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Abstract

Focused Assessment with Sonography in Trauma (FAST) exam is the standard of care for 

pericardial and abdominal free fluid detection in emergency medicine. Despite its life saving 

potential, FAST is underutilized due to requiring clinicians with appropriate training and practice. 

To aid ultrasound interpretation, the role of artificial intelligence has been studied, while leaving 

room for improvement in localization information and computation time. The purpose of this 

study was to develop and test a deep learning approach to rapidly and accurately identify 

both the presence and location of pericardial effusion on point-of-care ultrasound (POCUS) 

exams. Each cardiac POCUS exam is analyzed image-by-image via the state-of-the-art YoloV3 

algorithm and pericardial effusion presence is determined from the most confident detection. 

We evaluate our approach over a dataset of POCUS exams (cardiac component of FAST and 

ultrasound), comprising 37 cases with pericardial effusion and 39 negative controls. Our algorithm 

attains 92% Specificity and 89% Sensitivity in pericardial effusion identification, outperforming 

existing deep learning approaches, and localizes pericardial effusion by 51% Intersection Over 

Union with ground-truth annotations. Moreover, image processing demonstrates only 57 msec 

latency. Experimental results demonstrate the feasibility of rapid and accurate pericardial effusion 

detection from POCUS exams for physician overread.
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1. Introduction

The Focused Assessment with Sonography in Trauma (FAST) is a rapid point-of-care 

ultrasound (POCUS) assessment to screen for pericardial and abdominal free fluid. The 

exam incorporates four views of the abdomen as illustrated in Figure 1, including the 

subxiphoid view of the pericardium, i.e., the cardiac view that we study. Figure 2 displays 

the anatomy of this view as revealed by ultrasound. A positive FAST exam has been shown 

to be a strong independent predictor of the need for therapeutic surgical intervention and 

critical decision-making in trauma [1–4]. Timely detection of free fluid with the FAST 

exam has also been shown to decrease time to surgical intervention and improve resource 

utilization [5]. The FAST exam has been accepted as an element of the primary survey by 

Advanced Trauma Life Support since 1997 [6]. Studies have shown that the FAST exam has 

high specificity for abdominal and pericardial free fluid in both blunt and penetrating trauma 

[7–22], including cardiac injury [7].

In the setting of trauma, free fluid is assumed to be blood, until proven otherwise. The 

presence of free fluid on ultrasound, in conjunction with clinical acumen, can aid in decision 

making regarding the need for surgical intervention or decisions to transfer to another 

facility for tertiary care [23–25]. For patients in cardiac arrest, who have critically low 

blood pressures or loss of pulses requiring chest compressions, the use of cardiac POCUS 

has been shown to rapidly identify reversible causes. These causes include pericardial 

effusions, in which free fluid collects between the heart and pericardium, which lead to 

cardiac tamponade [26]. Cardiac POCUS thus allows clinicians to make rapid decisions 

and perform life-saving procedures once pericardial effusion is identified. In particular, 

identifying a pericardial effusion can indicate the presence of cardiac injury and the need 

for a thoracotomy, aiding in the operative cavitary triage decision [27–29]. Figure 3 is an 

example of a pericardial effusion identified on POCUS.

Despite its life saving potential, POCUS is underutilized in many clinical settings, as 

performing and interpreting ultrasound requires personnel with appropriate training and 

practice. The FAST exam is part of emergency medicine and many surgical residency 

training programs [30–33]. Emergency medicine physicians and critical care physicians may 

further elect to complete an Advanced Emergency Medicine Ultrasonography fellowship 

or take the Critical Care Echocardiography exam, respectively, to achieve advanced 

certification. However, in rural and community emergency departments, low-resource 

international settings, and pre-hospital settings, clinicians with ultrasound training are often 

not available. To this end, the role of automated identification via artificial intelligence 

has been studied by several works to aid untrained personnel in the interpretation of 

ultrasound applications such as pregnancy evaluation and specific organ diagnoses [34–40]. 

