industry. Aswedemonstrate in this study, ourmetagenomic
approach alsoenables thediscoveryofmicrobial species and functions
not previously associated with fermentation performance.

We show that bacteria not only hinder but also enhance the
industrial production of bioethanol. Importantly, impact on industrial
productivity is likely to be mediated by particular strains rather than
entire species. This suggests that current microbial management
approaches aimed at removing all bacteria from the bioconversion
process may be counterproductive and in fact reduce overall ethanol
yields. To this end, monitoring of the bacterial community provides
strategic first steps towards improving overall performance of the
industrial process. In addition to ensuring optimal fermentation
activity by S. cerevisiae, tighter control of conditions such as vat tem-
perature may also facilitate the retention of a microbiome that sup-
ports sustainable production of bioethanol.

Considering that the presence of specific L. fermentum strains can
lower ethanol yields by almost 5%, the adoption of more targeted
strategies that minimise the growth of these detrimental strains, while
preserving beneficial L. amylovorus and P. claussenii populations,
could translate to projected gains of over US$1.6 billion30, and a
reduction of >2 million tons in carbon emissions, considering the
Brazilian bioethanol industry alone31.

Methods
Chemicals
Unless stated otherwise, all chemicals and reagents used were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

Sampling strategy
We sampled two independent ethanol mills (named Mill A and Mill B)
in the production season of 2017. Both mills are located in the State of
São Paulo, Brazil in a region with the prevalence of the humid sub-
tropical climate (Cfa) with an annual precipitation of around 2000
mm, and sea-level altitude of ca. 600m. The mills were completely
independent fromeach other, with a distance>300 kmapart, and have
raw material sourced from different producers and sugarcane fields.
Both mills operated via fed-batch fermentations (Melle-Boinot setup),
performing up to 3 cycles per day, and had a similar ethanol produc-
tion capacity with a daily output of ca. 400m3 of ethanol. Mill A was
sampled on dates: 26/05/2017, 26/10/2017 and 17/11/2017. Mill B was
sampled on dates: 02/06/2017, 29/10/2017 and 03/11/2017. The fol-
lowing steps of the ethanol production process were sampled: (1)
Fermentation broth (Feeding line with fresh fermentation media); (2)
start (0–1.5 h after feeding has commenced); (3) middle (1.5−3 h); (4)
end of fermentation (after cessation of feeding); (5) yeast cream after
separation of thewine (which is sent to distillation centrifugation); and
(6) biomass after acidwash treatment (sulphuric acid pH 2.5 for 1 h). As
different vessels are fed sequentially, samples were collected from
different vats at different stages of fermentation in a single day. Sam-
ples were collected directly from the production process and diluted
1x in a sterile Phosphate Buffered Saline (PBS) solution with glycerol
(50%). The samples were readily frozen in dry ice, until final storage in
ultrafreezer (−80 °C). Each mill had several vessels operating in the
same fermentation step, which allowed for process replicates. Samples
were taken in duplicates.

Industrial metadata
The industrial metadata was provided by the operational staff from
each mill and consisted of key process control parameters collected
and registered by industrial staff, related to the ethanol fermentation.
We used the following parameters: ethanol yield, acidity from wine

(gacetic acid equivalent/L, where gacetic acid equivalent is related to the
amount, in g/L, of acetic acid equivalent obtained via titration); yeast
cell counts in the fermentation (CFU); bacteria cell counts in the fer-
mentation (CFU); yeast viability (% of the population); yeast budding
rate (% of the population); vessel current volume (in m3) and vessel
temperature (°C). These are provided in Supplementary Data 1. For
correlation analyses, the data was converted into monthly averages.

Industrial performance calculation
The industrial performance calculationwasobtained by the product of
the multiplication of the parameters directed correlated with process
performance (i.e. ethanol yield and yeast viability), divided by the
product of the multiplication of the parameters inversely correlated
with process performance (i.e. bacterial cell counts and acidity titre):

Industrial perf ormance=
ðEthyield x YeastviabÞ
ðBaccounts x AcidtitreÞ ð1Þ

The score is obtained by multiplying ethanol yield (Ethyield) and
yeast viability (Yeastviab) values anddividing its product by theproduct
obtained from the multiplication of bacterial cell counts (Baccounts)
and wine acidity titre (Acidtitre) values.

