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Recombinant modified vaccinia virus Ankara (MVA), encoding the measles virus (MV) fusion (F) and
hemagglutinin (H) (MVA-FH) glycoproteins, was evaluated in an MV vaccination-challenge model with ma-
caques. Animals were vaccinated twice in the absence or presence of passively transferred MV-neutralizing
macaque antibodies and challenged 1 year later intratracheally with wild-type MV. After the second vaccina-
tion with MVA-FH, all the animals developed MV-neutralizing antibodies and MV-specific T-cell responses.
Although MVA-FH was slightly less effective in inducing MV-neutralizing antibodies in the absence of passively
transferred antibodies than the currently used live attenuated vaccine, it proved to be more effective in the
presence of such antibodies. All vaccinated animals were effectively protected from the challenge infection.
These data suggest that MVA-FH should be further tested as an alternative to the current vaccine for infants
with maternally acquired MV-neutralizing antibodies and for adults with waning vaccine-induced immunity.

Measles is a highly contagious infectious disease that con-
tinues to be a major cause of morbidity and mortality for
infants, with an estimated number of 1 million deaths annually
(8). Inactivated whole-virus vaccine preparations used in the
1960s did not induce long-lasting protection and were shown to
predispose for severe immunopathological complications col-
lectively referred to as the atypical measles syndrome (7, 14).
In the 1970s, live attenuated measles virus (MV) vaccines
which proved to be safe and effective were introduced. Appli-
cation of these vaccines, which are still being used, resulted in
a significant reduction of the global numbers of measles cases
and largely abrogated the circulation of wild-type MV in the
industrialized world. However, measles vaccination proved less
effective in a number of developing countries, where measles
continues to be endemic. Several factors are responsible for
this reduced effectiveness, most of which are related to logistic
problems like vaccination coverage and cold chain mainte-
nance (3). However, an important additional factor is that
measles frequently occurs at an early age (<9 months) in
developing countries. At this age, preexisting MV-specific ma-
ternal antibody may interfere with the replication of live at-
tenuated vaccine virus, resulting in suboptimal protection upon
vaccination (16). The World Health Organization has pro-
posed a global measles eradication strategy based on the cur-
rent live attenuated MV vaccine (28). However, it is uncertain
if this vaccine will be able to achieve a sufficient level of herd
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immunity to completely abrogate circulation of MV. Several
outbreaks of clinical and subclinical measles have been de-
scribed among vaccinated populations (10), and in the final
stages of an eradication campaign, vaccines which are able to
boost low levels of immunity may be needed.

In recent years, a number of new generation candidate MV
vaccines have been developed, including immune stimulating
complexes (iscoms), DNA vaccines, and recombinant poxvi-
ruses (17). An iscom-based vaccine proved to be effective in
inducing protective immunity in macaques even in the pres-
ence of passively acquired MV-neutralizing antibodies (26). In
contrast, recombinant vaccinia viruses (rVVs) encoding the
MV fusion (F) and hemagglutinin (H) proteins, although able
to induce strong MV-specific virus-neutralizing (VN) antibody
and T-cell responses, were only partially effective when used in
the presence of passively acquired MV-neutralizing antibodies
(26). In addition, concerns about the safety of vaccinia virus
made this vaccine candidate less attractive. Recently, recom-
binant poxviruses were developed based on the replication-
deficient modified vaccinia virus Ankara (MVA) (15). This
strain was proven safe for use in humans during its application
in the late stage of the smallpox eradication campaign (23).
Compared to fully replication-competent strains of vaccinia
virus, MVA induced similar expression levels of the recombi-
nant genes (24) and induced equal or better B- and T-cell
responses in animals (11, 21, 25).

Here we describe the evaluation of a recombinant MVA-
based candidate vaccine containing the MV F and H (MVA-
FH) genes in an MV vaccination-challenge model in ma-
caques. MVA-FH successfully induced MV-specific antibody
and T-cell responses, including CD8" T cells, both in the
absence and presence of passively transferred MV-specific an-
tibodies. All vaccinated macaques were still effectively pro-
tected from intratracheal challenge with wild-type MV 1 year
after vaccination. The use of a nonreplicating candidate mea-



VoL. 74, 2000

A

MVA

PH5

del 11 MV H delll

o
S T
Q 1
= S
= 0 =
220 - L"‘"’

