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Abstract 

The androgen receptor (AR) is a ligand-dependent nuclear transcription factor belonging to the steroid hormone nuclear receptor family. Due to 
its roles in regulating cell proliferation and differentiation, AR is tightly regulated to maintain proper le v els of itself and the many genes it controls. 
AR dysregulation is a driver of many human diseases including prostate cancer. Though this dysregulation often occurs at the RNA level, there 
are man y unkno wns surrounding post-transcriptional regulation of AR mRNA, particularly the role that RNA secondary str uct ure pla y s. T hus, a 
comprehensiv e analy sis of AR transcript secondary str uct ure is needed. We address this through the computational and e xperimental analy ses 
of tw o k e y isof orms, full length (AR-FL) and truncated (AR-V7). Here, a combination of in-cell RNA secondary str uct ure probing experiments 
(targeted DMS-MaPseq) and computational predictions were used to characterize the static str uct ural landscape and conformational dynamics 
of both isof orms. A dditionally, in-cell assa y s w ere used to identify functionally rele v ant str uct ures in the 5 ′ and 3 ′ UTRs of AR-FL. A notable 
example is a conserved stem loop str uct ure in the 5 ′ UTR of AR-FL that can bind to Poly(RC) Binding Protein 2 (PCBP2). Taken together, our 
results re v eal no v el features that regulate AR e xpression. 
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Introduction 

The androgen receptor (AR) is a ligand-dependent nuclear
transcription factor that is a member of the steroid hormone
nuclear receptor family ( 1 ). It is responsible for mediating the
actions of androgens such as testosterone and dihydrotestos-
terone in various tissues and organs where it plays many
roles in hormonal response during development and through-
out life—including cell proliferation and differentiation ( 2–5 ).
Regulation by AR primarily occurs through a direct interac-
tion with androgen response elements (AREs) in the promot-
ers of androgen regulated genes ( 6–8 ), however, AR can also
regulate genes indirectly ( 9 ). 
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When AR becomes dysregulated it is the driving force of 
many human diseases including androgen insensitivity syn- 
drome, Kennedy’s Disease, and various cancers ( 10 ). Of par- 
ticular interest is AR’s involvement in prostate cancer, which 

is the second leading cause of cancer related death among men 

in the United States ( 11 ). Generally, prostate cancer begins as 
androgen dependent, responding to changes in androgen lev- 
els, and can be treated through androgen-deprivation therapy 
(AD T) ( 12 ). Although AD T remains the primary therapy to 

prolong the life of patients ( 13 ), as prostate cancer progresses 
it often becomes androgen independent, or castration resis- 
tant, which currently has no effective treatment options ( 14 ).
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n these cases, cancer cells adapt to low androgen concentra-
ion through clonal selection of cells exhibiting AR amplifica-
ions or mutations, intracrine synthesis of testosterone from
ehydroepiandrosterone (DHEA), ligand independent activa-
ion of AR, or bypassing of normal pathways to facilitate can-
er progression ( 14–16 ). Interestingly, even in androgen inde-
endent cancer, AR expression is maintained or increased, and
 direct correlation between AR mRNA levels and disease pro-
ression has been noted ( 17–20 ). Because of its importance in
ancer, AR has been well studied at the protein level, but there
s still much to be learned about its regulation at the mRNA
evel. 

Post-transcriptional regulation of mRNA is often con-
rolled by RNA secondary structure, which is known to af-
ect splicing, translation, degradation, and localization ( 21 ).
ontributions to post-transcriptional gene regulation primar-

ly arise from structures found in the 5 

′ and 3 

′ untranslated
egions (UTRs) ( 22 ,23 ). These roles include regulating trans-
ation initiation, stabilizing the transcript, acting as recogni-
ion sites for RNA binding proteins (RBPs), binding of mi-
roRNAs, and allowing or preventing access to single stranded
NA ( 24 ,25 ). An additional layer of regulation that is begin-
ing to be explored is the ability of RNA to sample multiple
onformations to fine tune interactions and respond to envi-
onmental cues and cellular conditions ( 21 , 26 , 27 ). A number
f computational and experimental techniques have been de-
ised to identify RNA structure and dynamics, determine in-
eraction partners, and elucidate the components that mod-
late mRNA expression. Successful implementation of these
echniques is and will continue to be crucial to uncovering
unctional mechanisms and unlocking a new world of possi-
ilities in treating diseases that are currently ‘undruggable’ at
he protein level ( 28 ,29 ). 

Several studies have identified RBPs, such as HuR ( 30–32 ),
BP1 ( 33 ,34 ), MSI2 ( 35 ), DDX3 ( 36 ) and HNRNPK ( 37 ) that

nteract with the UTRs of AR and elicit post-transcriptional
egulation ( 38 ). Notably, Yeap et al ( 30 ) discovered a binding
ite for Poly(RC) binding protein 2 (PCBP2) in the 3 

′ UTR of
R that increases the stability and translation of the mRNA.
thers have identified and validated microRNA interaction

ites throughout the MANE (matched annotation from NCBI
nd EMBL-EBI) isoform’s extremely long 3 

′ UTR ( 39–43 ). Un-
oubtedly, more is required for a full understanding of AR reg-
lation. To this end, we identified intramolecular regulatory
NA structures of AR transcripts by experimentally and com-
utationally mapping the static and dynamic RNA secondary
tructural landscapes of both the longest isoform (AR-FL) and
he alternatively spliced and truncated isoform (AR-V7) (Fig-
re 1 ). Select structures from AR-FL were tested for their po-
ential roles in post-transcriptional gene regulation using in-
ell assays and mutagenesis. Biochemical assays validated a
ovel interaction between PCBP2 and a conserved structure in
he AR-FL 5 

′ UTR, and identified several other RBPs in both
TRs that may play roles in post-transcriptional regulation. 

aterials and methods 

 canF old 

canFold is an RNA sequence scanning pipeline that deduces
ocal structural stability, propensity for unusual sequence-
rdered stability, and likely functional secondary structures by
enerating consensus structures where base pairs are weighted
by their contribution to ordered structural stability. In brief,
ScanFold is composed of a scanning step, ScanFold-Scan and
folding step, ScanFold-Fold. Using ScanFold-Scan, a 120 nt
scanning window is used to analyze the entire mRNA se-
quence of interest (here the AR-FL and V7 Ensembl transcripts
were used as input). The sequence of each window is folded
via RNAfold ( 44 ) to calculate its native minimum free en-
ergy (MFE) and associated base paired secondary structure.
The native sequence in each window is shuffled 100 times, us-
ing mononucleotide shuffling, and folded to calculate an av-
erage randomized MFE value. The native and average ran-
domized MFE values is then used to calculate the thermody-
namic z -score. ScanFold-Fold analyzes all z-scores to generate
a consensus secondary structure model based on paired nu-
cleotides that recur across low z -score analysis windows ( 45 ).
These structures are biased towards sequence-ordered stabil-
ity, which suggests likely (evolved) functionality. Structures
with low z -scores are extracted for further analysis. Metrics
obtained from ScanFold include MFE, �Gz -score, and ensem-
ble diversity (ED) ( 45 ,46 ). In this analysis, the following pa-
rameters were used: a 120 nt window size, a 1 nt step size,
100 randomizations per window, mononucleotide shuffling,
37 

◦C temperature, competition of 1 (to demand that only
one unique base pair per nucleotide is possible), and extrac-
tion of structures with z -score ≤ –1. All structure numbers,
associated isoform and ensemble ID, transcript coordinates,
sequence, in silico ScanFold structures, RNAfold refolded
ScanFold structures, structure / sequence length, AU content,
GC content, location within the transcript, and associated
mass spec identified RNA binding protein can be found in
Supplementary File S1 . All ScanFold data can be found on
our lab’s structural database, RNAStructuromeDB ( 47 ,48 ).
For more information on ScanFold see the original publica-
tions ( 45 ,46 ). 

Cell culture 

Three different human cell lines were used in this study:
HeLa (AR+), 22Rv1 (AR+), and DU145 (AR–). Expression
of AR in all cells lines was validated by RT-qPCR (IDT,
Hs.PT.56a.14520219). HeLa cells (ISU Hybridoma Facility)
were maintained in DMEM, 22Rv1 cells (ATCC) were main-
tained in RPMI-1640, and DU145 (ATCC) cells were main-
tained in EMEM (ATCC) at 37 

◦C in 5% CO 2 . All me-
dia was supplemented with 10% FBS, 100 U / ug per ml
penicillin / streptomycin, and 2 mM l -glutamine. Unless other-
wise specified, all media and supplements were obtained from
Gibco / ThermoFisher. All cell lines were passaged at 80–90%
confluence, used between passage 5–25, and regularly tested
for mycoplasma ( 49 ). 

Dimethyl sulfate (DMS) probing of 22Rv1 cells 

22Rv1 cells were grown to ∼80–90% confluence in 10 cm
dishes. Cells were probed using a modified DMS-MaPseq pro-
tocol ( 50 ,51 ). A 2% (v / v) DMS solution was freshly prepared
before treatment of each dish using 25% ethanol and 75%
Dulbecco’s phosphate buffered saline (DPBS). Growth me-
dia was removed from the cells before treating with 3 ml of
DMS solution for 1 min at room temperature. The DMS was
removed before cells were neutralized twice with 4.5 ml of
Dithiothreitol (DTT) in DPBS (5 times molar excess to DMS).
Cells were harvested with 1 ml of TRIzol (Invitrogen). DMS
probing of cells was completed in triplicate. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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Figure 1. AR-FL and V7 pre-mRNA transcript diagrams drawn to scale. These diagrams show the differences in size and sequence / functional domains 
between the two isoforms. AR-FL pre-mRNA and mature transcript (ENST0 0 0 0 0374690.9) are displayed on top and AR-V7 pre-mRNA and 
mature transcript (ENST0 0 0 0 0504326.5) are displayed on the bottom. The AR-FL pre-mRNA is 186598 nt long, and the mature transcript is 10667 nt 
long, consisting of a 1126 nt 5 ′ UTR, a 2763 nt CDS, and a 6778 nt 3 ′ UTR. The AR-V7 pre-mRNA is 1 51 452 nt long and the mature transcript is 3615 nt 
long, consisting of a 327 nt 5 ′ UTR, 1935 nt CDS, and a 1353 nt 3 ′ UTR. Although much shorter, the V7 isoform encodes a constitutively active version of 
the AR protein caused by a truncated ligand binding domain. Here, shared UTR sequences are displayed in orange and shared CDS sequences are 
displa y ed in blue, green, y ello w, and purple. Unique UTR sequences are displa y ed in gray and unique CDS sequences are displayed in pink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolation and purification of DMS probed RNA 

RNA was isolated from each TRIzol sample using a minimally
modified Direct-zol Plus RNA mini-prep kit protocol (Zymo).
Briefly, TRIzol (Invitrogen) was loaded onto pre-spun Quant-
Bio Heavy PLG tubes, 200 μl of 1-bromo-3-chloropropane
(Sigma-Aldrich) was added to the sample and shook vigor-
ously. After a 2 min room temperature incubation, the tubes
were centrifuged at 12000 ×g for 15 min at 4 

◦C. The aque-
ous phase was transferred to new 1.5 ml microcentrifuge
tubes and an equal volume ( ∼500 μl) of 100% ethanol was
added. Samples were loaded on Direct-zol Plus RNA mini-
prep columns, and all downstream DNase treatment and
washes were done according to manufacturer’s protocol. Af-
ter elution, a NanoDrop One (Thermo-Fisher) spectrum was
taken to obtain the concentration of total RNA. 