Strains used in laboratory experiments
Saccharomyces cerevisiae strain PE-2 was kindly provided by Prof.
Thiago Olitta Basso (São Paulo, Brazil). Strains of Lactobacillus amy-
lovorus and Lactobacillus fermentum were isolated from stored
industrial samples. Strains of Pediococcus claussenii, Lactobacillus
helveticus, Lactobacillus buchneri and Zymomonas mobilis were pur-
chased from ATCC (Manassas, VA, USA).

Isolation and maintenance of industrial strains
Industrial sampleswere serially diluted in sterile PBS andplated inMan
Rogosa Sharpe (MRS) Agar media, containing cycloheximide (0.1%
v.v−1) to inhibit yeast growth. Plates were incubated at either 30 °C or
37 °Cstatically. A loopful of an isolated colonywas grown in liquidMRS
in the same conditions and stored at −80 °C (see section ‘DNA
extraction of bacterial isolates’ below). Yeast strains were cultured in
Yeast Potato Dextrose (YPD) media, at 30 °C. Lactobacilli were cul-
tured in MRS media, either at 30 °C or 37 °C, and Zymomonas mobilis
was cultured at Trypsin Soy Broth (TSB) media, at 30 °C. All cultiva-
tions were performed statically, in ca. 5mL volume.

DNA extraction of bacterial isolates and metagenomic samples
Pure isolates were grown overnight in adequate media and conditions
(please see section Isolation and maintenance of industrial strains).
After growth, cells were pelleted via centrifugation (>10,000 g for
4min.) and genomic DNA was extracted using the MasterPure™ Gram
Positive DNA Purification Kit (Lucigen Corporation, Middleton, WI),
according to manual’s instruction.

DNA extraction of metagenomic samples was performed using
the DNeasy Powerlyzer Powersoil Kit (QIAGEN, Hilden, Germany),
according to manufacturer instructions. Extraction was not possible
for sample collected from the starting broth (Step 1) in Mill A on 17/11/
2017. All DNA extraction quantifications were performed with Qubit
Fluorometer (Thermo Fischer Scientific, Waltham, MS, USA).

Sequencing of bacterial isolates and metagenomes
Shotgun metagenomics and genome sequencing of isolates were
performed on theNextSeq 500usingNextSeqHighOutput v2 Kit (300
Cycles) (Illumina, San Diego, CA, USA) by the Sequencing Core Facility
at The Novo Nordisk Foundation Center for Biosustainability (Tech-
nical University of Denmark, Kongens Lyngby, Denmark). The library
preparation was performed using the KAPAHyperPlus Library Prep Kit
(Roche, Basel, Switzerland), and the indexing kit used was the Dual
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Indexed PentAdapters, Illumina compatible (PentaBase, Odense,
Denmark). Quantity and quality control were performed using Qubit
dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) and DNF-473
Standard Sensitivity NGS Fragment Analysis Kit (1 bp - 6000bp; Agi-
lent, Santa Clara, CA, USA). Average library length was 341 bp. The
sequencing reads length were 150 base pair paired-end (2 × 150 bp).
The index (i7 and i5) reads were 8 bp, dual indexed and flow cell
loading was 1.3 pM. The sequencing chemistry used was 2-channel
sequencing-by-synthesis (SBS) technology, and Phix control V3 (Illu-
mina San Diego, CA, USA) was added (2.5%).

Pre-processing of genomic and metagenomic data
Raw reads underwent quality trimming, i.e. filtering of adaptor and
universal primer sequences, as well as low quality bases (<Q20), reads
<75 bp and duplicated reads (bwa mapping against GRCh37/hg19
reference genome using mem algorithm, extracting reads with >95%
identity)32. More information can be found in Supplementary Data 2
and Supplementary Data 3.