Particularly in cardiovascular ultrasound, applications of deep learning comprise imaging 
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view classification [41], ventricular segmentation [42], electronic medical report generation 

[43], and disease classification [44], with the most commonly employed architecture being 

U-Net [45]. Two recent studies tackled free fluid detection from FAST exams via ResNet 

for detection [46] and U-Net [47] for localization, albeit focusing on right upper quadrant 

imaging. Similar to our study, Nayak et al. [48] applied Inception-V3 for pericardial effusion 

detection on echocardiography exams, attaining 91% accuracy. Despite high prediction 

performance, this approach did not provide location of identified effusion. Later, Wu et 

al. [49] employed MaskRCNN for detection and segmentation of pericardial effusion on 

echocardiography images, attaining 84% area under the receiving operating characteristic 

curve (AUC).

For computer aided interpretation to be useful for providers in making clinical decisions 

on trauma patients, high accuracy in detection must be paired with real-time inference 

to guide critical and time-dependent decisions in diverse clinical settings. Providing the 

location of the finding also allows clinicians to confirm the results of computer aided 

interpretation. This is similar conceptually to an automated electrocardiogram interpretation, 

which is ultimately overread by clinicians. Motivated by these observations, we develop a 

deep learning approach by extending YoloV3 to rapidly and accurately identify the presence 

and location of pericardial effusion in cardiac view of POCUS exams to aid in ultrasound 

interpretation and analysis by clinical personnel.

2. Methods

2.1 Study Design and Data Collection

A retrospective analysis over archived POCUS images obtained in 2010–2018 from adult 

patients who had FAST or POCUS examinations performed by emergency physicians was 

conducted. The study was deemed exempt from review by the Institutional Review Board 

of the study site. In order to obtain an adequate sample size of cases with pericardial 

effusions, both traumatic and non-traumatic causes of pericardial effusion were included in 

the analysis. A balanced number of confirmed cases with pericardial effusion and negative 

controls were identified. Trauma Registry was used to match images to patient medical 

records; matched electronic medical records were reviewed to confirm pericardial effusion 

by additional imaging such as computerized tomography or operative report. Non-trauma 

cases with pericardial effusion were identified by reviewing the Emergency Department 

Ultrasound image archive (Telexy, Qpath).

Table 1 summarizes the demographics of our dataset. All cases were acquired by either 

a Philips Sparq Ultrasound System or Zonare zone ultra and with either a curvilinear or 

phased array probe. Analysis was performed on de-identified data, with demographics, 

injury mechanism, confirmatory test results, ultrasound device manufacturer and probe 

stored on a password protected secure computer. The de-identified video clips (mp4) were 

used for analysis using a deep learning algorithm.

Two emergency physicians, one fellowship-trained expert in emergency ultrasonography and 

one senior attending credentialled in FAST and cardiac POCUS examination confirmed the 

final coding of each cardiac study as positive or negative according to American College of 
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Emergency Physician (ACEP) guidelines [50]. The resulting dataset comprised 37 cardiac 

ultrasound videos collected from patients with pericardial effusion, and 39 ultrasound videos 

collected from patients without free fluid in their pericardium. Each video was associated 

with a different patient, with 16 pericardial effusion positive female cases, 21 positive male 

cases, 17 negative female cases, and 22 negative male cases.

Two emergency physicians in collaboration manually segmented each region in each video 

frame of positive cases that indicate a clearly visible area of pericardial effusion in white 

color and heart in red color as demonstrated in Figure 3a, using PhotoPad Image Editor 

for Windows (NCH Software) [51]. To devise ground-truth annotations for the proposed 

detection algorithm, segmented pericardial effusion regions were then mapped to bounding 

boxes by fitting a tight rectangular bounding box to fully contain each pericardial effusion 

segment, as demonstrated in Figure 3b. Each case contained on average 123 (+/− 70) 

ground-truth pericardial effusion boxes, reaching up to 352 boxes per case. Ground-truths 

also exhibited a wide range of sizes: a pericardial effusion box occupied on average 5% 

(+/− 4.3) of a video frame, with the smallest box occupying only 0.5% and the largest box 

occupying up to 21% of their corresponding video frames.

The resulting dataset of 76 cases were partitioned via 5-fold cross validation in a stratified 

manner, keeping a uniform ratio of positive and negative cases in each set. For each fold, 

8% of the cases were held-out for validation and 20% of the cases were held-out for testing. 

As YoloV3 is a detection method and requires ground-truth pericardial effusion boxes, we 

used only positive cases from the remaining 72% for training YoloV3. We then evaluated the 

performance of the trained model on the 8% set of positive and negative cases for validation 

and on the held-out 20% set of positive and negative cases for final testing. Data partitioning 

was based on cases rather than video frames, ensuring that a subject that is included in 

training is not included in validation or testing.