PolyA selection and TGIRT-III reverse transcription 

Purified RNA was poly(A) selected using the Poly(A) Purist
MAG kit (ThermoFisher). A total of 70–80 ug of total RNA
was used as input for each of the three DMS samples. After
poly(A) selection, the average RNA concentration of the three
samples was ∼1 μg or ∼1.3% of the input. This RNA was
then used for reverse transcription (RT) with the TGIRT-III
enzyme (InGex). Following a previously established protocol
( 51 ), 25 μl reactions were run using 550 ng of RNA and a 1:10
ratio of poly dT to random hexamer primers. RT products
were diluted to 10 ng / μl for PCR amplification. 

PCR amplification and quality control 

Using the cDNA generated from TGIR T-III R T, targeted am-
plification of the AR-FL and V7 isoforms was performed.
PCR was completed using 20 μl Q5 (NEB) reactions with and
without betaine (Sigma). For the FL transcript, 12 different
tiled primer sets were used to amplify the 10667 nt transcript
( Supplementary File S2 ). Amplicons ranged in size from 529 nt
to 1198 nt with at least 50 nt overlap, and resulted in amplifi-
cation of 9125 of 10667 nt, with the majority of unamplified
sequence falling the in the 5 

′ and 3 

′ UTRs. The unamplified
region in the 5 

′ UTR and the CDS had a GC content above
80%, whereas the region in the 3 

′ UTR contained areas with
GC content below 40%. For the V7 transcript, four different
tiled primer sets were used to amplify the 3812 nt transcript
( Supplementary File S2 ). Amplicons ranged in size from 627
nt to 1198 nt with at least 50 nt overlap, and resulted in ampli-
fication of 3521 of 3812 nt, with unamplified sequence falling 
in the CDS and at the end of the 3 

′ UTR. The unamplified re- 
gion in the CDS contained a region with GC content above 
80%, whereas the region at the end of the 3 

′ UTR was AT 

rich. All PCR products sizes were validated via agarose gel 
( Supplementary File S3 ) before determining their concentra- 
tion on a Qubit® 2.0 Fluorometer. Using these concentrations,
20 ng of each product, per replicate, were pooled together and 

the combined concentration was determined using a Qubit®
2.0 Fluorometer. 

Library preparation and quality control 

All six pooled PCR samples (3 FL and 3 V7) were then 

subjected to Illumina DNA library preparation following 
the manufacturers protocol. Here, input DNA concentrations 
ranged from 150 to 470 ng. Briefly, DNA was tagged with 

adaptor sequences and fragmented using Illumina’s tagmen- 
tation process. Tagmented products were cleaned up and the 
resulting DNA was amplified with Illumina Nextera DNA 

UD Indexes (IDT) following Illumina’s recommended PCR pa- 
rameters. Amplified libraries were then cleaned following the 
standard DNA input protocol. Resulting library concentra- 
tions were determined using the Qubit® 2.0 Fluorometer and 

library sizes were determined using an Agilent 2100 Bioan- 
alyzer. All libraries were determined to have a size between 

500–600 nt ( Supplementary File S3 ). 

Sequencing 

All sequencing was completed on an iSeq100 benchtop se- 
quencer (Illumina) using paired-end reads (150 × 150 nt). All 
libraries were first diluted to 1 nM with Illumina Resuspen- 
sion Buffer (RSB) before combining the V7 and FL libraries 
together at equal volumes. Based on manufacturer’s sugges- 
tion, the pooled libraries were further diluted to 75 pM with 

RSB before loading 20 μl into the sequencing cartridge and 

starting the sequencing run. 

Analysis of sequencing data with RNA Framework 

and DRACO 

All 150 × 150 nt paired-end sequencing reads from the iSeq 

100 were output as fastq files. The fastq files were uploaded to 

the Iowa State University High Performance Computing clus- 
ter and analyzed using the RNA Framework package ( 52 ),
an all-in-one bioinformatics software package for analysis of 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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ext generation sequencing data generated through various
ypes of RNA structure probing experiments. Fastq files first
nderwent quality control via fastqc to determine phred (qual-
ty) scores and adaptor content. All adaptor sequences were
rimmed using the ‘cutadapt’ function before reanalyzing with
astqc. After completion of fastq file checks, Bowtie2 ( 53 ) was
sed to generate an index from the FL (ENST00000374690.9)
nd V7 (ENST00000504326.5) fasta files for read mapping.
he ‘rf-map’ function was used to map all paired end reads

o the Ensembl transcripts. All mapped bam files from the
ame library (FL or V7) were merged into a single bam file
or both individual and combined processing. To obtain cov-
rage and read depth information, samtools was used to an-
lyze the bam files. The frequency of nucleotide mutations
as counted using the ‘rf-count’ function and a rc file was

enerated. Mutations for either A and C or all nucleotides
ere normalized using the ‘rf-norm’ function and an xml
le of reactivities was generated. The xml files were folded
ith ‘rf-fold’ and the -md flag to generate reactivity informed
20 nt and 600 nt max base pair span minimum free en-
rgy models (output as ct files). Using rf-fold with the -sh,
dp and -md flags, reactivity informed 120 nt and 600 nt
ax base pair span Shannon entropy and base pair proba-
ility files were generated. To analyze potentially dynamic re-
ions, DRACO ( 54 ) was used. Using the mm file generated in
he rf-count step, a json file was created for further process-
ng. Using the json file and previous rc files, the ‘rf-json2rc’
unction was used to generate a DRACO rc file. The DRACO
c file was then used as input for ‘rf-norm’ to generate indi-
idual xml files for each unique reactivity profile generated.
ll DRACO xml files were folded with ‘rf-fold’ to produce

ndividual ct files. All xml files from RNA Framework and
RACO were converted to react files (folding constraints) us-

ng the python script ‘xml_reactivity_full_extract_batch.py’.
he react files were then converted to heat maps for visual-

zation of reactivities on structure models in Varna ( 55 ). For
ore information on the capabilities of RNA Framework visit

 https:// rnaframework-docs.readthedocs.io/ en/ latest/ ) and for
RACO visit ( https:// github.com/ dincarnato/ draco ). 

nalysis of sequencing data with Shapemapper2 

nd SuperFold 

ll 150 × 150 nt paired-end sequencing reads from the
Seq 100 were output as fastq files. The fastq files were up-
oaded to the Iowa State University High Performance Com-
uting cluster and analyzed using Shapemapper2 and Super-
old ( 56 ), a bioinformatic software pipeline for processing
utational profiling (MaP) data from RNA structure prob-

ng experiments and modeling the subsequent structures. Us-
ng the cat function, all forward and reverse read fastq files
or each library were merged ($ cat FL_Fwd1 FL_Fwd_2
L_Fwd_3 > out.fastq). Once merged, Shapemapper2 ( 56 )
as run with default parameters using the following com-
and: $ shapemapper –name ‘outfilename’ –target fasta.fa

out ‘outfoldername’ –per-read-histograms –modified –R1
ead1_merged.fastq –R2 R2_merged.fastq. A log file was
enerated that reported the percent of nucleotides with a min-
mum read depth of 5000 (80% required to pass) and the
umber of highly reactive nucleotides (8% of nucleotides with
epths above 5000 to pass). A map file, shape file, profile
le, and several pdfs for data visualization were also gener-
ted. SuperFold ( 57 ) was then used to generate both a 120
nt and 600 nt max base pair span minimum free energy
model from Shapemapper2 reactivity data. To run SuperFold,
a slurm script was generated using the following commands ($
python Superfold.py maxPairingDist 600 ‘Shapemapper.map’
and $ python Superfold.py –maxPairingDist 120 ‘Shapemap-
per.map’). This resulted in generation of a log file, base pair
probability file, Shannon entropy file, and multiple data vi-
sualization PDFs. For more information on the capabili-
ties of Shapemapper2 visit ( https:// github.com/ Weeks-UNC/
shapemapper2 ), and for SuperFold visit ( https://github.com/
Weeks-UNC/Superfold ). 

Incorporation of reactivity values into S canF old 

The reactivity profile and transcript sequence of both FL
and V7 isoforms were analyzed with ScanFold. Reactiv-
ity files were first generated by conversion of xml files
from RNA Framework using an in-house python script
‘xml_reactivity_full_extract_batch.py’. Reactivity files dis-
cussed above were used as pseudo-energy constraints to in-
form ScanFold predictions. These pseudo-energy constraints
act as rewards or penalties during folding, favoring struc-
tures where nucleotides match their observed reactivity (un-
reactive or reactive). The following ScanFold command was
used ($ python / path / to / ScanFold.py < Input.fasta > –out
name < Input > –react < Input.react > –name < Input > –
global refold). Here, the ‘–out name’ specifies an output direc-
tory name, ‘–react’ specifies the input react file name, ‘–name’
specifies the output file header names, and ‘–global refold’ en-
ables global refolding of transcripts using DMS-informed ≤
–1 and ≤ –2 z -score DBN files as constraints. 

Comparison of DMS-informed and in silico 

structure models 

DMS-informed ScanFold models, in silico ScanFold models,
and DMS-informed MFE models for AR-FL and V7 mRNA
sequences were compared to determine the effect of incor-
porating probing constraints on ScanFold models. This was
done by calculating the PPV and sensitivity for each model
through comparison of all predicted, ≤–1 z -score and ≤–2
z -score base pairs present in ScanFold CT files. This process
utilized the script, ct_sensitivity_ppv .py , and all analysis steps
and equations have been previously described ( 58 ). In addi-
tion to PPV / Sensitivity comparisons, a per nucleotide com-
parison of structures was completed for the different merged
dataset models as well as the RNA Framework independent
replicates ( Supplementary Table S1 ). In addition to compar-
ing the resulting structural models, the effect on the ScanFold
per nucleotide z-score values (found in the ScanFold per nu-
cleotide Zavg WIG file) were assessed between DMS-informed
ScanFold (merged and replicate) and in silico ScanFold mod-
els. Here, a Pearson correlation assessment was conducted on
a per method and per replicate basis comparing the DMS-
informed ScanFold and in silico ScanFold per nucleotide z -
score values ( Supplementary File S4 ). 