Bacterial isolate assembly
Both reference-guided anddenovogenomeassemblywere performed
on the quality-filtered reads for each isolate. SPAdes 3.1233 was run
using the following parameters: -m 300 -k 33,55,77,99,127. Reference-
assisted genome assembly was performed with idba_hybrid (v 1.1.1)34

with the following parameters: --pre_correction --mink 120 --maxk 180
--step 10 --min_contig 300 --reference [NCBI ref genome]. Two mod-
ifications weremade in the source code before compiling IDBA_UD: (1)
in file src/basic/kmer.h, kNumUint64 was changed from 4–8 to allow
maximum kmer length beyond 124; (2) in file src/sequence/short_-
sequence.h, kMaxShortSequencewas set to 512 to support longer read
length. Assembly statistics are provided in Supplementary Data.

Metagenome co-assembly
To account for a high number of S. cerevisiae in our samples, as well as
fluctuations in the microbial community as it progresses through the
production process, we separated the reads into two groups – S. cer-
evisiae (SC reads) and others (non-SC reads)—and co-assembled them
separately. To do this, read alignment was performed against all S.
cerevisiae genomes (481 in total; NCBI Genome, downloaded August
2018) in concatenated form, using the BWA mem model with default
parameters32. Reads over 95% identity were classified as SC reads; the
remainder were deemed non-SC reads. Each set of reads were con-
catenated separately from sequenced samples, and maximum k-mer
depth was normalised to 100-fold using BBnorm (https://sourceforge.
net/projects/bbmap). Co-assembly was done by IDBA_ud (version
1.1.1)34, using the following parameters: -min_contig 300 –mink 50
–maxk 124 –step 10 –pre_correction. This yielded a total of 241,214
contigs, totalling 254.8Mbp. Assembly statistics are provided in Sup-
plementary Data 2 and Supplementary Data 3.

Gene catalogue of the bioethanol production microbiome
MetaGeneMark v3.2635 (using the default parameters) was used to
predict coding DNA sequence (CDS) regions in the assembled meta-
genome contigs (both SC and non-SC). These 356,115 sequences were
then clustered at 95% nucleotide identity using CD-HIT36. The longest
DNA sequence for each cluster was used to generate the resulting
catalogue of 297,115 non-redundant gene sequences with median
length 336 bp.

Taxonomic profiling of microbial communities
To profile the microbial community (encompassing eukaryotes, bac-
teria and archaea), the assembled metagenome contigs were pro-
cessed using ‘ssu_finder’ tool in the CheckM package (version 1.0.18),
which identifies small-subunit ribosomal RNA genes (i.e. 16 S rRNA in
prokaryotes, 18 S rRNA in eukaryotes). The resulting 337 DNA

sequences were clustered by 99% sequence identity using CD-HIT36.
The longest sequences of each of the 151 resulting clusters were
selected as representatives and classified using the SINA tool (version
1.2.11) from the SILVA rRNA database project37. In cases where classi-
fication was ambiguous, we used the least-common-ancestor derived
from SILVA (lca_tax_slv column). One sequence classified as Plantae
was excluded from the analysis. Sequences deemed “Unclassified”
were further curated using EZBioCloud38 (version 20201012). Further
information is provided in Supplementary Data 4 and 5.

Each metagenomic sample was profiled by mapping its reads to
the 150 SSU sequences, using NGLess39 (version 1.1). Profiling of bac-
terial communities was done using Kraken v0.10.5-beta with default
settings against the minikraken 2017.10.18 8GB database40. Bracken41

v2.0 was used for accurate species abundance estimation with para-
meters -r 150 -l S. Where applicable, species names have been edited in
the main text to reflect updates in taxonomic classification.

Functional analyses of bacterial isolates and metagenomes
The gene catalogue was annotated using eggNOG mapper (version
1.0.3-35-g63c274b, emapper DB: 2.0) with default settings42–44. Reads
from each metagenomic sample were mapped to the gene catalogue
and relative abundances summed by KEGG Module IDs44. This was
done using NGLess version 1.139.