30- =

14 - &

MVA-BASED MEASLES VIRUS VACCINE 4237

P7.5

del 111 MV F del Il

MVA - H
MVA -F

-H

-F,

FIG. 1. Expression of MV F and H glycoproteins by MVA-FH. (A) Diagram of the genome of MVA-FH. del 11, deletion II; del III, deletion III; PH5, modified
HS5 promoter; P7.5, 7.5 promoter. (B) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [*>S]methione-labeled proteins from CEF infected with MVA-FH
and immunoprecipitated with measles polyclonal antibody. MW, molecular weights of marker proteins in thousands. The positions of MV H, F0, F1, and F2 proteins

are indicated.

sles vaccine is not likely to predispose for atypical measles-like
immunopathology. Collectively, these properties would favor
MVA-FH as a candidate measles vaccine that either alone or
as part of a prime-boost strategy could be used in a measles
eradication program.

(This paper was presented at the XIth International Con-
gress of Virology, Sydney, Australia, 10 August 1999.)

MATERIALS AND METHODS

Macaques. The studies were carried out with eight captive-bred subadult
healthy female cynomolgus macaques (Macaca fascicularis) which were all con-
firmed MV seronegative. The animals were housed together except during the
vaccination and challenge periods, when they were kept as pairs in separate
cages.

Viruses. A recombinant MVA that expresses the MV (Edmonston strain) F
and H glycoproteins was made by using previously described procedures (5). The
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FIG. 2. Development of VN antibody responses in plasma of macaques vac-
cinated at weeks 0 and 4 (indicated with arrows) with MVA-FH in the absence
(group A) or in the presence (group B) of passively transferred MV-specific VN
antibodies.

F and H genes, contained within plasmids pTM-F/MV and pTM-H/MV, respec-
tively (22), were excised by digestion with Ncol and Stul, and the overhanging
ends were filled in with Klenow enzyme. The H gene was inserted into the Smal
site of pLW-17 (29), a plasmid transfer vector which contains the modified H5
promoter (20) to express the recombinant foreign gene and inserts within dele-
tion IT of MVA. The F gene was inserted into the Smal site of the MVA vector
pLW-24, which contained the 7.5 promoter of vaccinia virus (13) and MVA
flanks for insertion into deletion III of MVA (24). Initial attempts to make
recombinant MVA stably expressing the F protein under stronger vaccinia virus
promoters, modified HS or the strong synthetic promoter, were unsuccessful.
Recombinant MVA viruses expressing the measles virus F or H proteins were
made by transfecting pLW-17 or pLW-24, containing the measles virus H or F
gene, respectively, into chick embryo fibroblasts (CEF) that were infected with
MVA as previously described (22). Recombinant virus was obtained by immu-
nostaining recombinant MVA foci utilizing polyclonal anti-MV virus rabbit se-
rum (Accurate Scientific, Westbury, N.Y.). A double recombinant MVA express-
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ing both the F and H measles glycoproteins was made by transfecting the MV
H-containing plasmid into the single recombinant MVA expressing the F gene.
Double recombinant MVA foci were obtained by staining with polyclonal an-
ti-MV antiserum that had been adsorbed with CEF cells infected with the single
recombinant MVA-F. This double MVA recombinant was designated MVA-FH.
Stocks of MVA and recombinant MVA-FH were prepared in secondary CEF as
previously described (22).

The recombinant MVA was aliquoted and stored at —80°C. The samples were
thawed and sonicated in ice for 30 s with a cup sonicator (Sonicor Instruments
Corporation, Copiaque, N.Y.) shortly before inoculation.

Immunization and sampling. Macaques were inoculated intramuscularly and
intranasally (10° PFU at each site) at weeks 0 and 4. Six macaques were vacci-
nated with MVA-FH, of which three were naive (animal numbers H1, H5, and
H7) and three had been passively immunized with anti-MV serum (BMS94) 48 h
before vaccination (animal numbers UH3, UH4, and K128) (26). This serum,
which has a specific virus-neutralizing (VN) antibody level of 40 IU/ml (6), was
administered intravenously at a dosage of 0.7 ml per kg of body weight. This
resulted in VN antibody levels at the time of the first vaccination of about 0.3
IU/ml, as was also observed in a previous study (26). The two other macaques
(animal numbers H4 and H6) were vaccinated with wild-type MVA (MVA-wt) at
identical dosages and vaccination routes. During the 1-year period between
vaccination and challenge, heparinized blood samples were collected at regular
intervals, with initial intervals of a week but later less frequently. To be able to
compare the data with those from previous vaccination experiments, plasma
samples obtained from macaques vaccinated with MV-Schwarz or rVV-FH were
reassayed (26).