Receiver operator characteristic analysis 

All in silico ScanFold, DMS-informed ScanFold, and DMS-
informed MFE models were compared to the different
DMS reactivity profiles generated via RNA Framework and
Shapemapper2 using a receiver operator characteristic (ROC)
analysis script ‘roc.py’. The same ROC analysis strategy we
previously reported ( 59 ) was used. In addition, a 100 nt slid-

https://rnaframework-docs.readthedocs.io/en/latest/
https://github.com/dincarnato/draco
https://github.com/Weeks-UNC/shapemapper2
https://github.com/Weeks-UNC/Superfold
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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ing window ROC analysis was performed on all in silico Scan-
Fold and DMS-informed ScanFold models. Briefly, the differ-
ent z-score cutoff CT files for each secondary structure gener-
ation method were cross referenced to the different DMS re-
activity profiles generated in this study. Reactivity data thresh-
olds were sequentially set from lowest to highest at 1% inter-
vals (i.e. 0–100%) where any associated nucleotide below the
threshold was defined as being paired. Each reactivity thresh-
old was then referenced to the CT files and a true positive
rate (TPR) and false positive rate (FPR) were calculated. The
TPR and FPR were plotted for each reactivity threshold to
generate an ROC curve. Models that fit or agree with the re-
activity profile will have a larger area under the curve (AUC),
whereas models that are more ‘random’ compared to the re-
activity data will have a smaller AUC. 

Covariation analysis 

All FL and V7 structures with z -scores ≤–1 (89 and 25 struc-
tures respectively) were analyzed for covariation using the cm-
builder Perl script ( 60 ). This script builds off the RNA Frame-
work toolkit ( 52 ) and utilizes Infernal (release 1.1.2 ( 61 ))
to build and find covariance models for ScanFold predicted
structures. The Infernal databases were created using a BLAST
( 62 ) search of the AR transcripts ENST00000374690.9 and
ENST00000504326.5. Here, the NCBI Refseq database was
searched using the following parameters: blastn, gap open 5,
gap extend 2, reward 1, penalty –1, max target sequences of
5000. All pseudogenes and ‘like’ sequences were deselected
and the resulting list was downloaded and used in the analy-
sis. The resulting structural alignment files (in Stockholm for-
mat) were tested for covarying base pairs and analyzed with
the CaCoFold algorithm and R-scape (version 1.5.16). Sta-
tistical significance was evaluated by the APC corrected G-
test ( 63 ,64 ) using the default E value of 0.05. The power files
generated were analyzed using an in-house script that bins
according to the power of covarying base pairs into 0–0.1,
0.1–0.25 and > 0.25. All input files, Stockholm alignments,
R-scape / CaCoFold results, and power analysis data can be
found in Supplementary File S5 . 

Modeling of RNA structures and visualization of 
data 

To model DRACO structures, unique dynamic profiles
(determined by PPV and sensitivity) were spliced into
the surrounding static profile using the python script
‘draco_react_splicer.py’. These contextualized react files were
then used as constraints in RNAfold ( 44 ), a minimum free en-
ergy based structure prediction algorithm, with a 120 nt and
600 nt max base pair span. Visualization of 2D models and
reactivity data was done using VARNA ( 55 ), and the Integra-
tive Genomics Viewer (IGV) ( 65 ) was used for visualizing data
tracks. All bioinformatics algorithms and tools used in this
study can be found in Supplementary Table S2 . 

Construct design and cloning 

All constructs were designed based on the predicted secondary
structures. All constructs tested were found in the 5 

′ and
3 

′ UTR and designed for cloning into a modified pmirGLO
plasmid (Promega). For HiFi cloning, a minimum of 15 nu-
cleotides complementary to the upstream and downstream se-
quence surrounding the XhoI restriction enzyme site of the
vector were added to each end of the sequences. A total of 10
WT and 6 mutant 5 

′ UTR constructs and 4 WT 3 

′ UTR con- 
structs were designed for AR-FL. All mutations were made 
based on previous work by Yeap et al. ( 30 ). These sequences 
were ordered as GBlocks or Ultramers (IDT) for cloning. All 
cloning was completed in modified pmirGLO (Promega) dual 
luciferase plasmids designated pmirGLOi (3 

′ UTR) and pmir- 
GLO5i (5 

′ UTR) ( 66 ). Briefly, the plasmid was modified by 
introduction of the rabbit B-Globin intron II into the Firefly 
(FF) and Renilla (RL) luciferase genes. The pmirGLO5i plas- 
mid was also rearranged to move the multiple cloning site 
(MCS) from the 3 

′ end of FF to the 5 

′ end of FF. Cloning 
was done using the HiFi Assembly kit (NEB), with insertion 

of gBlocks or Ultramer oligonucleotides (IDT) into XhoI di- 
gested plasmids. HiFi reactions were run at 50 

◦C for 30 min,
followed by transformation in NEB-5 α competent Esc heric hia 
coli . Colony PCR was used to validate proper insertion, and 

sequences were validated by Sanger Sequencing (Iowa State 
DNA Facility). A full list of constructs, the cloning strategy,
and primers used can be found in Supplementary File S6 . 

Cell plating, transfection, and harvesting 

HeLa cells were trypsinized from a 10 cm dish at 80–90% con- 
fluence. Cells were counted using a hemocytometer and plated 

at 25000 cells / well in a 96-well dish (six biological repli- 
cates per construct) for dual luciferase assays and at 150000 

cells / well in a 24-well dish (3 biological replicates per con- 
struct) for qPCR. Cells were transfected 24 hours later with 

experimental or control (empty pmirGLOi or 5i) plasmids us- 
ing Lipofectamine 3000 (Invitrogen). Respectively, 5 and 25 

ng of dual luciferase plasmid was transfected into each well 
of the 96- and 24-well plates with 95 or 475 ng of pUC19 

plasmid filler, respectively. Cells were supplemented with fresh 

DMEM 24 hours post-transfection and analyzed (dual lu- 
ciferase assay) or harvested (for RNA) 24 hours after supple- 
mentation. 

DU145 and 22Rv1 cells were trypsinized from T75 flasks 
at 80–90% confluence prior to nucleofections using modified 

protocols from Lonza Biosciences and Spisák et al. ( 67 ), re- 
spectively . Briefly , cells were counted using a hemocytometer,
and the volume needed for 400000 cells per transfection was 
centrifuged at 200 ×g for 3 min. The DU145 and 22Rv1 cell 
pellets were resuspended in supplemented SE and SF nucle- 
ofection reagent (Lonza Biosciences), respectively, and 20 μl 
was aliquoted to individual tubes. To each tube, 1 μl of the 
appropriate plasmid (400 ng) was added, and each 21 μl sam- 
ple was transferred to an individual well of a nucleocuvette.
A Lonza 4D nucleofector X-unit was run with protocols CA- 
137 for DU145 and EN-120 for 22Rv1. Cells were incubated 

at room temperature for 10 min before resuspending them in 

479 μl of pre-warmed media (per well) and plating 400 μl in 

a single well of a 24-well dish and 100 μl into a single well 
of a 96-well dish (three biological replicates per construct).
Cells were supplemented with fresh media 24 hours after nu- 
cleofection and processed (as with HeLa cells) 24 hours after 
supplementation. 

Dual luciferase assays 

A Promega Dual Luciferase kit was used following the man- 
ufacturer’s protocol. In brief, cells in the 96-well dish were 
washed with DPBS (Gibco) before lysing with 1x passive ly- 
sis buffer (PLB). Lysate from each well was transferred to an 

opaque white 96-well dish for recording luminescence using 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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 dual injecting GloMax Explorer (Promega). The Relative
esponse Ratio (RRR) was calculated by dividing the light
nits from Firefly luciferase by those of Renilla luciferase on
 per-well basis. The RRR was normalized to the mean of
he vector control and the resulting values were plotted as the
ean ± standard deviation. Using a two tailed, equal variance

 -test, the significance of changes caused by wild type (WT)
onstructs were compared to the vector control, and the sig-
ificance of changes caused by mutant constructs were com-
ared to the WT version. Significance P -values of < 0.05 were
sed. 

NA isolation and cDNA preparation 

ells were harvested from the 24-well dish using 400 μl of
RIzol (Invitrogen). RNA was isolated following the same
odified Direct-Zol RNA mini-prep (Zymo) protocol used in

he isolation of DMS probed RNA above. cDNA was gener-
ted following the Superscript III (Invitrogen) RT manufac-
urer’s protocol. Here, between 200 ng and 1 μg of RNA was
sed with random hexamer (IDT) priming. For quality con-
rol, no RT controls were completed for all samples. All cDNA
amples were diluted with water to ∼5 ng / μl based on RNA
nput to normalize for quantitative PCR (qPCR) input. 

PCR 

uantitative PCR was performed with 1 μl of the di-
uted cDNA, cPrimeTime® primer / probes (IDT) de-
igned to overlap the introduced intron for each of
he Firefly and Renilla luciferase genes (Firefly: for-
ard 5 

′ -A CAAAA CCA TCGCCCTGA TC-3 

′ , reverse 5 

′ -
TCTGGTTGCCGAAGATGG-3 

′ , probe 5 

′ 6-FAM/ACCG
TTGT/ ZEN/ GTCCGATTC AGTC AT/3 

′ IABkFQ; Renilla:
orward 5 

′ -CCTACGAGC ACCAAGAC AAG-3 

′ , reverse 5 

′ -
CCATTTTCTCGCCCTCTTC-3 

′ , probe 5 

′ SUN/CACGTC
AC/ ZEN/ GACACTCTCAGCAT/3 

′ IABkFQ), and Prime-
ime® Gene Expression Master Mix on a QuantStudio3

Thermo-Fisher). Ct values were calculated using the auto-
atic threshold detection settings of the QuantStudio Design
 Analysis desktop software (v1.5.1). The ddCt method was

mployed with Renilla and empty pmirGLOi as references
o obtain the average fold expression (2 

−��CT ) and standard
eviation. Using a Student’s t -test, the significance of changes
aused by WT constructs were compared to vector control,
nd the significance of changes caused by mutant constructs
ere compared to the WT version. Significance P -values
f < 0.05 were used. Translational efficiencies were calculated
y dividing the normalized RRR by the average fold expres-
ion (2 

−��CT ) and propagating the error. Statistics included a
wo-tailed, equal variance t -tests with a significance P -value
f < 0.05. 

reparation of whole-cell lysates 

eLa, DU145 and 22Rv1 cells were trypsinized, counted, and
entrifuged for 3 min at 200 ×g . Cells were washed once with
ce cold DPBS, pelleted again, and resuspended at 10 

7 c / ml in
ce cold polysome extraction buffer (PEB: 20 mM Tris, pH 7.5;
00 mM KCl; 5 mM MgCl 2 ; 0.5% NP-40) ( 68 ) containing
 mM PMSF, HALT, 200 U / ml RNaseOUT (ThermoFisher).
he resuspended pellet was incubated on ice for 15 min prior

o Dounce homogenization (methanol-cleaned glass). The ho-
ogenates were spun at 15000 ×g for 10 min at 4 

◦C prior
to collection of the supernatant. Lysate concentrations were
determined using a BCA assay (ThermoFisher). 

