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Abstract

Deep neural networks yield promising results in a wide range of computer vision applications, 

including landmark detection. A major challenge for accurate anatomical landmark detection in 

volumetric images such as clinical CT scans is that large-scale data often constrain the capacity 

of the employed neural network architecture due to GPU memory limitations, which in turn can 

limit the precision of the output. We propose a multi-scale, end-to-end deep learning method that 

achieves fast and memory-efficient landmark detection in 3D images. Our architecture consists 

of blocks of shift-equivariant networks, each of which performs landmark detection at a different 

spatial scale. These blocks are connected from coarse to fine-scale, with differentiable resampling 

layers, so that all levels can be trained together. We also present a noise injection strategy that 

increases the robustness of the model and allows us to quantify uncertainty at test time. We 

evaluate our method for carotid artery bifurcations detection on 263 CT volumes and achieve a 

better than state-of-the-art accuracy with mean Euclidean distance error of 2.81mm.

Index Terms—
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1. INTRODUCTION

Recent advances in deep convolutional neural networks (CNNs) show great potential in 

various medical image computing applications, such as segmentation [1], registration [2], 

and landmark detection [3]. In this study, we consider the problem of identifying landmark 

points (sometimes called key-points) that correspond to certain anatomical and/or salient 

features in the image. This problem has been explored with traditional machine learning 

techniques [4, 5, 6], yet more recently deep learning methods have produced the best results 

[7, 8]. One common approach with deep learning is to use a full-convolutional architecture 

such as U-Net [9] to compute a heatmap image at the output that highlights the location of 

the landmark(s). Thus landmark localization is turned into an image-to-heatmap regression 

problem [3], where the ground truth coordinates are used to place Gaussian blobs (of often 

arbitrary size) to create training data.
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An important challenge in applying deep neural networks to volumetric data is 

computational, since resources needed to train on large-scale volumes will be proportional 

to the size of data [10]. This is often addressed by breaking the problem down to multiple 

steps, each solved separately. For example, one can tile the volume into 3D patches and 

apply landmark detection in each patch separately. Path-level predictions will be limited 

by the field of view and aggregation of patch-level results into the whole volume can be 

challenging. One complementary multi-stage strategy is to first use a coarse-scale network 

that produces candidate patches based on a lower resolution volume [10, 11, 12]. In 

these approaches, each step’s model is trained independently, which can compromise final 

accuracy due to error accumulation.

In this paper, we build on the multi-scale approach, yet propose a strategy to implement it in 

a single step. Our building block is a shift-equivariant network that combines a U-Net and 

a center-of-mass layer to produce predicted landmark coordinates in a volumetric image of 

a computationally manageable size. Blocks operating at different scales are then connected 

through differentiable resampling layers, which allows us to train the whole network end-

to-end. Unlike heatmap based approaches, the proposed model directly computes spatial 

coordinates for the landmarks. Our multi-scale network is memory efficient. The high 

resolution image which cannot fit into our GPU memory in the single-scale implementation 

can be used as the input for our multi-scale approach Contrary to other methods that use a 

coarse-to-fine multi-scale design, we employ a single step training scheme which improves 

accuracy. We further implement noise injection between scales to increase the robustness of 

our model and achieve uncertainty in predictions at test time.

We apply our method to computed tomography angiography (CTA) scans of the neck to 

localize the bifurcation of the left and right carotid arteries. In our experiments, we compare 

the proposed method to several baseline methods, where our model yields superior accuracy 

with useful uncertainty measurements that correlate with localization error.

2. PROPOSED METHOD

Our model for landmark detection consists of sequentially connected blocks of localizer 

networks (Loc-Net) that operate at different spatial scales - from coarse to fine. Each 

Loc-Net is simply a 3D U-Net-like architecture [13] that has a center of mass (CoM) 

layer at the end (see Fig. 1). As was demonstrated recently [14], a CoM layer computes 

the weighted average of voxel grid coordinates, where the weights are the pixel values of 

the U-Net output, which we can interpret as a heatmap that highlights the landmark. The 

weighted average coordinate vector is the predicted location of the landmark, computed by 

the scale-specific Loc-Net. Since the U-Net is a fully convolutional architecture, and the 

CoM is shift equivariant, it is easy to show that the Loc-Net will be shift equivariant1. That 

is, if we shift the input image by a certain amount (along the three axes), the predicted 

landmark coordinates will be shifted by the same amount. This, we believe, should be a 

critical property of a landmark detection model.