Challenge and sampling. One year after vaccination, the macaques were
challenged with wild-type MV as previously described (26, 27). Briefly, 1,000
50% tissue culture infective doses (TCIDs5s) of the wild-type MV strain BIL was
diluted in 5 ml of phosphate-buffered saline (PBS) and administered via the
intratracheal route at day 0. Pharyngeal epithelial cells (PEC), lung lavage cells
(LLC), and peripheral blood mononuclear cells (PBMC), as well as plasma, were
collected at days 3, 6, 9, 13, and 17, and additional plasma and PBMC samples
were collected at days 0, 24, and 41. PEC were collected by using a Cytobrush
Plus (Medscand Medical AB, Malmo, Sweden) that was applied into the throat
by using a laryngoscope. After sampling, the brush was transferred into a tube
that contained 2 ml of RPMI 1640 supplemented with penicillin (100 U/ml),
streptomycin (100 pg/ml), L-glutamine (2 mM), 2-mercaptoethanol (1075 M),
and 10% fetal bovine serum (FBS) (referred to as culture medium [CM]). The
tube was vortexed, and following removal of the brush, cells were pelleted by
centrifugation (5 min at 400 X g). The cell pellet was then resuspended in 1 ml
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FIG. 3. Development of MV glycoprotein-specific plasma IgG responses in macaques vaccinated at weeks 0 and 4 (indicated with arrows) with MVA-FH in the
absence (A) or in the presence (B) of passively transferred MV-specific VN antibodies. The control macaques (C) were vaccinated with MVA-wt.
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FIG. 4. Development of MVA-specific plasma IgG responses. The first and
second vaccinations are indicated with arrows.

of CM. Lungs were lavaged with 10 ml of PBS by a small catheter that was
applied into the lungs by using a laryngoscope. About 5 ml of lavage fluid
containing the LLC was recovered. This LLC suspension was transferred to a
tube, pelleted by centrifugation (5 min at 400 X g), and resuspended in CM.
PBMC were isolated from heparinized blood by density gradient centrifugation
(20 min at 600 X g) by using a gradient consisting of Optiprep (density, 1.32 g/ml;
Nycomed), 6% Dextran (Sigma) in H,O, and 10 times concentrated PBS
(16.7%~75%-8.3% [volivoljvol]).

MV reisolation. Following MV challenge, virus replication was monitored by
cocultivating the LLC, PBMC, and PEC (collected at days 3, 6, 9, 13, and 17)
with a human Epstein-Barr virus-transformed B-lymphoblastic cell line (hu.B-
LCL). Four replicates of 100 wl of PEC suspension were cocultivated with 2 X
10° cells of hu.B-LCL in 1 ml of CM in a 24-well plate (Greiner Labor Technik,
Niirtingen, Germany). The MV cytopathic effect (CPE) in one or more of the
PEC-hu.B-LCL cocultivations was interpreted as positive reisolation. Virus iso-
lations from LLC and PBMC were carried out by cocultivation of a 2-log dilution
range of the macaque cells with a standard amount of the hu.B-LCL. Briefly,
3.2 X 10° LLC or PBMC were divided over eight wells of a 96-well round-bottom
plate (Greiner) in CM (200 wl/well). In the case of the PBMC, 1 pg of phyto-
hemagglutinin-L (Boehringer Mannheim, Almere, The Netherlands) was added
to this medium and the cells were incubated at 37°C for 2 h. Subsequently, a 2-log
dilution range of the LLC or PBMC was prepared in the plate (ranging from 2!
to 27, and hu.B-LCL cells were added at an amount of 1 X 10* cells/well.
After screening for the MV CPE during the following week, the numbers of
MV-infected cells were calculated by using the formula of Reed and Muench
(19).