In vitro transcription and RNA 3 

′ end 

desthiobiotinylation 

Plasmids containing AR-FL structure 32 (AR 32) as well as
ultramers for AR-FL 4 WT and Mut 1–3 (4 WT and Mut
1–3) were used as PCR templates to make T7-promoter con-
taining DNA Supplementary File S3 . T7 recognition sequences
were incorporated into forward strands using primers found
in Supplementary File S2 . PCR products were in vitro tran-
scribed with T7 RNA polymerase (Invitrogen) to generate
RNA. RNA was heated to 75 

◦C for 15 minutes and cooled
to room temperature before 100–500 ng was used to verify
the correct RNA product size via urea-PAGE (National Di-
agnostics Urea-Gel SequaGel) and SYBR Green II RNA Gel
Stain (ThermoFisher) ( Supplementary File S3 ). In vitro tran-
scribed RNA was 3 

′ end labeled using the RNA 3 

′ end desthio-
biotinylation kit (Pierce) following the manufacturer’s proto-
col. Briefly, 50 pmol of each RNA was added to individual
30 μl ligation reactions. The ligation reaction was incubated
at 16 

◦C overnight before adding 70 μl of water and 100 μl of
chloroform:isoamyl alcohol (24:1). The mixture was vortexed
briefly and centrifuged at 12 000 ×g for 5 min to separate. The
aqueous phase was removed and transferred to a new tube be-
fore adding 10 μl of 5M NaCl, 1 μl of glycogen, 2 μl of gly-
coblue (ThermoFisher), and 300 μl of ice-cold 100% ethanol.
This mixture was precipitated for 2 hours at –20 

◦C before cen-
trifuging at ≥13 000 ×g for 15 min at 4 

◦C. The supernatant
was removed, and pellets were washed with 300 μl of ice cold
70% ethanol. The pellets were air dried for 5–10 min before
resuspension in 20 μl of UltraPure water (Invitrogen). Label-
ing efficiency was determined to be ∼75% using a dot blot
with a pre-biotinylated RNA control ( Supplementary File S3 ).

Biotin RNA pulldowns 

An initial biotin pulldown was performed using a Magnetic
RNA Protein Pull Down kit (Pierce) following the manufac-
turer’s protocol. Briefly, the 50 pmol of each 3 

′ end desthio-
biotin labeled RNA was incubated with an equal amount of
nucleic acid compatible streptavidin magnetic beads (50 pmol
and 50 μl) in RNA Capture Buffer for 30 min at room tem-
perature to form RNA-bead complexes. The RNA-bead com-
plexes were then mixed with protein-RNA binding buffer,
50% glycerol and 188 μg of 22Rv1 cell lysate before ro-
tation for 1 hour at 4 

◦C. Beads were washed three times
with 1X wash buffer (Pierce) to remove unbound proteins.
Washed beads were submitted for on-bead digestion and LC–
MS / MS analysis (Iowa State Protein Facility). MS results were
searched against only human protein data in the UniProt
database. Proteins pulled down in the unlabeled RNA bead
control samples were removed from all other samples. The
Mascot scores of remaining proteins were averaged and those
with a score of three times the average were analyzed in more
detail. A secondary biotin pulldown was performed on struc-
ture 32 following the same protocol. Here, structure 32 was
incubated with 188 and 172 μg of 22Rv1 and HeLa cell lysate,
respectively. After the final washes, the RNA and captured
proteins were eluted from the beads using 50 μl of biotin
elution buffer (Pierce). Beads were collected on the magnetic
stands and the supernatant was added to a new tube with 2 ×
Lameli BME buffer. Samples were run on a 4–15% SDS PAGE

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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gel (Biorad) before being silver stained. Unique bands were
excised from the gel and LC–MS / MS analysis was performed
(Iowa State Protein Facility). MS results were searched against
only human protein data in the UniProt database, and all re-
sulting proteins were analyzed. 

SDS-PAGE and silver stain 

All pulldown samples were thawed at room temp and spun
down at 10000 ×g for 1 min. Loading dye was added to each
sample and heated to 95 

◦C for 5 min. Samples were spun
down before 50 μl of sample and 5 μl of protein standard (Bio-
Rad) were loaded on a TGX 4–15% precast gel (BioRad) and
run for 40 min at 200 V. While the gel was running all glass-
ware was washed with methanol. The gel was removed from
the cassette, trimmed, placed in a covered dish, and rocked
with 400 ml of fixative solution (BioRad) for 30 min at room
temperature. The fixative was removed, 400 ml of water was
added, and the gel was rocked for 10 min at room temper-
ature. The water was removed, and a second water incuba-
tion was performed for 10 min. All water was removed from
the dish before the silver stain solution was added and rocked
at room temperature for 11 min. The reaction was quenched
by removing the staining solution and rocking in 400 ml of
5% acetic acid for 20 min. The annotated gel can be found in
Supplementary File S3 . 

RNA immunoprecipitation 

All RNA immunoprecipitations were done following a mod-
ified protocol from Lee and Moss et al. ( 69 ). Briefly, eight 10
cm dishes each of both HeLa and 22Rv1 cells were rinsed
twice with 10 ml of DPBS before lysis with 500 μl (per two
10 cm dishes) of cold RIPA lysis buffer (50 mM Tris–HCl; pH
8.0; 1 mM EDTA; 150 mM NaCl; 100 μM Na 3 VO 4 ; 1.0%
NP-40; 1.0% sodium deoxycholate; 0.1% SDS) containing
protease / RNase inhibitors (1:100 HALT; 1 mM PMSF; 300
U / ml RNaseOUT). A cell lifter was used to transfer the lysing
cells to 15 ml conical tubes on ice. Lysates were sonicated on
ice four times at 50% amplitude for 5 sec prior to centrifu-
gation to clear the lysate (15 000 ×g , 10 min, 4 

◦C). The su-
pernatant was diluted 2.5-fold with detergent-free lysis buffer
containing 300 U / ml of RNaseOUT, followed by pre-clearing
with 100 μl of protein A / G-PLUS agarose beads (Santa Cruz
Biotechnology) for 1 hour at 4 

◦C. For each sample, 1.4 ml of
HeLa lysate and 1.6 ml of 22Rv1 lysate was incubated with ei-
ther anti-hnRNP E2 (sc-101136, Santa Cruz Biotechnology),
anti-HuR (sc-5261, Santa Cruz Biotechnology) or mouse IgG
antibody (sc-2025, Santa Cruz Biotechnology) for 1 hour at
4 

◦C on the rotisserie. A / G-PLUS agarose beads were then
added (25 μl) for an additional hour at 4 

◦C on the rotisserie.
For input samples, 25% of the volume added for each anti-
body of the pre-cleared lysate was set aside for RNA isolation
(350 μl of HeLa and 400 μl of 22Rv1). Beads were washed
three times with cold DPBS containing RNaseOUT and PMSF
(1 ml each) before TRIzol was added (to the input as well).
Samples were then incubated for 15 min at room tempera-
ture prior to storage at –80 

◦C or used directly in RNA isola-
tion. Total RNA isolation was done using Zymo RNA Clean
& Concentrate kit, per manufacturer’s protocol. Input lysate
was eluted at a higher volume to make the input 10% at equal
volumes to the immunoprecipitation (IP) samples for reverse
transcription (RT). No RT controls were done using the input
lysate. Total RNA, random hexamers (IDT) and Superscript
III (ThermoFisher) were used for RT. Semi-quantitative PCR 

was used to determine protein enrichment in the 3 

′ UTR and 

the 5 

′ UTR as the regions could not efficiently be amplified via 
qPCR. As a positive control, the primers from Yeap et al. ( 30 ) 
were tested on all RIP samples, and for the experimental re- 
gion in the 5 

′ UTR all IP samples except HuR were tested. PCR 

cycle numbers were optimized used 23, 25 and 30 cycles for 
each cell line used. Cycle numbers of 25 and 30 were found 

to be optimal for 22Rv1 and HeLa cells, respectively. 

Results 

Targeted DMS-MaPseq of AR mRNA in a human 

prostate cancer cell line model 

To gain experimental support for RNA secondary structure 
models, we employed targeted DMS-MaPseq ( 51 ) in 22Rv1 

cells to analyze both the longest isoform, AR-FL (FL), as 
well as the prostate cancer-associated truncated isoform, AR- 
V7 (V7). Biological triplicates for each library were ana- 
lyzed as merged and independent datasets using the RNA 

Framework and Shapemapper2 / SuperFold pipelines. These 
tools were designed to process RNA structure probing data 
from mutational profiling (MaP) experiments and model 
the resulting structures. For the merged datasets, a total of 
∼8.8 million and ∼3.4 million reads were obtained for FL 

and V7 libraries, respectively. All reads were mapped to 

the Ensembl ( 70 ) transcripts, ENST00000374690.9 (FL) and 

ENST00000504326.5 (V7) using bowtie2 within either RNA 

Framework or Shapemapper2. Using RNA Framework, FL 

and V7 isoforms were found to have mean read depths of 
119317 and 130355 and read coverages of 87.8% and 95.7%,
respectively. Reactivity profiles from RNA Framework were 
generated for FL and V7, and the average reactivities were 
0.428 and 0.480, respectively ( Supplementary Table S3 ). Each 

biological replicate for the FL and V7 isoforms were also 

processed by RNA Framework and found to have consis- 
tent metrics ( Supplementary Table S4 ). Implementation of 
the orthogonal approach, Shapemapper2, on merged datasets 
yielded very similar average read coverages and reactivities 
( Supplementary Table S3 ). Due to the read requirements of 
Shapemapper2, biological replicates were not analyzed in- 
dependently. For both analysis methods, normalized per nu- 
cleotide reactivities showed that A and C nucleotides were the 
predominant reactive nucleotides ( Supplementary Figure S1 ),
reflecting the specificity of DMS for these residues. Com- 
paring the reactivities of merged datasets from both meth- 
ods revealed a correlation coefficient (Pearson) of 0.840 and 

0.907 for FL and V7, respectively ( Supplementary File S7 ).
Comparison of replicate reactivities to merged reactivities 
showed similar correlations; however, much lower correla- 
tions were seen between replicates. A 100 nt sliding win- 
dow analysis of replicate reactivity data revealed a relation- 
ship between coverage and reactivity correlation; however,
the disparity in reactivity correlation did not affect the pre- 
dicted structures ( Supplementary Figures S2 and S3 ; and 

Supplementary Table S1 ). Chemical reactivity data from both 

merged and replicate experiments (DMS profiles) were used 

as constraints to guide ScanFold predictions. These ‘pseudo- 
energy’ constraints act as rewards or penalties during fold- 
ing, favoring structures where nucleotides match their ob- 
served reactivity (unreactive or reactive). Additionally, mod- 
els incorporating reactivity information, along with base pair 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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robabilities and Shannon entropies, were generated for the
erged datasets using RNA Framework and SuperFold (Fig-
res 2 and 3 ). Interestingly, base pairs with low z -scores (in-
icating ordered stability) matched those with high predicted
ase pair probabilities. Notably, several of the regions with the
reatest predicted base-pairing inconstancies between meth-
ds and replicates were found in regions deemed to be dy-
amic using DRACO ( Supplementary Figures S4 and S5 ; and
upplementary File S8 ). 