Assembled genomes of the 3 L. fermentum isolate strains were
annotated using Prokka (version 1.14.0)45–47. Functional characterisa-
tion was done using eggNOG-mapper48 (as above), ResFinder and
antiSMASH (web services; February 2022) on default parameters49–51.
Gene content of the 3 L. fermentum strains was compared using their
gene name annotations as provided by Prokka.

Phylogenomic analysis of L. fermentum strains
In addition to the 3 sequenced isolates, we used 22 L. fermentum gen-
omes deemed high-quality by the proGenomes52 database and available
in NCBI RefSeq (Supplementary Table 3; specI_v3_Cluster1407)53. To
infer phylogenomic relationships between the strains, the 41 taxonomic
marker genes were extracted from each genome using the ‘Genome
Classifier’ tool54 and aligned using t_coffee (-method t_coffee_msa,
clustalw_msa)55 with painfully manual corrections. The aligned sequen-
ces for each of the 25 strains were concatenated using
SequenceMatrix56, with ‘N’ of 150bp length inserted to separate each
sequence. The combined multiple sequence alignment (MSA) was used
to test for goodness-of-fit to all nucleotide substitutionmodels available
on MEGA X57. The GTR+G+ I model (General Time Reversible model
with Gamma-distributed rate variation among sites, with proportion of
invariant sites) had the lowest Bayesian Information Criterion (BIC)
score and was used to compute tree topology. Themaximum likelihood
tree was generated from 500 bootstrap replications. These analyses
were also conducted using MEGA X. Habitat information for the 22
published genomes was compiled from Maistrenko et al.58 as well as
NCBI and GOLD59 databases.

Fermentation experiments
Fermentations were performed in 96 deep-well plates, with either
pairwise cultivations (yeast:bacteria at a 100:1 ratio)17, or standalone
yeast or bacteria cultivations. The media used is a semi-synthetic
media, able to simulate sugarcane molasses based media (SM)26.
Briefly, all strains were cultured in their optimal media and conditions
(see above “Strains” and “Isolation of industrial strains and main-
tenance” sections), for up to 48 h. After that, the biomass was calcu-
lated via optical density (OD; 600 nm wavelength). All cells were
pelleted via centrifugation (3400× g, 4 °C, 15min) and washed twice
with sterile PBS. Subsequently, cells were diluted in SM diluted in
sterile Milli-Q H2O (10x, final sugar concentration of 18 g/L) for an OD
value of 1.0. Strains were later diluted in fresh SM media in specific
wells in the 96 deep-well plate to a final OD value of 0.1.
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The lactobacilli growth rate analysis was performed at 30 and
37oC, under agitation (double orbital, fast mode) in Synergy H1 plate
readers (Biotek Instruments, Inc. Winooski, VT, USA). OD was mea-
sured every 30min for 24 h. Growth rate was calculated using the R
package growthcurver60.

All the pairwise cultivations were performed statically, overnight,
at 30 °C, in ca. 1mL volume. The fermentations were performed in
triplicate. The carbohydrate titre and composition (sucrose, glucose
and fructose) and fermentation metabolites (glycerol, ethanol, and
acetic acid) were determined by high-performance liquid chromato-
graphy (HPLC) (UltiMate 3000, Thermo-Fischer Scientific, Waltham,
Massachusetts, USA). The analites were separated using an Aminex
HPX-87H ion exclusion column (Bio-Rad, Hercules, California, USA)
and were isocratically eluted at 30 °C, with a flow rate of 0.6mL/min,
using a 5mM sulphuric acid solution as mobile phase. The detection
was performed refractrometrically.

Ethanol yield was calculated according using the following equa-
tion:

Ethanol yield =
ðEtOHobs x 100Þ

EtOHtheor
ð2Þ

EtOHobs: the observed ethanol titre on each sample. EtOHtheor: the
maximum theoretical ethanol titre for each sample. Obtained by
multiplying the sugar titre from the broth solution with the stoichio-
metric conversion factor for ethanol production (i.e. 0.5111)61.