Vaccinia virus-specific antibody response. Rabbit kidney (RK-13) cells were
infected with wild-type vaccinia virus at a multiplicity of infection of 10. Seven
hours after infection, the cells were trypsinized and used as target cells in a
fluorescence-activated cell sorter (FACS)-measured immunofluorescence assay.
The cells (1 X 10° to 3 X 10° cells/100 pl) were incubated with plasma samples
diluted 1:100 in PBS supplemented with fetal bovine serum (FBS). After a 1-h
incubation on ice, cells were washed and subsequently incubated with fluorescein
isothiocyanate (FITC)-labeled rabbit anti-human immunoglobulin G (IgG)
[F(ab’), fragments; DAKO, Glostrup, Denmark]. After another hour on ice,
cells were washed twice with PBS and fixed with 1% paraformaldehyde for 20
min on ice. Fluorescence signals were measured by using a FACScan (Becton
Dickinson). Fluorescence intensity was quantified by determining the geometric
mean of the fluorescence histograms.

MV-F- and MV-H-specific immunofluorescence assay. Antibodies directed
against the F and H glycoproteins were detected by a FACS-measured immu-
nofluorescence assay using transfected human melanoma cell lines as targets, as
previously described (4). Briefly, Mel-JuSo cells (wild type, MV-F, and MV-H)
were incubated with plasma samples diluted 1:100 in PBS supplemented with 2%
FBS (1 X 10° to 3 X 10° cells/100 pl). After a 1-h incubation on ice, cells were
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FIG. 5. Development of MV glycoprotein-specific plasma IgG responses in
macaques vaccinated at weeks 0 and 4 with MV-Schwarz or rVV-FH in the
absence (A and B, respectively) and presence (C and D, respectively) of MV-
specific VN antibodies. p.i., passively immunized; ND, not done (due to unavail-
ability of historical plasma).

washed and subsequently stained with FITC-labeled rabbit anti-human IgG or
IgM [F(ab’), fragments; DAKO]. Fluorescence signals were quantified by a
FACScan.

MV-N-specific IgM capture ELISA. IgM antibodies directed against the MV
nucleoprotein (N) were measured in a capture enzyme-linked immunosorbent
assay (ELISA) using purified recombinant baculovirus-expressed N protein (kind
gift of T. F. Wild, Lyon, France) directly conjugated with horseradish peroxidase
(N-HRP). ELISA plates (Greiner) coated with rabbit anti-human IgM antibod-
ies (Meddens Diagnostics, Vorden, The Netherlands) were washed with demin-
eralized H,O containing 0.05% Tween 80, followed by incubation with plasma
samples diluted 1:100 in ELISA buffer (Meddens Diagnostics). After 1 h at 37°C,
the plates were washed and incubated with N-HRP. Following another hour at
37°C, the plates were washed again and incubated with substrate solution (tet-
ramethylbenzidin; Meddens Diagnostics). Results were expressed as the absor-
bance at 450 nm.

MV VN assay. Serial 2-log dilutions (starting at 272) of heat-inactivated (30
min at 56°C) plasma samples were incubated in duplicate with 60 TCID5,s of MV
Edmonston for 1 h at 37°C in 96-well flat-bottom plates (Greiner) in Dulbecco
minimal essential medium supplemented with 2% FBS. Subsequently,
trypsinized Vero cells were added at a concentration of 1 X 10* cells/well. Plates
were incubated for 5 days at 37°C and visually monitored for the MV CPE. VN
antibody titers were calculated as the means of the highest plasma dilutions still
yielding a 100% reduction of cytopathic changes. The titers were transformed to
international units per milliliter by using the National Institute for Biological
Standards and Control reference serum (5 IU/ml; human anti-MV serum, 2nd
International Standard 1990), which in our assay had a VN antibody titer of 2%
(6). The VN antibody level in a plasma sample expressed as international units
per milliliter was calculated by using the following formula: VN level = (2¥/
2285) % 5 TU/ml, in which 2* is the VN titer measured in that plasma sample.
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FIG. 6. MV-specific T-cell responses in PBMC bulk cultures of macaques 8
weeks after vaccination with MVA-FH in the absence (A) or presence (B) of
passively transferred MV-specific VN antibodies or with MVA-wt (C). PBMC
were stimulated once in vitro with autologous MV-infected mac.B-LCL cells and
expanded in the presence of rhIL-2 alone or in the presence of both rhIL-2 and
rhIL-4 (indicated with an asterisk). After 12 to 14 days, cells were harvested and
treated with chymotrypsin to strip preexisting CD69 molecules from the mem-
brane surface. Subsequently, cells were restimulated for 6 h with UV-inactivated
autologous MV-infected mac.B-LCL cells, uninfected mac.B-LCL cells, or with-
out mac.B-LCL cells (medium), and the membrane expression of CD3, CD8, and
CD69 was determined. The percentages of CD69-positive cells in the CD3™
lymphocytes, as gated on the basis of an FSC/SSC plot, are shown for CD8" (I)
and CD8™ (II) cells. ND, not done (because no cells could be expanded).