To assess the effects of DMS probing constraints on global
canFold metrics, purely in silico ScanFold was used to pre-
ict RNA secondary structures with sequence-ordered stabil-
ty. Supplementary Table S5 shows the comparison between in
ilico ScanFold and merged RNA Framework informed met-
ics, demonstrating the highly consistent results between the
wo. The same analyses using Shapemapper2 informed pre-
ictions produced similar results ( Supplementary Table S5 ).
orrelation analyses of z-scores offered further evidence of

his consistency ( Supplementary File S4 ). Using the merged
ataset, comparison of RNA Framework informed ScanFold
ase pairs, at different z-score cutoffs, to reactivities gener-
ted with RNA Framework showed that lower z-score pairs
comprised of nucleotides with the greatest propensity for
rdered stability) have slightly lower and fewer reactivities
 Supplementary Figure S6 A). Thus, nucleotides exhibiting a
ore negative z -score are more likely to be inaccessible due

o their presence in stable / ordered structure, whereas nu-
leotides with positive z -scores and the highest mean reactivity
alues are more likely ordered to be un structured. When the
NA Framework base-pair probabilities (generated from in-

ormed MFE predictions) are considered, lower z -scores corre-
pond to higher base pair probabilities ( Supplementary Figure 
6 B). This supports the predictive ability of ScanFold by high-
ighting how lower z-score structures are more likely to form
ased on their uniquely ordered and stable nature. The same
nalyses were done using both Shapemapper2 and Super-
old, revealing consistent trends for reactivities and base pair
robabilities ( Supplementary Figure S7 ). Collectively, these
ata show that RNA Framework and Shapemapper2 perform
imilarly. 

xperimental data supports S canF old models 

o assess the effects of DMS probing constraints on Scan-
old model generation, DMS-informed and in silico ScanFold
odels of FL and V7 were analyzed using PPV and sensitiv-

ty metrics as well as per nucleotide pairing comparisons. In
hese analyses, DMS-informed models were used as the ref-
rence and in silico models were used as the predicted. PPV
ndicates the fraction of consistent base pairs between mod-
ls by comparison to the total number of predicted pairs, al-
owing for assessment of how specific the predicted models
re compared to the reference. Sensitivity indicates the frac-
ion of consistent base pairs between models by comparison
o the total number of reference pairs, assessing how cor-
ect the base pairing predictions are. Pairwise comparisons
f in silico and informed ScanFold data, binned according
o the reference z-score, were performed for both AR iso-
orms ( Supplementary Table S6 ). For the FL model in silico
nd informed ScanFold PPV comparisons, all but two com-
arisons were above 0.7, indicating that the majority of in
ilico base pairs, at different z-score cutoffs, are the same as
hose predicted using probing constraints. The only compar-
isons with PPV values < 0.7 were in silico vs RNA Framework
and Shapemapper2 informed ScanFold models at a –2 z -score
cutoff. When looking at sensitivity values from the same in
silico and informed comparisons, the results match that of
PPV, indicating that the majority of experimentally supported
base pairs were predicted by in silico only models. We also see
that in silico vs RNA Framework informed models produce
higher PPV and sensitivity values than in silico vs Shapemap-
per2 informed models. Comparison of the informed models
for AR-FL yielded the expected results, showing the highest
and lowest PPV and sensitivity for the -1 and -2 z-score mod-
els, respectively ( Supplementary Table S6 ). For V7 models, the
PPV and sensitivity yielded less predictable results. In silico
and informed ScanFold PPV and sensitivity comparisons re-
vealed all but two comparisons were > 0.6. In this case, the
low PPV values were for in silico versus RNA Framework
informed models at –2 and –1 z -score cutoffs, and the low
sensitivity value was for the in silico versus RNA Framework
informed model at a –2 z -score cutoff. In contrast to FL, we
also see that in silico vs Shapemapper2 informed models pro-
duce higher PPV and sensitivity values than in silico vs RNA
Framework informed models. Comparison of the informed
models for AR-V7 yielded different results than AR-FL, show-
ing the highest and lowest PPV and sensitivity for the no filter
and –2 z -score models, respectively ( Supplementary Table S6 ).
Direct comparison of ScanFold structures generated using
in silico only, RNA Framework, and Shapemapper2 meth-
ods revealed highly consistent results. The pairing consis-
tency ranged from 77% to 99% across all z -score cutoffs
( Supplementary Table S1 ). This agreement suggests that the
observed differences in PPV and sensitivity for FL-V7 might be
attributed to subtle, per-nucleotide z -score variations. These
variations can lead to minor pairing changes in shorter tran-
scripts, ultimately influencing the specific pairs considered at
each z -score threshold. 

We also performed static and sliding window ROC analyses
to assess how well the different models agree with DMS reac-
tivity data using RNA Framework and Shapemapper2 DMS
reactivity profiles in concert with the –2, –1 and no filter z -
score CT files for all structure models (see Materials and meth-
ods). Static ROC analysis of both AR isoforms using either
in silico ScanFold models and RNA Framework reactivities
or RNA Framework informed ScanFold models and RNA
Framework reactivities produced very consistent AUC values
for each z -score bin ( Supplementary Figure S8 ). These AUC
were between 0.6 and 0.8, indicating some agreement be-
tween ScanFold models and RNA Framework reactivities for
FL and V7. To further investigate this, we used a 100 nt slid-
ing window analysis to identify regions of the transcripts with
high and low AUC values. Here, we found that regions of less
stable, higher z -score structures were the main contributors
to the low static AUC values ( Supplementary Figures S9 and
S10 ). Although this trend holds true across most of the tran-
script, some low z -score structures such as 6–7 in the 5 

′ UTR
of AR-FL are represented by high quality data that have
lower than expected AUC values in the windowed analyses
( Supplementary Figure S9 B and Supplementary File S9 ). This
is also the case for structure 14 in the CDS and structure 32 in
the 3 

′ UTR of AR-FL. Interestingly, these regions correlate with
DRACO structural dynamics data providing evidence that the
low AUC values are potentially the result of structural hetero-
geneity. Additional static and sliding window ROC analyses
were completed for FL and V7 using combinations of all avail-
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Figure 2. All displa y ed data tracks were generated from RNA Framework informed predictions of AR-FL and are presented as seen in the Integrative 
Genomics Vie w er (IGV). T he AR-FL transcript cartoon is displa y ed at the top f or spatial orient ation of all other dat a. B elo w the transcript cartoon is the 
RNA Frame w ork inf ormed ScanFold z -scores with positiv e v alues in blue and negativ e v alues in red. B elo w the z -scores, the first arc diagram represents 
the RNA Frame w ork inf ormed ScanFold predicted base pairs with z -score > 0, > –1, > –2 and ≤2 color in white / gra y, y ello w, green and blue respectively. 
B elo w the ScanFold arc diagram, the DMS reactivities are shown as a heat map on a scale of 0–1 where 0 is white, 1 is dark red, and intermediate 
values are shades of red. Below the DMS reactivity heat map, the second arc diagram represents the base pair probabilities calculated from an 
minimum free energy fold using RNA Framework reactivities and a 600 nt max base pair span constraint, with probabilities > 80%, 30–80% and 10–30% 

displa y ed in blue, gold and gray respectively. Comparison of the ScanFold and base pair probability arc diagrams demonstrates the general agreement 
betw een lo w z -score str uct ures and highly probable base pairings. B elo w the base pair probability arc diagram, the purple bar graph represents the 
Shannon entropies calculated using RNA Frame w ork reactivities and a 600 nt max base pair span constraint. The blue bars at the bottom represent 
dynamic regions identified by DRACO. 

Figure 3. All displa y ed data tracks were generated from RNA Framework informed predictions of AR-V7 and are presented as seen in the Integrative 
Genomics Vie w er (IGV). T he AR-V7 transcript cartoon is displa y ed at the top f or spatial orient ation of all other dat a. B elo w the transcript cartoon is the 
RNA Frame w ork inf ormed ScanFold z -scores with positiv e v alues in blue and negativ e v alues in red. B elo w the z -scores, the first arc diagram represents 
the RNA Frame w ork inf ormed ScanFold predicted base pairs with z -score > 0, > –1, > –2 and ≤2 color in white / gra y, y ello w, green and blue respectiv ely. 
B elo w the ScanFold arc diagram, the DMS reactivities are shown as a heat map on a scale of 0–1 where 0 is white, 1 is dark red, and intermediate 
values are shades of red. Below the DMS reactivity heat map, the second arc diagram represents the base pair probabilities calculated from an 
minimum free energy fold using RNA Framework reactivities and a 600 nt max base pair span constraint, with probabilities > 80%, 30–80% and 10–30% 

displa y ed in blue, gold and gray respectively. Comparison of the ScanFold and base pair probability arc diagrams demonstrates the general agreement 
betw een lo w z -score str uct ures and highly probable base pairings. B elo w the base pair probability arc diagram, the purple bar graph represents the 
Shannon entropies calculated using RNA Frame w ork reactivities and a 600 nt max base pair span constraint. The blue bars at the bottom represent 
dynamic regions identified by DRACO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

able models and reactivities, which produced variable AUC
values and levels of support for the different models and re-
activities that were compared ( Supplementary Tables S7 and
S8 ; Supplementary Figure S8 ; Supplementary File S9 ). 