2.2 Automated Pericardial Effusion Detection

For automatic detection and localization of pericardial effusion on ultrasound videos, we 

employed and extended the YoloV3 algorithm [52]. Yolo is one of the most prevalently 

employed object detection approaches in real-life deployment due to its simple architectural 

design, low complexity, and easy implementation [53]. Moreover, Yolo has been extensively 

tested with high prediction performance in object detection over various domains [53], 

detecting not only people, vehicles and common objects, but also clinical conditions from 

medical images [54]. While the first Yolo version demonstrated errors in localizing smaller 

sized objects, YoloV3 version that we use was designed to overcome these drawbacks and 

improved computational efficiency.

YoloV3 comprises a convolutional neural network, termed as Darknet-53, that divides the 

input image into regions and predicts bounding boxes and probabilities for each region. 

The Darknet-53 architecture is summarized in Figure 4, with detailed breakdown of layers 

presented in Table 2. Bounding boxes are weighted by the predicted probabilities to form 

object detections. As predictions are informed by the whole input image, global context 

is considered in object detection, aiding detection performance. Moreover, unlike former 
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object detection methods that apply a neural network at multiple locations and scales, the 

single pass inference approach of YoloV3 improves computational efficiency.

In our setting, each POCUS exam was analyzed frame by frame using YoloV3 and 

pericardial effusion presence for the exam was determined based on detections from all 

frames. In particular, YoloV3 received each 2D video frame from each exam and predicted 

(i) rectangular bounding boxes that contain potential pericardial effusion regions, and (ii) a 

confidence score in the range 0–1 that is associated with each pericardial effusion detection. 

Pericardial effusion confidence scores represented probabilities of pericardial effusion 

existence and were thresholded in inference to make a binary decision on pericardial 

effusion presence for each exam.

To combat overfitting over our small training dataset, transfer learning [55] was employed 

by initializing Darknet-53 with weights pre-trained over the benchmark Common Objects in 

Context (COCO) object detection dataset [56]. Following initialization, YoloV3 was trained 

on the pairs of video frames and corresponding ground-truth pericardial effusion boxes that 

belong to positive training cases only. Following Redmon et al. [52], binary cross-entropy 

loss between confidence score predictions and ground-truth (positive or negative) labels was 

minimized to train for pericardial effusion detection, while mean-squared error loss between 

center coordinates, widths and heights of predicted and ground-truth boxes was minimized 

to train for localization. Training lasted for a maximum of 100 epochs and was stopped 

when the loss function evaluated over the validation set did not decrease below the lowest 

validation loss so far for 5 epochs consistently. Adam optimization with a learning rate of 

10-3 was employed to optimize neural network weights [57].

To further combat overfitting and aid performance generalization, input frames in training 

were perturbed via Gaussian distributed additive noise [58] and neural network weights were 

regularized via weight decay with regularization level 0.02 [59]. To apply Gaussian noise, 

we sampled a value from a Gaussian distribution with 0 mean and standard deviation 0.35 

independently for each pixel of each training image and added the sampled value to the pixel 

value. We followed the literature [60, 61, 62] in employing additive independent Gaussian 

noise augmentation, which has been shown to substantially reduce errors due to data quality 

and improve robustness in predictions. Data quality challenges are well-known in ultrasound 

imaging due to ultrasound wave aberration and reverberation [63]. These image degradation 

effects are typically observed as shadows over images that can lead to errors in free fluid 

detection [44]. These observations motivated us to employ Gaussian noise augmentation for 

the trained model to combat prediction errors due to image quality.

To perform inference over each exam in the test set, the trained model was first applied on 

each video frame to detect pericardial effusion boxes and corresponding confidence scores. 

If there are multiple detections in one frame, the highest confidence detection was kept. 

Finally, each exam was represented with the highest confidence score across all frames, 

which was used to classify the case as positive or negative.
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2.3 Data Preparation

In addition to the region of interest, each ultrasound video frame includes image acquisition 

details such as frequency in the margins. Thus, we began preprocessing with first cropping 

each video frame by 5% from left and right sides to zoom into the region of interest. In 

doing so, image data and pericardial effusion regions were not discarded. Following the 

common practice in object detection literature [52], we resized each cropped video frame to 

obtain a uniform size of 256 × 256 pixels. Finally, we normalized pixel values between 0–1, 

so as to accelerate convergence of neural network training [64] and mitigate the common 

lighting and contrast variations across different ultrasound videos. To do so, we computed 

the maximum pixel value in each video and divided each pixel value within the video by this 

value.