MV-specific T-cell responses. PBMC were isolated as described above. Cells
were cultured in 96-well round-bottom plates (Greiner) in CM supplemented
with 1% pooled macaque serum containing MV-specific antibodies at a concen-
tration of 1 X 10° cells/well. These cells were cocultivated with UV-irradiated
autologous herpesvirus papio-transformed B cells (mac.B-LCL) which had been
infected with MV Edmonston 48 h before at an effector-to-target ratio of 0.1.
After 3 days, recombinant human interleukin-2 (rhIL-2) or a mixture of rhIL-2
and rhIL-4 was added, and cultures were maintained for 12 to 14 days. Cells were
harvested and treated with chymotrypsin (type II; Sigma) in order to remove
CD69 from the membrane (12). Briefly, cells were washed with PBS, incubated
with 0.1% (wt/vol) chymotrypsin in PBS for 10 min at 37°C, and subsequently
washed with CM. Subsequently, cells were cultivated for 6 h with UV-irradiated
autologous MV-infected mac.B-LCL cells, uninfected mac.B-LCL cells, or with-
out mac.B-LCL cells. After this restimulation, cells were stained with anti-CD3-
FITC (BPRC, Rijswijk, The Netherlands), anti-CD69-PE (Becton Dickinson),
and anti-CD8-RPE/Cy5 (DAKO) and fluorescence was measured by using a
FACScan. CD69 expression on CD8™ and CD8" cells was determined in the
CD3" fraction of the lymphocytes as gated in a forward light scatter versus side
light scatter diagram. During previous experiments we had observed that varying
percentages (ranging from 5 to 25%) of cells continued to express low levels of
CD69 after 2 to 3 weeks of bulk culture. Therefore, we removed any residual
CD69 by using chymotrypsin, ensuring that CD69 levels measured in the assay
were indeed induced during the 6-h restimulation. Background levels of CD69-
expressing cells in the medium control of our assay represent cells that either
produce CD69 endogenously or express CD69 from recycled membranes.

The animal study was approved by the Local Animal Ethics Committee of the
National Institute of Public Health and the Environment, Bilthoven, The Neth-
erlands and carried out according to animal experimentation guidelines.
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RESULTS

Expression of F and H glycoproteins by recombinant MVA.
Recombinant MVA that expressed either the MV F or H
proteins or both F and H proteins were constructed. The ge-
nome of the double recombinant virus is represented in Fig.
1A. Expression of the MV proteins was demonstrated by la-
beling MVA-infected CEF with [>*S]methionine, incubating
the lysates with MV polyclonal or monoclonal (not shown)
antibodies, and analyzing the bound proteins by sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis (Fig. 1B). The H
glycoprotein, from cells infected with MVA-H or MVA-FH,
migrated as a single major band of the expected size. The F
glycoprotein was resolved as F1 and F2 subunits. When mon-
key BSC-1 cells were infected with the double recombinant
virus but not with either of the single recombinants, syncytia
formed, indicating that F and H proteins were expressed on the
cell surface and were functional (data not shown). The double
recombinant MVA-FH was used for all vaccination studies.

MVA-FH vaccination induced antibody responses. As shown
in Fig. 2 and 3A, vaccination of three MV-seronegative ma-
caques with MVA-FH induced MV-neutralizing antibodies
(ranging from 2.0 to 4.0 IU/ml) and F-specific and H-specific
antibodies (fluorescence signals ranging from 50 to 87 and
from 56 to 294, respectively). Antibody responses proved to be
boosted in all three animals by a second MVA-FH vaccination
4 weeks later (ranging from 10 to 40 IU of VN antibody/ml,
and fluorescence signals ranging from 340 to 649 for F-specific
antibodies and 198 to 523 for H-specific antibodies). All ani-
mals remained MV seropositive until challenge a year later.
Initial vaccination of macaques passively immunized with MV-
specific VN antibodies induced lower MV-specific antibody
responses than in vaccinated naive animals, but after the
booster vaccination, high levels of VN antibodies were induced
in these animals as well (Fig. 2). At the moment of the second
vaccination, all three of these macaques had VN titers of about
0.1 TU/ml. VN serum antibody titers measured 1 year after the
first vaccination ranged from 0.7 to 3.6 IU/ml in these six
MVA-FH-vaccinated macaques. The H antibody titers of the
passively immunized monkeys were also boosted to levels com-
parable to those of the naive animals, whereas the F-specific
antibodies remained lower (Fig. 3). No MV-specific antibody
responses were detected in the control animals vaccinated with
MVA-wt (Fig. 3C). The kinetics of vaccinia virus-specific an-
tibody responses were similar in all eight macaques upon pri-
mary and secondary vaccinations (Fig. 4), indicating that the
passively acquired MV-specific antibodies did not prevent in-
fection of cells by MVA.