Regions of conformational dynamics identified 

within AR mRNAs 

In addition to determining the static structures of AR mRNAs,
we also looked at their potential for conformational dynamics.
To do this we used DRACO, an algorithm designed to decon-
volute RNA structure heterogeneity from mutational profil-
ing (MaP) data ( 54 ). With the capability of MaP experiments
to introduce multiple mutations on a single cDNA, DRACO
can extract multiple unique reactivity profiles from the same
dataset allowing for identification of structural heterogeneity
(potentially dynamic RNA secondary structures). Analysis of
the FL and V7 RNA Framework reactivities by DRACO re-
vealed 9 and 6 regions of potentially dynamic structures dis-
persed across the transcripts, respectively (Figures 2 and 3 ).
For FL, 5 of the dynamic regions encompassed –2 z -score 
structures while the other 4 regions encompassed either –1 

or weakly negative z -score structures. For V7, all 6 regions 
encompassed either –1 or weakly negative z -score structures.
Here, the focus was on regions that contained –2 z -score struc- 
tures of FL including one in the 5 

′ UTR, one in the CDS, and 

two in the 3 

′ UTR. 
Within the 5 

′ UTR, unique reactivity profiles were predom- 
inantly found for the region encompassing structures 6 and 

7. Based on the PPV and sensitivity analysis of these pro- 
files ( Supplementary File S10 ), only profiles resulting in struc- 
tural changes were folded using a 600 nt pairing constraint.
This resulted in four clusters of conformations that main- 
tained either part or all of the ScanFold predicted struc- 
tures. With a 120 nt pairing constraint, all structures were 
nearly identical to each other and the predicted ScanFold 

hairpins ( Supplementary Figure S11 ). Fewer reactivity pro- 
files were found in the CDS for the region encompassing 
structures 13–15. Unique profiles from PPV / sensitivity anal- 
ysis ( Supplementary File S10 ) were analyzed for structural 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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ifferences using a 600 nt pairing constraint. Here, 3 differ-
nt multi-branch conformations containing either part or all
f the ScanFold predicted structures were identified. The 120
t pairing constraint maintained similar conformations as the
00 nt constraint, but as individual hairpins and a small multi-
ranch loop ( Supplementary Figure S12 ). This is not surpris-
ng due to the high ensemble diversity of the structures and
he nature of the CAG repeats that allows for base pair slip-
ing. Unique reactivity profiles were also found in the 3 

′ UTR
or the region containing structures 31–34. Unlike any of the
ther dynamic regions, these profiles all formed distinct con-
ormations regardless of the base pair constraints used. Al-
hough distinct conformations formed, either part or all of
he ScanFold predicted structures were still maintained. Here,
he predominant changes were seen in structure 32 where
he predicted hairpin is restructured into a multi-branch loop
 Supplementary Figure S13 ). The large terminal loop of struc-
ure 32 and the A-rich nature of the region could explain
his potential conformational switch. Near the end of the
 

′ UTR additional reactivity profiles were found for the re-
ion containing structures 86–89. The unique profiles clus-
ered into 3 different multi-branch loop conformations. Sim-
lar to all other regions, when a 600 nt base pair constraint
as used the conformations maintained either part or all
f the ScanFold predicted structures. Like the CDS, when a
maller base pair span was used, similar conformations were
aintained, but as individual hairpins and small multi-branch

oops rather than one large domain. Here, the predominant
hanges were seen downstream of the low z-score structures
 Supplementary Figure S14 ). Although structures 6–7, 13–
5 and 31–34 were maintained between reactivity profiles,
ifferences in pairing and z-scores were seen between RNA
ramework and Shapemapper2 informed ScanFold in these
egions ( Supplementary Figure S4 and Supplementary File S8 ),
ffering further evidence of structural heterogeneity. 

 canF old identified structured regions regulate 

ene expression in vitro 

ith the majority of low z -score structures remaining con-
istent between the different analysis methods, cm-builder
 60 ) was used to identify structures with statistically signifi-
ant covarying base pairs. These covarying base pairs indicate
hat co-mutation of paired nucleotides has occurred across
pecies to preserver the structure. Of the 89 FL structures
ith z -score ≤–1, 25 showed evidence of at least one base
air with statistically significant covariation. Of these, there
ere 7 in the 5 

′ UTR, 4 in the CDS and 14 in the 3 

′ UTR. For
7, 9 of the 25 structures were similarly identified with 2 in

he 5 

′ UTR, 3 in the CDS, and 4 in the 3 

′ UTR. All covaria-
ion data can be found annotated in Figures 4 and 5 and in
upplementary File S5 . 

Combining information from the results above, 10 struc-
ures from AR-FL (6 from the 5 

′ UTR and 4 from the 3 

′ UTR)
ere assessed via dual luciferase reporter assays for effects on
NA stability and / or translation in human cells. Three dif-

erent human cell lines were used: HeLa, 22Rv1 and DU145.
eginning in HeLa with 5 

′ UTR structures 1–4 (AR 1–4) (Fig-
re 4 A and B), a statistically significant and proportional
no change in translational efficiency [TE]) decrease in pro-
ein and mRNA were observed compared to vector control
 Supplementary File S11 ). The same comparison with struc-
ture 4 (AR 4) removed (just structures 1–3 present) caused
essentially no change in protein level but a statistically signifi-
cant decrease in mRNA, resulting in an increased TE. Further-
more, AR 4 on its own reproduced the results from AR 1–4,
indicating its sufficiency in reducing the level of mRNA. These
data indicate that AR 4 was responsible for a reduced mRNA
level and plays a role in regulating translational efficiency in
concert with 1–3. 

AR 4 has 6 covarying base pairs in a short stem capped with
a large CU-rich loop (Figure 4 B). The loop contains several
consensus PCBP1 / 2 binding sites ( 30 ). Due to its high expres-
sion level in our cell lines ( 71 ), its upregulation in aggressive
prostate cancers ( 72 ), and its ability to regulate other human
UTRs ( 73 ,74 ), we focused our analyses on PCBP2. PCBP2
was confirmed to interact with AR mRNA by RNA immuno-
precipitation (Figure 4 C). In an attempt to disrupt putative
protein-RNA interactions, mutations of these consensus sites
were tested (similar to Yeap et al. ( 30 )) both individually and
in combinations (Figure 4 D). All individual and combined mu-
tations caused statistically significant increases in protein and
mRNA compared to WT AR 4 but non-significant increases in
TE. To determine whether this effect was cell-type specific, the
WT AR 4 and triple mutant construct (Mut 1–3) were tested
in 22Rv1 and DU145 cells. Again, the WT construct decreased
both protein and mRNA compared to vector control in each,
and the triple mutant increased both protein and mRNA com-
pared to WT. Unlike in HeLa or 22Rv1 cells, AR 4 reduced
translational efficiency in DU145. 

We also wanted to examine a region identified as struc-
turally dynamic in the 5 

′ UTR of AR-FL, so two additional
structures, AR 6 and 7 (Figure 4 A and E), were tested both
together and individually (Figure 4 F). Both contain covary-
ing base pairs and are separated by a stretch of unstructured,
A-rich nucleotides that were previously shown to be methy-
lated (m 

6 A) ( 75 ). Like AR 1–4, when AR 6 and 7 were tested
together (AR 6–7) a reduction was seen in both the level of
protein and mRNA (compared to vector) in all three cell lines.
Not only was this effect greater in the 22Rv1 and DU145 lines,
but translational efficiency was also significantly reduced. In-
terestingly, when just the un structured intervening region (AR
6–7 Int) was tested, it alone was sufficient to reduce luciferase
expression, mRNA, and translational efficiency (compared to
vector), but true to all three cell lines, the level of mRNA was
greater than when AR 6 and 7 were also present. These data
suggest that this dynamic region regulates AR expression. 

With an abundance of structures to choose from in the
3 

′ UTR of AR-FL, we looked at two low z-score clusters com-
posed of potentially dynamic structures AR 32–36 and AR
86–87 (Figure 5; Supplementary Figure S15 ). AR 32–33 and
32–36, which are near the CDS and contain several validated
microRNA sites ( 39 , 40 , 43 ), were effective at reducing trans-
lational efficiency despite a doubling of mRNA in HeLa cells
(Figure 5 ). The miRNA sites may have contributed to reduced
translation, but structure 32 alone–with 18 covarying pairs,
four sites of m 

6 A modification, but no known miRNA bind-
ing sites–sufficiently elicited the same results. AR 32 had no
effect compared to vector control in the 22Rv1 and DU145
lines, however, suggesting that other interacting factors play
a role in mediating the cell-type specific effects. Closer to the
end of the AR-FL 3 

′ UTR, AR 86–87 was also tested in HeLa
cells and revealed a significant increase in the mRNA level but
no effect on protein levels ( Supplementary Figure S15 ). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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Figure 4. AR-FL 5 ′ UTR functional assay results. Str uct ure function data for AR-FL 5 ′ UTR str uct ures 1–4 and 6–7 in HeLa, 22Rv1, and DU145 cell lines. 
( A ) The entire AR-FL 5 ′ UTR is shown at the top with ScanFold predicted str uct ures represented as an arc diagram above the gene cartoon. Low z -score 
str uct ures (blue and green arcs) are annotated with their number and a blue or orange box. Str uct ures annotated with blue bo x es are expanded and 
represented below the arcs as 2D models. Black arrows represent the location of RIP primers. ( B ) The individual str uct ures of AR 1–4 are numbered and 
annotated with all rele v ant data including two m6A modifications (orange circles), six covarying base pairs (green bars) and three predicted PCBP2 
binding sites (gray highlight). Within the predicted PCBP2 binding sites, C > A mutations (red nucleotides) were made to ablate the potential interaction 
for functional testing. Mutant 1–3 were made at transcript positions 357–359, 31 4–31 5 and 333–335, respectively. ( C ) Results of semi-quantitative PCR 

on RIP samples from 22Rv1 and HeLa cells. Primers targeted a 141 nt region of the FL 5 ′ UTR, near str uct ure 4 (top diagram). On the left, the results 
from 22Rv1 cells shows an enrichment in PCBP2 protein binding compared to the IgG control at 25 cycles. On the right, the results from HeLa cells 
shows an enrichment in PCBP2 protein binding compared to the IgG control at 30 cycles. In both cases the intensity of the PCBP2 band was far greater 
than that of IgG and similar to that of the 5% Input (total lysate) sample. ( D ) Dual luciferase, and translational efficiency results for str uct ures 1–4 in 
HeLa, 22Rv1, and DU145 cells. Changes in protein (y ello w) and mRNA (red) le v els compared to vector or WT control can be seen in the top bar graphs. 
Here, AR 4 was compared to vector and all mutants were compared to the WT AR 4. Changes in translational efficiency seen in the lower bar graphs 
f ollo wing the same comparisons as protein and mRNA. Here, vector controls are represented in white and experimental constructs are in gray. Asterisks 
represent a P -value < 0.05 determined using a t wo-t ailed Student’s t -test. ( E ) The individual components of str uct ure 6–7 are numbered and annotated 
with all rele v ant data including five m6A modifications (orange circles) and 13 covarying base pairs (green bars). ( F ) Dual luciferase, and translational 
efficiency results for str uct ures 6–7 in HeLa, 22Rv1 and DU145 cells. Changes in protein (y ello w) and mRNA (red) le v els compared to v ector can be seen 
in the top bar graphs. Changes in translational efficiency compared to vector are seen in the lower bar graphs. Here, vector controls are represented in 
white and experimental constructs are in gray. Asterisks represent a P -value < 0.05 determined using a t wo-t ailed Student’s t -test. 
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Figure 5. AR-FL 3 ′ UTR functional assay results. Str uct ure function data for AR-FL 3 ′ UTR str uct ures 32–36. A 746 nt fragment at the beginning of the 
AR-FL 3 ′ UTR is shown with ScanFold predicted str uct ures represented as an arc diagram above the gene cartoon. Low z-score str uct ures (blue and 
green arcs) are annotated with their number and a blue or orange box. Str uct ures annotated with blue bo x es are expanded and represented below the 
arcs as 2D models. The individual hairpins of the 2D model are numbered and annotated with all relevant data including four m6A modifications (orange 
circles) and eighteen co v arying base pairs (green bars) on str uct ure 32, and a miR-297 site (pink) and a miR-9-5p site (y ello w) f or the single stranded 
region between str uct ure 32 and 33. These str uct ures were tested for function via dual luciferase assays and qPCR in HeLa, 22Rv1 and DU145 cells. 
The changes in protein (yellow) and mRNA (red) levels compared to vector control can be seen in the left bar graph. Using the protein and mRNA levels, 
translational efficiency was calculated and plotted in the right bar graph. Asterisks represent a P -value < 0.05 determined using a t wo-t ailed student 
T-test. 
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dentification of putative novel AR protein 

nteractions 

o identify protein binding factors involved in the regulation
f AR mRNA, we performed RNA-pulldown experiments us-
ng in vitro transcribed and biotinylated RNA, 22Rv1 cellular
ysate, and mass spectrometry (MS). Here, the 3 