Community composition was resolved via flow-cytometry (BD
LSRFortessa™, BD Biosciences, Franklin Lakes, New Jersey, USA). A
sample fromeachwell (10 µL)was taken after the overnight cultivation,
and was transferred to a new microplate and diluted in 190 µL PBS
buffer (pH 7.4). Yeast and bacteria populations were resolved via front
and side scatter comparison (SSC versus FSC; Supplementary Fig. 10).

Metabolite profiling
Lactobacilli supernatantmetabolite profilewas analysed viaHPLCafter
48 h of growth (please see section Fermentation experiments for a
detailed description of the HPLC method). A pre-inoculum of lacto-
bacilli stored at −80 °C was grown in MRS for 24 h. After that the OD
from these cultures was measured and fresh MRS media was inocu-
lated with a fixed OD of 0.1 and incubated statically at 37 °C. After
growth, the cells were separated via centrifugation and the super-
natant was sent for further analysis.

Cross-feeding/metabolite inhibition experiments
To investigate the impact of lactic acid bacteria metabolites on the
growth of S. cerevisiae PE-2, three LAB strains of L. fermentum (A, B, and
C) were cultivated in diluted molasses (20 g l−1 TRS) with an initial
inoculation OD of 0.5. After 48 h cultivation, the spent growth media
was collected by centrifugation and filtered through a 0.22 µm filter to
produce the media used for the microplate assay (referred to as
“diluted molasses previously fermented by each of the L. fermentum
strains”). The growth of S. cerevisiae PE-2 was evaluated using a Tecan
Infinite® 200 PROmicroplate reader at a temperature of 30 °C for 24 h
with an initial OD of 0.1 in 200 µL of the following media: (1) diluted
molasses (20 g l−1 TRS), (2) diluted molasses previously fermented by
each of the L. fermentum strains; (3) diluted molasses previously fer-
mented by each of the L. fermentum strains supplemented with a
mixture of sugars (to restore its initial sugar composition) and (4)
diluted molasses spiked with key bacterial metabolites (i.e., acetic and
lactic acids), to restore the composition produced in the diluted
molasses previously fermented by each of the L. fermentum strains.

Similarly, to investigate the impact of yeast growthmetabolites on
lactic acid bacteria growth, S. cerevisiae PE-2 was cultivated in diluted
molasses (20 g l−1 TRS) with an initial inoculation OD of 0.5. After 8 h,
the spent growth media was collected by centrifugation and filtered

through a 0.22 µm filter to produce the media used for the microplate
assay (referred to as “diluted molasses previously fermented by S.
cerevisiae”). The growth of each L. fermentum strain (A, B, and C) was
evaluated using a Tecan Infinite® 200 PRO microplate reader at a
temperature of 30°C for 150h with an initial OD of 0.1 in 200 µL of the
following media: (1) diluted molasses (20 g l−1 TRS), (2) diluted molas-
ses previously fermented by S. cerevisiae; (3) diluted molasses pre-
viously fermented by S. cerevisiae supplemented with a mixture of
sugars (to restore its initial sugar composition) and (4) diluted
molasses spiked with key yeast metabolites (i.e., glycerol and ethanol),
to restore the composition produced in the diluted molasses pre-
viously fermented by S. cerevisiae.

From the growth profiles, specific growth rate (μ) and final OD
values were calculated and Tukey’s Multiple Comparison Test was
performed with p <0.05 to evaluate the statistically significant differ-
ence between the treatments. The media composition utilized in the
microplate experiments can be found in the Supplementary
Tables 4 and 5.

The industrial molasses sample used in this study was obtained
fromanethanol productionplant andwas diluted in distilledwater to a
concentration of 20 g L−1 TRS and sterilised through a 0.22 µm filter.
The final sugar concentration was determined using an ion exchange
columnHPX-87C (Bio-Rad) at 85 °CwithH2Oas themobile phase and a
flow rate of0.6 lmin−1 for glucose, fructose, and sucrose. Themicrobial
metabolites concentrations were obtained using an ion exchange
column HPX-87H (Bio-Rad) at 60 °C with 5mM H2SO4 as the mobile
phase and a flow rate of 0.6 lmin−1 for lactic acid, acetic acid, glycerol,
and ethanol.