2.4 Performance Metrics

To perform inference over each exam in the test set, the trained model was applied over all 

images in the exam to obtain the highest confidence score, which was thresholded at 0.1 to 

classify the case as positive or negative. The threshold of 0.1 was inspired by Eykholt et al. 

[65] for better performance generalization across unseen cases.

Pericardial effusion detection performance was assessed via several performance metrics. 

Using the confidence scores prior to thresholding, AUC was computed. After thresholding 

for binary classification of each case, sensitivity, specificity, likelihood ratios and predictive 

values for positive and negative classes, as well as accuracy were computed via:

Sensitivity = # of positive predictions
# of ground − trutℎ positive cases = # of true positives TP

TP + # of false negatives FN

(1)

Specificity = # of negative predictions
# of ground − trutℎ negative cases = # of true negatives TN

TN + # of false positives FP

(2)

Positive Likelihood Ratio = Sensitivity
1 − Specificity

(3)

Negative Likelihood Ratio = 1 − Sensitivity
Specificity

(4)

Positive Predictive Value = TP
TP + FP
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(5)

Negative Predictive Value = TN
TN + FN

(6)

Accuracy = TP + TN
TP + TN + FP + FN

(7)

The average of each metric, along with its 95% confidence interval (CI), were reported over 

5 test folds. Detections on positive cases in each test fold were made by the corresponding 

trained model that has not seen these cases in training. As negative cases were not used 

in training, the trained model that leads to the least false positive detections was applied 

on the negative validation and test cases, as this model has the best potential to be 

deployed. Intersection over Union (IOU) metric [66] was used to assess pericardial effusion 

localization over positive cases, computed as the overlap percentage between a ground-truth 

pericardial effusion box and the corresponding detected box. For each positive test case, the 

IOU on the video frame in which the pericardial effusion box was localized the best was 

computed via:

IOU = max i ∈ 1, # of frames
Ground − trutℎ boxi ∩ Predicted boxi
Ground − trutℎ boxi ∪ Predicted boxi

(8)

To assess computational efficiency, the amount of time it takes for each video frame to be 

analyzed was also captured, i.e., latency, and reported as averaged over all cases.

3. Results

3.1 YoloV3 Prediction Performance

Our analysis involved 37 ultrasound videos collected from patients with pericardial effusion 

and 39 ultrasound videos collected from patients without free fluid in the pericardium on 

their POCUS exams. Each video was associated with a different patient, with 16 pericardial 

effusion positive female cases, 21 positive male cases, 17 negative female cases, and 22 

negative male cases.

Automated pericardial effusion detection based on YoloV3 resulted in 92% Specificity, 

89% Sensitivity, 91% Accuracy, and 94% AUC in distinguishing positive and negative 

cases (Table 3), missing only 4 cases out of the 37 positive cases and leading to 

only 3 false negative predictions. All classification metrics attained near 90% or above 

average prediction performance, following the typical rule-of-thumb of diagnostic testing 

and demonstrating the discrimination capability of the confidence probability scores of 
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detected boxes [67]. As data was stratified across genders, we found no differences in the 

performance of the algorithm based upon sex.

In addition to detection, pericardial effusion was localized on the video frames of positive 

cases by YoloV3. As we also demonstrate visually below, our algorithm exhibited strength 

in localizing the pericardial effusion region of interest, while the detected box sizes and 

aspect ratios varied, resulting in 51% IOU averaged over all positive cases. Crucially, our 

approach demonstrated only 57 milliseconds latency in image processing on a Macbook 

Pro laptop (2021 model Macbook Pro with Apple M1 Max chip), equivalent to processing 

18 ultrasound images per second. This example assessment of processing speed exhibited 

potential for real-time feedback to aid clinicians.