′ UTR region
n AR-FL identified by Yeap et al. ( 30 ) to bind PCBP2 was
sed as a positive control, a 25mer poly(A) sequence was used
s a negative control, and a non-labeled RNA was used as a
ulldown control. For the identification of novel protein inter-
ctors, we used two functionally relevant and conserved struc-
ured RNAs as bait (both having long stems capped by large
ingle stranded loops): AR 4 and AR 32, which correspond
o ScanFold identified structures found in the 5 

′ and 3 

′ UTRs,
espectively (Figures 4 and 5 ). Mass spectrometry of proteins
aptured in the biotin pulldowns resulted in hundreds of puta-
ive hits in each sample ( Supplementary File S12 ). To focus on
nly the most robust results, proteins identified in each sample
ere filtered based on their Mascot scores (a summary of qual-

ty control metrics, such as the percentage of matching pep-
ides used to make an ID). Limiting our attention to proteins
dentified with very strong Mascot scores ( > 3 × the ‘back-
round’ average score of all hits) resulted in 10 putative inter-
cting proteins for AR 4 and 15 for AR 32 (Figure 6 ). Of these,
 proteins were common to both RNAs, 5 were unique to AR
, and 10 were unique to AR 32. Notably, PCBP1 and PCBP2
ere both found in the AR 4 pulldown samples, where the en-
ogenous interaction of PCBP2 with AR 4 was confirmed via
IP (Figure 4 C). The interaction with AR 4 is interesting, as
e found this 5 

′ UTR element to suppress AR expression (Fig-
ure 4 B), whereas the PCBP2 interaction with the 3 

′ UTR of AR
was previously found to be stabilizing ( 30 ). STRING analysis
of the 20 identified strong hits found a tight cluster of nodes
with significantly more interactions than expected, implying
biological connections ( Supplementary File S12 ). Likely bio-
logical processes for these connected proteins were identified
and found to be consistent with roles in post-transcriptional
regulation of AR: e.g. regulation of mRNA translation, sta-
bilization, processing, etc. Interestingly, biological roles in vi-
ral genome replication and viral / host translation through in-
teractions with IRES stem-loop RNA structures ( 76 ,77 ) were
identified for PCBP2 and CSDE1 (Cold Shock Domain Con-
taining E1). 

Additional pulldowns were conducted in multiple cell
lysates to identify potentially unique RNA binding proteins
involved in the differential changes caused by structure 32
in our functional assays. Here, we used in vitro transcribed
and biotinylated AR 32 RNA, a non-labeled RNA pulldown
control, and both 22Rv1 and HeLa cell lysates. The proteins
captured in the pulldown were ran on an SDS-PAGE gel and
silver stained to identify band patterns unique to each lysate
( Supplementary File S3 ). Three prominent bands from the
22Rv1 lysate were excised and proteins were identified via
mass spectrometry. Using the approximate molecular weights
from the gel to assess reasonability of returned hits, one po-
tential protein was identified from band 1 and two potential
proteins were identified from band 3. Similar to what was seen
in the previous pulldown experiment, the band 1 protein was
found to be DExH-box helicase 9 (DHX9), and the band 3
proteins were found to be Cold Shock Domain Containing E1

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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Figure 6. The strongest identified proteins (Mascot scores 3X > background for each sample) from biotin RNA pulldowns using synthetic AR-FL 
str uct ure 4 WT and str uct ure 32 in 22Rv1 cell lysates are compared using a Venn diagram. Unique proteins for str uct ure 4 WT are within the light green 
circle, unique proteins for str uct ure 32 are in the light blue circle, and common proteins identified in both are in the dark green intersecting region. The 
secondary str uct ure models of str uct ure 4 and str uct ure 32 are on the left and right side of V enn diagram, respectively . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CSDE1) and Interleukin Enhancer Binding Factor 3 (ILF3)
( Supplementary File S12 ). 

Isoform specific changes in RNA secondary 

structure 

Through our analysis of AR-FL and V7 RNA secondary struc-
ture, we have identified many structures that are both common
and unique between the two isoforms. Interestingly, all of the
AR-FL structures that were tested and found to be functional
are not present in the truncated AR-V7 isoform (Figure 1 ).
Through the truncation of the 5 

′ UTR, alternative splicing of
the CDS, and replacement of the 3 

′ UTR only 13 of the 89 low
z -score structures of FL are present in V7. Of the structure
shared between isoforms, 5 are from the 5 

′ UTR, 8 are from
the CDS, and none are from the 3 

′ UTR. Comparing changes
in structural propensity for each RNA, we found differences
in average z-scores for FL and V7 of –0.58 and –0.35 respec-
tively. These changes become more notable when partitioning
results between the UTRs and coding sequences (CDS). Here,
the average z -scores of the FL 5 

′ UTR, 3 

′ UTR and CDS are –
0.66, –0.25 and –0.70 compared to –0.50, –0.13 and –0.62 for
V7. Similarly, RNA structural dynamics differ between AR-FL
and AR-V7, with less dynamic regions identified in V7. In-
terestingly, two different V7 dynamic regions were identified
across the 5 

′ UTR-CDS junction whereas none were identified
for FL. 

Discussion 

In silico only S canF old compares favorably with 

structure probing data 

Using targeted DMS-MaPseq we determined the RNA sec-
ondary structure landscape of two low abundance transcripts,
AR FL and V7, in 22Rv1 prostate cancer cells. This power-
ful technique gave excellent signal, sufficient for the deter-
mination of structural dynamics. Through the use of RNA
Framework, DMS reactivity data was generated and used to
inform ScanFold and RNAfold structure predictions. Use of
the programs Shapemapper2 / SuperFold also showed congru-
ency with that of RNA Framework, however the RNA Frame- 
work data was more amenable to structural dynamics decon- 
volution using DRACO. PPV / sensitivity and ROC analysis of 
all structure predictions provided valuable insight into Scan- 
Fold’s prediction and modeling capabilities with and with- 
out probing data. Several low z-score structures identified in 

our predictions were also shown to be functional via dual 
luciferase and qPCR. Through mass spectrometry and RNA 

immunoprecipitation, these structures were shown to interact 
with many RBPs that support our functional readouts. 

We have rigorously analyzed all DMS sequencing data from 

biological replicates and merged datasets and found good cor- 
relation between the different methods as well as the replicates 
versus the merged datasets ( Supplementary File S7 ). Although 

the comparison of per replicate reactivity data to each other 
yields low correlation, we have found that all replicates ex- 
hibit very similar DMS signal, read coverage, and read depth.
Analysis of coverage data in concert with both per nucleotide 
reactivity standard deviation data and 100 nt sliding window 

Pearson correlation analysis of reactivities revealed a direct re- 
lationship between high coverage regions, low per nucleotide 
reactivity standard deviation, and high reactivity correlation 

( Supplementary Figures S2 and S3 ). Even in the low coverage 
areas, the least variable reactivities between replicates exist in 

more stable, lower z-score regions. While every site of reac- 
tivity may not match perfectly in magnitude, structure pre- 
dictions yield results that are highly consistent—also reflected 

by the results using the merged data. A comparison of Scan- 
Fold output files generated from each replicate dataset were 
found to have between 85 and 99% consistency in pairings 
( Supplementary Table S1 ). 

Using all reactivity data we demonstrated that in silico 

ScanFold compares favorably to DMS-informed ScanFold 

( 58 ,59 ) by performing in-depth assessments of how prob- 
ing data affects ScanFold results. Incorporation of any in- 
dividual replicate or merged DMS reactivities as pseudo- 
energies into ScanFold predictions caused an increase in MFE 

compared to in silico predictions ( Supplementary Table S5 ) 
however this is not surprising, as pseudo-energies penalize 
the overall predicted MFE proportionate to the reactivities 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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 27 ,58 ). No other significant changes in structure were noted
 Supplementary Table S1 ). PPV / sensitivity and ROC analy-
is allowed for assessment of in silico ScanFold’s performance
ith and without probing data as well as how the probing
ata influenced model generation. Depending on the tran-
cript isoform, the PPV and sensitivity results varied signifi-
antly ( Supplementary Table S6 ); however, the per nucleotide
onsistency in predicted structure between all methods re-
ained high ( Supplementary Table S1 ). The differences in PPV

nd sensitivity can largely be explained based on changes in
er nucleotide z-scores caused by inclusion of probing con-
traints. These z-score shifts, in turn, affected the pairs con-
idered at different z-score cutoffs. In addition, many of the
airing discrepancies affecting PPV and sensitivity either fell
n dynamic regions, regions of higher z-score, or repeat re-
ions ( Supplementary Figures S4 and S5 ; and Supplementary 
ile S8 ). Static ROC analyses showed some agreement (AUCs
bove 0.6) between RNA Framework reactivities for both
n silico and RNA Framework informed ScanFold models at
ll z -score cutoffs ( Supplementary Figure S8 ). Even though
ifferences existed, most low z-score structures modeled by
n silico ScanFold matched that of DMS-informed models,
s shown for S AR S-CoV-2 ( 59 ). Windowed ROC analysis
 Supplementary File S9 ) demonstrated good agreement (high
UC values) for the majority of low z-score structures, and

hat low z -score regions with lower than expected AUC val-
es correlated with dynamic regions identified by DRACO
 Supplementary Figures S9 - S10 ). Globally, low z-score struc-
ures found using in silico ScanFold were largely unaffected
y inclusion of DMS reactivities, reflecting the stability of low
-score structures. This also reflects the ability of DMS to in-
orm structural modeling while only causing minimal struc-
ure perturbation ( 78 ). Overall, this demonstrates the utility
f ScanFold for identifying sequence-ordered, well-structured
egions within mRNAs, making in silico predictions a valuable
tarting point. The addition of DMS data, however, provides
ritical information on the endogenous secondary structure
f surrounding sequences, including longer-range interactions
nd structural dynamics–both of which cannot be addressed
sing ScanFold alone. 
The low z-score regions identified in AR transcripts in-

ormed by DMS reactivities are well-structured and com-
rise higher probability base pairs. As expected, DMS reac-
ivities at nucleotides with low average z-scores were gen-
rally lower than nucleotides with higher average z -scores
 Supplementary Figure S6 A). These nucleotides were not com-
letely unreactive, though, revealing unpaired bulges and
oops. As the z -scores increased (reflecting less bias toward or-
ered structure) the number and magnitude of DMS reactivi-
ies also increased due to chemical accessibility of nucleotides
n less structured regions. Comparison of base pair probabili-
ies ( 79 ) to RNA Framework informed z -scores demonstrated
hat nucleotides with lower mean z -scores had higher base
air probabilities, with the highest z -scores–predicted to be
npaired–showing the largest decrease in pairing probability
 Supplementary Figure S6 B). 