1This is approximately true, since down-sampling and pooling operations compromise the shift equivariance. A recent paper proposes 
a way to fix this issue [15].
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Another advantage of the CoM layer is that it circumvents the need for treating the problem 

as heatmap regression - a common approach for detecting landmarks with neural networks 

[3]. The main drawback of a heatmap regression approach is that the training annotations, 

which are often provided as coordinates, need to be converted into heatmaps, e.g., by placing 

Gaussian kernels. These kernels are usually of arbitrary size. If they are too small, training 

the networks can be hard. If they are too big, the precision of the landmark detection can be 

compromised.

We connect scale-specific Loc-Net modules sequentially, from low to high resolution, via 

an intermediate differentiable crop and resample layer. This layer creates a 3D patch of 

size 56 × 56 × 56, centered around the predicted landmark location and sampled at the 

next spatial scale. Fig. 2 illustrates our framework. This model is then trained end-to-end 

via minimizing the loss between the predicted location of the landmark and the ground 

truth. Our loss is a weighted sum of the scale-specific squared loss functions. Note that 

each scale-specific Loc-Net computes a prediction of the landmark location, which we 

can evaluate with a squared loss with respect to the ground truth. In our experiments, we 

implemented a piecewise linearly scheduled weighting scheme in combining scale-specific 

losses. All weights of the scale-specific loss terms were constant during each epoch. The 

relative weight of the lowest-scale loss started at one and linearly decreased to zero by epoch 

500. The relative weight of the highest-scale loss started at zero and linearly increased to 1 

by epoch 500. The loss weights corresponding to the other two scales started at zero, linearly 

increased and peaked at epoch 250, and then linearly decreased to zero by epoch 500. Thus, 

initially, our model’s training was focused on predicting the landmark coordinates at lower 

scales, eventually focusing on the accuracy of the highest resolution.

In this paper, we also explore the use of a novel stochastic regularization technique, which 

allows us to improve test time accuracy and quantify uncertainty in predictions. Instead of 

propagating the predicted landmark to the final scale, we add random shifts (see below for 

further details). This approach is reminiscent of stochastic dropout [16] and its variants. 

While dropout was originally proposed to be used during training (to improve robustness), 

it was recently shown that its use at test time can be viewed as an approximate Bayesian 

inference strategy that can yield well-calibrated uncertainty estimates - allowing researchers 

to combat the over-confidence issue of modern deep neural networks [17]. Inspired by this, 

we also implement our noise injection strategy at test time to compute the uncertainty in the 

landmark predictions. So at test time, we implement multiple forward passes through our 

network with different noise realizations injected at the input of the final Loc-Net module, 

thus computing multiple predictions. The standard deviations of these predictions can be 

used to quantify the uncertainty in the localization.

2.1. Implementation

We implement our code in tensorflow. Our mini-batch size is 1 3D CTA volume, and all 

methods are trained for 500 epochs using the Adam optimizer with a learning rate of 0.0005. 

For noise injection, a 5mm uniform random shift in each direction is applied before cropping 

the 0.5mm resolution image patch.
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3. EMPIRICAL RESULTS

In this study approved by the Weill Cornell institutional review board (IRB), we analyze 263 

anonymized CTA exams obtained in the course of clinical care from patients with uni-lateral 

> 50% extracranial carotid artery stenosis, who were imaged at Weill Cornell Medicine/New 

York Presbyterian Hospital. All the data involving human subjects used in this paper has 

obtained the corresponding ethics approval/waiver. All CTA volumes are interpolated to a 

high resolution grid of size 448 × 448 × 448 and 0.5mm voxel spacing. All down-sampled 

images used by our model are then created from this set of high resolution images. The 

lower resolution images have 1mm, 2mm and 4mm isotropic voxels. The data are randomly 

split into three non-overlapping sets where 167 for training, 42 for validation and 54 for 

testing. All of our landmarks for left and right carotid artery bifurcations are manually 

annotated by a trained human (T.M.).

To demonstrate the efficacy of the CoM layer, as a baseline, we implement a single scale 3D 

U-Net with a similar architecture to our Loc-Net2 that computes a heatmap output. This is 

trained with L2-loss on the heatmap images, where the ground truth heatmaps were created 

by centering a Gaussian kernel (with std = 6 mm) at the annotated landmark coordinates 

This is compared to a single-scale Loc-Net, which has the CoM layer at the end. Due to 

limited GPU memory, these single-scale models accept 1mm spacing 224 × 224 × 224 sized 

volumes as input.