3.2 Comparison to State-of-the-art

Following the state-of-the-art on deep learning for joint free fluid detection and localization 

from ultrasound exams, we implemented the 2D U-Net [47] and MaskRCNN [49] as 

competing methods, using the same data preparation and performance analysis steps as 

YoloV3. Furthermore, as an object detection baseline, we implemented a Single Shot 

Detector (SSD) network following Liu et al [68]. Similar to our object detection approach 

via YoloV3, SSD eliminates multiple bounding box generations per location and scale, and 

encapsulates all computations in a single network for computational efficiency. MaskRCNN 

also performs object detection as in YoloV3, with the difference of an additional fully-

connected branch that predicts a segmentation mask inside each detected bounding box. For 

fair comparison with YoloV3, we initialized MaskRCNN and SSD weights via pre-training 

over the COCO dataset and used bounding box confidence scores to detect pericardial 

effusion. U-Net comprised 4 encoder-decoder blocks with 64, 128, 256, 512 channels and 

4 residual units, respectively [47]. In training U-Net and MaskRCNN, we used the original 

manual ground-truth segmentation masks for pericardial effusion and trained segmentation 

via binary cross-entropy loss. To compare localization performances against YoloV3, we 

mapped predicted pericardial effusion segmentations to bounding boxes by fitting a tight 

rectangular bounding box around each pericardial effusion segment. As in YoloV3, we used 

the highest segmentation probability over each exam and thresholded this value to classify 

the exam.

Table 4 compares the performances of YoloV3, U-Net, MaskRCNN and SSD. YoloV3 

consistently outperformed competing methods against all detection metrics, by up to 57% 

AUC against MaskRCNN. Our method performed rapid detection and localization of 

pericardial effusion by drawing a box around each detection, rather than pixel-by-pixel 

segmentation as in, e.g., MaskRCNN. This design choice demonstrated significantly higher 

accuracy in pericardial effusion detection than all competing methods, with a trade-off in 

estimating the exact shape and size of pericardial effusion. Thus, while detected pericardial 

effusion regions of interests were correct with respect to ground-truth boxes, detected box 

sizes and aspect ratios varied and lowered the average IOU against MaskRCNN and SSD. 

As efficient and accurate detection is the priority in POCUS applications, our approach 

precisely accounted for this trade-off. We further demonstrated the advantage of YoloV3 in 

this trade-off via computational efficiency: MaskRCNN exhibited 195 ms average latency, 
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running 3 times slower than YoloV3 that require only 57 ms. YoloV3 also fared better 

than the objection detection counterpart SSD that exhibited 63 ms average latency. This 

improvement was naturally by a smaller margin compared to MaskRCNN that performs 

pixel-by-pixel segmentation in addition to object detection.

3.3 Visual Results

Figure 5 demonstrates example ground-truth pericardial effusion boxes compared to the 

detections from our algorithm. Each ground-truth image demonstrates the box around 

the annotated pericardial effusion region by clinical experts. The corresponding predicted 

image demonstrates the box around the detected pericardial effusion region by YoloV3. 

The confidence score that varies between 0 and 1 is shown next to each box. Naturally, 

confidence score is the highest value of 1 for ground-truth boxes. Visual results validate 

that our algorithm exhibited strength in good localization, including very small pericardial 

effusion regions as in Figure 5b. While detected locations and regions of interests were 

correct with respect to ground-truth boxes, detected box sizes and aspect ratios varied, as 

also discussed quantitatively above.

Figure 6 visualizes example images from the positive cases that were missed by our 

algorithm. We included the original segmentation annotations in Figure 6 to discuss the 

potential reasons why YoloV3 was not able to correctly classify these cases as positive. 

Pericardial effusion regions in Figures 6a–6b are not only very small, but also exhibit 

much lower contrast compared to the heart regions. The image in Figure 6c was acquired 

from a different device than the typical Philips models used in our dataset; we believe 

that the atypical acquisition setting made this case particularly challenging. Finally, our 

algorithm could in fact detect the top pericardial effusion region in Figure 6d, but with a 

low confidence score of 0.01 that did not pass the detection threshold. While the detection 

threshold can be further tuned to tackle such rare cases, we observed that 0.1 established a 

good balance between average specificity and sensitivity as shown in Table 3.

4. Discussion

We proposed an automated deep learning approach for detecting the existence of pericardial 

effusion, as well as localizing pericardial effusion in positive cardiac POCUS studies by 

drawing a box around the detected pericardial effusion region. Our algorithm attains 92% 

Specificity and 89% Sensitivity, outperforming existing deep learning approaches, while 

demonstrating only 57 msec latency and confirming our contribution in rapid detection.