ynamic RNA structural regions near to or 
verlapping S canF old structures may attenuate 

unction 

side from being used to inform ScanFold, DMS reactivi-
ies generated from RNA Framework were also used to pre-
dict potential RNA structure heterogeneity using DRACO
( 54 ). DRACO extracted multiple reactivity profiles from the
same dataset based on co-mutation events observed during the
processing of DMS-MaPseq data. In the context of the sur-
rounding static profile across the FL transcript, it was noted
that in many instances the predicted structures were main-
tained while the surrounding sequence appeared to be dy-
namic. These subtle changes in structure are also representa-
tive of the evenly distributed stoichiometries for the conforma-
tions predicted by DRACO. For instance, the low MFE, low
z -score and high covariation support seen in AR 6–7 (Figure
4; Supplementary Figure S11 ) supports the finding that highly
ordered RNA structures have fewer changes in structure, po-
tentially due to stronger evolutionary selection for functional
conformations ( 80 ). Interestingly, the conformational changes
that surround ScanFold structures may play roles in regula-
tory functions by mediating interactions ( 21 ,81 ). By altering
the orientation, positioning, and spacing of the uniquely or-
dered structures their function may be fine-tuned at both the
secondary and tertiary structure level ( 22 ). Additional work is
needed to tease out the influence that flanking dynamic struc-
ture may have on the function of rigid local RNA structure. 

For some dynamic regions, such as the CAG repeat region
of the CDS and the A-rich structure AR 32 in the 3 

′ UTR,
parts of the ScanFold predicted structures varied as pair-
ing patterns shifted between the repetitive sequence elements
( Supplementary Figures S12 and S13 ). The CAG repeat re-
gion showed that both the static reactivity profile and one
DRACO profile generated the same type of ‘frozen’ hairpin
that is locked in by three CUG repeats as reported by de Mezer
et al. ( 82 ). The remaining DRACO profiles generated alterna-
tive CAG–CUG pairings that formed multiple different hair-
pins. This supports an assertion that uninterrupted repeats can
form slippery hairpins, whose length is reduced by pairing the
repeat-specific flanking sequence ( 83 ). For structure 32, most
of the hairpin consists of AU and GU pairs with many stretches
of poly(A) repeats in the large terminal loop and AAAU re-
peats downstream. Perhaps these features allow the hairpin to
‘slip’ or form alternative conformations in cells. These changes
could also be the result of different intra- or intermolecular in-
teractions caused by differences in the mRNA life cycle, cell
cycle, or response to internal and external stimuli ( 84 ). The
structural changes also recapitulate some of the discrepancies
in sliding window ROC data as well as differences seen be-
tween in silico ScanFold, informed ScanFold, and DRACO
models ( Supplementary Figure S4 and Supplementary File S8 ).

Structured regions identified in AR-FL are 

biologically active in vitro and may associate with 

regulatory RNA binding proteins 

Through our combined analysis of z-scores, covariation, in-
teraction partners, and structural dynamics we were able to
find several interesting structures in the AR-FL 5 

′ and 3 

′ UTR.
All tested structures showed evidence of function in reporter
assays, but those found in the 5 

′ UTR elicited the most dra-
matic results (Figures 4 and 5 ). When we tested AR 1–4, we
noted that the large terminal-loop containing structure, AR
4, was sufficient to reduce protein and mRNA levels com-
pared to vector control (Figure 4 D). Within the terminal loop
of the conserved hairpin (covariation for 6 of 7 base pairs),
three separate consensus PCBP2 binding motifs were identi-
fied that matched those previously found in the AR-FL 3 

′ UTR

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae220#supplementary-data
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( 30 ) and other human 3 

′ UTRs such as tyrosine hydroxylase
( 85 ,86 ) and erythropoietin ( 87 ,88 ). We verified the interaction
in the 5 

′ UTR by RNA immunoprecipitation and by mass spec-
trometry of biotinylated RNA pulldowns from 22Rv1 lysates.
Mutation of these binding motifs in AR 4 rescued protein and
mRNA levels compared to WT control in our reporter assays.
This novel interaction of PCBP2 with the AR 5 

′ UTR is one of
only a few examples of this RBP binding to a non-IRES region
of a human 5 

′ UTR ( 73 , 89 , 90 ) and possibly regulating the AR
transcript through both UTRs ( 74 ). PCBP2 may be responsi-
ble for the changes seen in our assays as it has been shown to
bind human UTRs (non-IRES regions) and effect mRNA sta-
bility ( 91 ,92 ), transcript turnover ( 93 ), and protein expression
( 73 ,90 ). Perhaps most interesting, is that PCBP2 interaction
sites at either end of AR-FL have potentially opposing effects:
destabilizing in the 5 

′ UTR (Figure 4 D) and stabilizing in the
3 

′ UTR ( 30 ). 
Downstream of AR 1–4, AR 6–7 is also able to significantly

decrease protein and mRNA levels in vitro (Figure 4 F). A no-
table feature of this region is a large A-rich stretch of 99 nt (AR
6–7 Int) with little propensity for forming secondary struc-
ture and no predicted base pairing. When AR 6–7 Int was
tested, similar reductions in protein and mRNA levels were
observed, but not quite to the extent as when both the flank-
ing structures, AR 6 and 7, were included. This effect was con-
sistent across all cell lines, but the significant drop in trans-
lational efficiency was only observed in the prostate cancer
cell lines. Interestingly, the extent of translational inhibition
was the same whether AR 6 and 7 were there or not, suggest-
ing the primary site of translation regulation may be AR 6–7
Int, while flanking structure may play roles in mRNA stability
and maintaining the accessibility of the single-stranded RNA
region. 

In the 3 

′ UTR of AR-FL, AR 32 demonstrated a propen-
sity to stabilize mRNA in HeLa cells, even with the addi-
tional inclusion of the nearby validated miR-297 and miR-9-
5p binding sites in a larger construct ( 39 , 40 , 43 ). Similar sta-
bilization was not observed in either 22Rv1 or DU145 cells,
which may be explained by differences in regulatory proteins
between cell lines. Indeed, the proteins that bound AR 32
during RNA pulldowns in 22Rv1 lysate are significantly en-
riched for functions in the regulation of mRNA stabilization
and metabolism ( Supplementary File S12 ) ( 94 ,95 ). Addition-
ally, we found selective binding of the multi-functional pro-
tein CSDE1 in 22Rv1 lysate. Previous studies have shown that
CSDE1 possesses multiple functions including activation and
inhibition of translation, stabilization and destabilization of
mRNA, and regulation of mitosis and apoptosis ( 96 ). Even
though expression of this protein is higher in HeLa cells ( 71 ),
the interaction and specific function of the protein is depen-
dent on many factors including cell type ( 77 ), which may ac-
count for the decreased levels of reporter mRNA in prostate
cancer cell lines compared to HeLa. 

Loss of RNA structures in the truncated AR-V7 

isoform may have implications for AR gene 

deregulation 

While a major driver of AR-V7 expression in prostate cancer
is transcriptional activation, the significance of deregulation
of post-transcriptional mechanisms (beyond splicing regula-
tion) in AR-V7 is becoming more apparent ( 97 ). Relevant to
this, the AR-FL structures that were found to have functional 
activity are missing in the AR-V7 isoform due to truncations 
of the 5 

′ UTR and the total loss / replacement of the large FL 

3 

′ UTR (Figure 1 ). Indeed, only 13 highly stable AR-FL struc- 
tures were retained in the shorter isoform. Lack of functional 
structure in AR-V7 could play a role in the expression of 
this prostate cancer associated transcript. These common and 

unique structures could also be potential sites for binding of 
small molecules / RIBO TA Cs that to reduce the expression of 
AR that drives prostate cancer progression ( 28 ,29 ). Compar- 
ing FL and V7 mRNA there were overall changes in struc- 
tural propensity with average z-scores across each transcript 
of –0.58 and –0.35, respectively, which becomes more notable 
when partitioning results between the UTRs and coding se- 
quences. Looking at the FL 5 

′ UTR, 3 

′ UTR and CDS z -scores 
are –0.66, –0.25 and –0.70 compared to –0.50, –0.13 and –
0.62 for V7. Similar to the changes in structure between the 
isoforms, this change in propensity for formation of functional 
structures could play a role in the post-transcriptional regula- 
tion of AR-FL and V7. Similarly, RNA structural dynamics 
differ between AR -FL and AR -V7. Interestingly, two different 
V7 dynamic regions were identified across the 5 

′ UTR-CDS 
junction whereas none were identified for FL. Although the 
known change in sequence can have large effect on regulation 

and stability, the structural differences may also be significant 
to AR-V7 expression as they can further affect RNA stability,
decay, and trans-acting factors interactions. With this in mind,
roles of secondary structure in the post-transcriptional regu- 
latory environment of each isoform need to be considered in 

addition to differences in sequence. 

Conclusion 

Through the experimental and computational analysis of AR,
we have characterized the RNA secondary structural land- 
scapes of two important isoforms and identified several po- 
tentially functional structures in the 5 

′ and 3 

′ UTRs. Compari- 
son of in silico and DMS-informed ScanFold results, provided 

further evidence that our program performs well with and 

without probing data. Analysis of structural dynamics identi- 
fied both well structured (low z -score) and weakly or unstruc- 
tured regions of AR-FL and V7 transcripts that can sample 
multiple conformations. We show that dynamic regions tend 

to maintain low z -score structures while sampling conforma- 
tions using flanking sequence. Additionally, low z -score struc- 
tures in the 5 

′ UTR were identified as interaction partners for 
different trans-acting factors. We confirmed the interaction of 
PCBP2 with the conserved stem loop structure 4 in the 5 

′ UTR 

of AR-FL and identified several other RBPs that may be post- 
transcriptionally regulating active regions of the AR-FL UTRs.
Our study has provided new insights into the structural and 

functional features of the AR mRNA, providing a foundation 

to facilitate further research on this complex target and its po- 
tential applications in RNA therapeutics. 

Data availability 

The data underlying this article are available in the article and 

in its online Supplementary material (gel image, files, figures,
and tables) as well as on Zenodo and SRA (raw sequencing 
data), at 10.5281 / zenodo.10180281 and https://www.ncbi. 
nlm.nih.gov/ sra/ PRJNA1048882 . 
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