For comparison of the immunogenicity of MVA-FH with
those of MV-Schwarz and rVV-FH, we reassayed plasma sam-
ples from a previous experiment (26) in which the same vac-
cination regimen had been used. The levels of MV-neutral-
izing, as well as F- and H-specific, antibodies induced by
MVA-FH in seronegative macaques were similar to those in-
duced by rVV-FH, but slightly lower than those induced by
MV Schwarz (Fig. 5A and B) (26). However, when comparing
the animals vaccinated in the presence of passively transferred
MV-specific antibodies, the responses measured in the MVA-
FH-vaccinated animals were substantially higher than those of
macaques vaccinated with either MV-Schwarz or rVV-FH
(Fig. 5C and D) (26).

MVA-FH vaccination-induced MV-specific T-cell responses.
Eight weeks after the second vaccination, the phenotype of the
vaccination-induced MV-specific T cells was determined. Fol-
lowing MV-specific bulk stimulation of PBMC with MV-in-
fected autologous mac.B-LCL cells, the presence of MV-spe-
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FIG. 7. Number of MV-infected cells/10® LLC (open bars) or PBMC (black bars) at different times after intratracheal challenge with 10* TCIDs,s of MV-BIL.
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FH-vaccinated macaques, while significant levels of MV were
isolated from PEC, LLC, and PBMC of the MVA-wt-vacci-
nated animals (Fig. 7). The three animals from which no virus
could be reisolated all showed a rise in MV-specific antibody
levels, suggestive of a low-level challenge virus replication (Fig.
8). Only one of the six vaccinated animals (H1) did not show a
serological booster response following challenge. As an addi-
tional parameter of infection, IgM antibodies specific for
MV-N (not included in the vaccine construct) were measured
following challenge. The observed levels proved to correlate
well with the serological booster responses of the F- and H-
specific and VN antibodies: no N-specific IgM could be mea-
sured in macaque H1, low levels of N-specific [gM were mea-
sured in the other five MVA-FH-vaccinated animals, and high
levels of N-specific IgM were measured in the wild-type MVA-
vaccinated animals (Fig. 9).