Statistical analyses
Rarefaction of read counts and subsequent analyseswere doneusing R
and packages vegan62 and tidyverse63. Community compositions were
compared using Bray-Curtis distance on species relative abundance
and Permutational Multivariate Analysis of Variance (PERMANOVA)
with 999 permutations and the Bray-Curtis method was applied by
providing Mill/Process step/Date as function. Spearman’s correlation
coefficient was calculated for each pair of industrial metadata vari-
ables, and between metadata variables and species abundances. False
discovery rate (FDR) was calculated using Benjamini-Hochberg (BH)
method, with FDR <0.1 used as cut-off. Statistical analyses for fer-
mentation experiments were performed using the software GraphPad
Prism 8. Final ethanol yields were compared by multiple t-test (statis-
tical significance analysis with alpha value of 0.05).

Metagenome-assembled genomes pipeline
In this section, we present the comprehensive and detailed metho-
dology for the analysis of metagenomic raw data64, addressing every
aspect from initial quality control to the final annotation and classifi-
cation stages/MAG production:

1. Quality control and trimming: The process starts with paired
end reads of 150 bp. FastQc (v0.12.1) inspects the raw reads for quality
control, providing a preliminary assessment of potential issues in the
sequence data. Subsequent trimming is performed using bbduk
(v39.00), a kmer-based decontamination tool. This step involves the
removal of adaptor sequences and the exclusion of sequences with a
Phred score<33 and aminimumread length of 100bp. Theparameters
set for this process include qin = 33 for input quality offset, hdist = 1 for
Hamming distance in error correction, and trimq = 30 for quality
trimming, among others.

2. Assembly and dereplication: The initial co-assembly of the
trimmed reads is executed with MEGAHIT (v1.2.9)65 for every sample,
which assembles by incrementing odd-number kmers to avoid palin-
dromes. It’s important to note thatweopted for a per-sample assembly
approach withMEGAHIT to ensure specificity and to accurately reflect
the diversity inherent in different fermentation processes and mills.
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The subsequent dereplication step involvesCD-HIT-EST (v4.8.1),where
contigs with a minimum of 99% global sequence similarity are com-
bined to eliminate redundant sequences. A secondary assembly is then
performedwith CAP3, focusing oncontigswith an identity and overlap
length cutoff of ≥97%66.

3. Contig quality control: After assembly, the contigs undergo
quality control using Quast.

4. Coverage analysis and binning: The sequencing depth or cov-
erage is determined by aligning the short reads to the co-assembled
contigs using BWA MEM (v0.7.17-r1188) and further processed with
Samtools (v1.16.1) and Bedtools (v2.31.0). This data is then utilized in
the binning process, employing state-of-the-art tools like MetaBAT2,
MaxBin2, and CONCOCT65. These tools are chosen to minimize biases
and maximize accuracy, with each providing a unique approach to
binning. The outputs from these tools are aggregated using DASTool
(v1.1.6), which refines the bins by dereplicating contigs and selecting
high-quality candidates.

5. Quality check of binned contigs: The quality of the binned
contigs is assessed using CheckM (v1.2.2) with its “lineage wf” work-
flow. This step is crucial for evaluating the completeness and con-
tamination levels of the binned contigs. Meta-QUAST is also employed
for additional quality control67.

Functional annotation and taxonomical identification of MAGs
For functional annotation, tools like CAT/BAT, PROKKA, and eggNOG
are used, with Prodigal (v2.6.3) serving as the protein predictor. The
predicted proteins are compared against the NCBI nonredundant
database using DIAMOND (v2.1.8.162). Taxonomical identification is
performed using KRAKEN2 (v2.1.3), a kmer-based method for fast and
accurate classification, using its standard database68.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Metagenomic sequencedata aredeposited in the EuropeanNucleotide
Archive under accession number PRJEB33675. Assembled genomes are
under accession PRJEB52385. The gene catalogue created in this study
is available via the Zenodo data archive [https://zenodo.org/records/
11230028]. Source data are provided with this paper.
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