We consider other baselines as well. Our state-of-the-art (SOTA) baseline is a patch based 

technique that was recently proposed [18]. We also implement two alternative versions of 

our proposed multi-scale model. In the first alternative, we disconnect the Loc-Nets from 

the different scales and train them sequentially in separate steps. In this training scheme, the 

first scale Loc-Net, for example, receives no learning signal from the highest resolution. A 

second alternative is the full multi-scale model trained in an end-to-end fashion, but without 

noise injection.

Table 1 shows the average Euclidean distance error (± standard deviation) for all considered 

methods, computed on the test data. First, we observe that the center of mass layer we use 

in our model boosts the performance of the U-Net over a heatmamp regression method. Fig. 

3 illustrates representative examples of heatmaps computed with and without the CoM. In 

addition to a more accurate prediction, the CoM layer yields heatmaps that correlate better 

with the underlying anatomy.

The results further illustrate that the proposed multi-scale model can outperform the state-of-

the-art method [18]. Furthermore, both end-to-end training and noise injection improve the 

accuracy of the predictions.

Fig. 4 presents the violin plots for all the different methods we test, which allows us the 

appreciate the full distribution of errors on the test cases. We note again that the proposed 

method of end-to-end training the multi-scale model with noise injection yields the most 

2We included an additional convolution plus down-sample layer
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compact distribution of errors with the smallest mean and median values. The improvement 

in the average error is mainly due to the reduction of the failure cases.

Similar to dropout [17], we apply random shifts (noise injection) at test time to obtain 

multiple predictions via 50 forward passes through the model. We then compute the 

standard deviations of these predictions along the three axes. Note that a single forward 

pass through our model takes 615 milliseconds on a NVIDIA Titan Xp GPU. Assuming 

an uncorrelated multivariate Gaussian, we compute the 90% confidence volumes for the 

predictions computed by our model. Fig. 5 plots these values with respect to the localization 

errors on the test cases. We observe that the confidence volumes (or rather the localization 

uncertainty) are significantly correlated (Pearson’s correlation 0.608, P-value 1.08e-06) with 

localization error, suggesting that one could use such an approach for automatic quality 

assurance and propagating uncertainty to downstream analyses.

4. CONCLUSION

In this paper, we explore the use of a novel multi-scale shift-invariant model, trained in an 

end-to-end fashion, for automatically localizing landmarks, particularly in large-scale 3D 

images. Our model is memory efficient and thus can be deployed on very large clinical scans 

at full-resolution, without compromising precision. In our experiments, we demonstrate 

that the employed center of mass layer can boost performance over a heatmap regression 

method, while simultaneously yielding more interpretable heatmaps. We also show that the 

end-to-end training of the connected multi-scale Loc-Nets can yield a significant increase 

in accuracy. Our method also compares favorably to a state-of-the-art patch-based landmark 

localization method. Finally, we demonstrate the use of noise injection at test time to obtain 

useful confidence/uncertainty estimates.

An important weakness of the proposed method is that we assume that the target landmark 

exists in every single query volume. This is the case for the application we consider, yet it 

might not hold in general. We plan to pursue this direction in the future.
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Fig. 1: 
Localizer Network (Loc-Net): our building block.
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Fig. 2: 
Proposed Multi-scale Landmark Localization. The architecture for all Localizer Nets is 

shown in Fig. 1

Ma et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2024 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
A representative test case. ’+’ shows the ground truth, and ’x’ indicates the prediction of 

landmark. (a) and (b) are sagittal and axial views; (c) and (d) are the heatmaps obtained with 

single-scale Loc-Net with CoM layer; (e) and (f) are heatmaps computed with single-scale 

U-Net model.
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Fig. 4: 
Test error distribution for different methods
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Fig. 5: 
Quantifying localization uncertainty. We use random shifts at test time to obtain 90% 

confidence volumes for our predictions (see text for further details). These volumes are 

correlated with the localization errors with respect to the ground truth annotations.
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Table 1:

Experimental results for different models

Architectures Error

U-Net (Heatmap) (1mm resolution) 6.45 ± 9.18mm

Single-scale Loc-Net (1mm resolution) 5.52 ± 5.69mm

Patch-based SOTA Baseline [18] 4.35 ± 4.33mm

Multi-scale Loc-Net (multi-step) 3.72 ± 4.20mm

Multi-scale Loc-Net (end-to-end) 3.61 ± 3.17mm

Multi-scale Loc-Net (end-to-end + noise) 2.81 ± 2.37mm
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