DISCUSSION

In the present study, we have shown that macaques are
effectively protected from intratracheal challenge with wild-
type MV 1 year after vaccination with MVA-FH irrespective of
the presence of passively transferred homologous MV-specific
antibody. These experiments were carried out with a macaque
model for MV infection, with which the same parameters had
been previously studied upon vaccination with MV-Schwarz,
rVV-FH, and MV-iscom by using essentially the same regimen
(26). The level of passively transferred homologous MV-spe-
cific antibodies used was also identical and corresponded to
levels of serum VN antibodies that in epidemiological studies
have been shown to interfere with the outcome of measles
vaccination of infants (2). These levels relate to serum anti-
body levels that may be expected in infants of 6 to 9 months of
age. In a cohort of 160 Sudanese infants aged about 6 months,
we found levels below 0.1 IU/ml in 22% (n = 35), levels
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between 0.1 and 0.2 IU/ml in 45% (n = 72), and levels above
0.2 IU/ml in 33% (n = 53) of the cohort (unpublished data).
This level had been shown to completely abolish the induction
of MV-specific antibodies by MV-Schwarz vaccination and al-
most completely abolish the induction of this response by
rVV-FH vaccination (26). In contrast, a candidate MV-iscom
vaccine was shown to induce high titers of MV-specific serum
antibody both in the presence and absence of passively trans-
ferred homologous MV-specific antibody (26). In the present
study, MVA-FH was shown to induce higher levels of MV-
specific antibodies than rVV-FH when administered in the
presence of passively transferred neutralizing antibodies. We
hypothesize that this is related to the relatively high MVA-FH
doses used for vaccination (1 X 10%2 PFU per animal for
rVV-FH versus 1 X 10® PFU per animal for MVA-FH). For
safety reasons (15), lower doses of rVV-FH had been admin-
istered in the previous experiment (26). The level of VN anti-
bodies present at the time of the second vaccination (about 0.1
IU/ml; Fig. 2), which may at least in part be attributed to the
passive immunization, has been shown to interfere with the
replication of MV (26). The serological data also showed that
the vaccinia virus-specific immune response induced by the
first MVA-FH vaccination did not have a major impact on the
immunogenicity of the second vaccination: it did not prevent
a clear booster effect in the serological responses against ei-
ther MV or MVA (Fig. 2, 3, and 4). Eight weeks after the
second vaccination, all the vaccinated macaques showed a pro-
nounced MV-specific T-cell response, as evidenced by MV-
specific induction of CD69 expression by CD3*CD8 and of
CD3"CD8" bulk cultured cells (Fig. 5). This observation is of
particular interest since in previous experiments we have
shown that also in the absence of MV-neutralizing antibodies,
vaccinated macaques may still be largely protected from chal-
lenge MV infection, indicating a protective effect of thus in-
duced specific T-cell responses (26).

One year after vaccination, all the macaques were intratra-
cheally challenged with MV-BIL (1, 26, 27). All the vaccinated
macaques proved to be effectively protected from MV infec-
tion. Only low cell-associated virus loads could be demon-
strated in lung lavages and peripheral blood, whereas, as ex-
pected, full-blown infection was demonstrated in the MVA-wt
sham-vaccinated macaques. The increase in MV-neutralizing
as well as F- and H-protein-specific antibody levels after chal-
lenge observed in all the macaques, and the induction of N-
protein specific IgM antibodies in five of the six vaccinated
macaques, confirmed that in all the vaccinated macaques, low-
level virus replication had still occurred upon challenge.

TABLE 1. Average VN antibody titers in vaccinated macaques

VN antibody titers (IU/ml) at the time of:

Vaccine i PaSSiYe]}ij” 4 weeks post-
immunize Prime Booster” Challenge® P
challenge
MVA-FH Yes 0.2 0.05 0.2 3
No <0.03 0.5 0.5 10
rVV-FH* Yes 0.16 <0.08 0.1 100
No <0.08 1.7 1 80
MV-iscom? Yes 016 02 3 100
No <0.08 0.5 2 300
MV-Schwarz? Yes 0.16 0.1 0.2 90
No <0.08 8 3 2

“ Passively transferred MV-specific antibody (0.2 IU/ml) 48 h before prime.
b Second vaccination 4 weeks after the prime.

¢ Intratracheal challenge with wild-type MV (10° TCIDss of BIL strain).

4 Data were taken from the work of Van Binnendijk et al. (26).
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Collectively, our data show that vaccination with MVA-FH
in a two-dose intramuscular-intranasal regimen in the presence
of passively acquired MV-neutralizing antibodies induces long-
lasting protective immunity against challenge with wild-type
MV. In previous experiments this was also achieved with MV-
iscom, but not with live attenuated measles vaccine (MV-
Schwarz), or with low doses of rVV-FH (Table 1). A clear
advantage of MVA-FH over rVV-FH is its documented safety
profile, since we have recently shown that even in severely
immunosuppressed macaques neither virus replication nor any
adverse effects occurred upon MVA infection (Stittelaar et al.,
submitted for publication). Furthermore, our data suggest that
MVA-FH may be used to boost low levels of vaccine-induced
immunity more efficiently than live attenuated MV vaccine.
This could become of major importance during the final stages
of the MV eradication campaign.

Finally, it is important to note that a live nonreplicating
vaccine candidate such as MVA-FH may not be expected to be
associated with immunopathological phenomena like the atyp-
ical measles syndrome associated with the use of inactivated
MV vaccines (7, 9, 18). We conclude that our data favor the
further exploration of the value of MVA-FH as a candidate
replication-deficient vaccine as an alternative to the present
vaccine for infants with maternally acquired MV-neutralizing
antibody and for adults with waning vaccine-induced immu-

nity.
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