Figure 5c demonstrates a case in which there are multiple ground-truth pericardial effusion 

boxes, while our algorithm focuses on its most confident detection per frame, prioritizing 

the goal of not missing positive cases. Moreover, for some positive cases, detected boxes 

contain both the pericardial effusion region, as well as a section of the heart, as in Figure 5d. 

This behavior is natural, as the algorithm typically observes pericardial effusion appearing 

close to the heart. These design choices support the long-term goal of aiding a clinical 

care environment via rapid detections, while clinical personnel are expected to review the 

positive-flagged cases and make the final decision on pericardial effusion presence and 

location.
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Our study is related to recent works on free fluid detection from right upper quadrant (RUQ) 

FAST exams using ResNet [46] and pericardial effusion detection from echocardiography 

exams using Inception-v3 [48]. These are classification methods that receive a video frame 

to predict which category the frame belongs to, such as the existence of free fluid. Unlike 

our approach via YoloV3, classification architectures cannot unravel the location of free 

fluid, while location of the finding is a significant additional information for clinicians to 

confirm the results of computer aided interpretation. Regarding computational differences, 

YoloV3 has been shown to attain similar prediction performance to ResNet with two 

times faster processing time [52]. Moreover, Inception-V3 with similar computation time 

to YoloV3 has been reported to attain 20% lower accuracy in medical imaging applications 

[69]. Crucially, our approach has the unique capability of classifying POCUS cardiac exams 

based on pericardial effusion existence, as well as visualizing the location of pericardial 

effusion for positive cases, providing a further step towards such informative point-of-care 

applications.

More recently, Lin et al. [47] used the 2D U-Net architecture for pixel-by-pixel segmentation 

of free fluid from right upper quadrant FAST exams and diagnosed each exam based 

on the segmentation result. More similar to our study, Wu et al. [49] employed the 

MaskRCNN deep learning architecture for segmentation and detection of pericardial 

effusion on echocardiography images. As existing deep learning models for pericardial 

effusion detection in cardiac POCUS exams require segmentation for localization, our main 

contribution is to take the first steps in rapid and single shot detection and localization via 

YoloV3. Classification from pixel-by-pixel segmentation is less efficient than localizing free 

fluid by drawing a box [70], as we demonstrated in our results that MaskRCNN exhibited 

3 times more latency than YoloV3. Furthermore, YoloV3 consistently outperformed both 

U-Net and MaskRCNN against all pericardial effusion detection metrics (Table 4), with a 

trade-off in finding the exact shape of localized pericardial effusion.

Pericardial effusion identification via deep learning has also been explored via other imaging 

modalities, including Computed Tomography. Liu et al. [71] applied holistically-nested 

convolutional networks (HNN) and U-Net on a dataset of 25 CT scans (1206 images). They 

focused on pixel-by-pixel segmentation of free fluid, attaining 76% Dice score for HNN 

and 77% Dice score for U-Net. Similarly, Wilder-Smith et al. [72] employed an extension 

of U-Net (nnU-Net), which was trained on 316 cases. The sensitivity and specificity 

were 97% and 100% for pericardial effusion detection, and 90% and 84% for diagnosing 

hemopericardium. Diagnostic accuracy of ultrasound has been reported to be affected by the 

presence of clots, complex loculations and post-surgical changes [73]; these observations 

agree with the higher performance metrics of CT-based deep learning methods compared 

to our results on ultrasound exams. Meanwhile, our focus is on aiding timely detection 

in emergency medicine and trauma critical care applications, for which ultrasound is the 

primary tool for diagnosis [74].

Our study was limited by the sample size of 76 cases and by including both traumatic and 

non-traumatic cases of pericardial effusion in our analysis. The small sample size resulted in 

large confidence intervals over the performance metrics reported in Table 3, while attaining 

high sensitivity and specificity metrics on average. Regarding the inclusion of non-traumatic 
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cases, free fluid should appear similar on ultrasound in non-traumatic causes of pericardial 

effusion, while traumatic pericardial ultrasound findings could include clot. Moreover, even 

in a large urban Level 1 trauma center, traumatic cardiac injury is very rare and emergent 

circumstances often lead to many cases having an absence of documented POCUS images. 

In particular, traumatic cardiac injury has been documented to have occurred in 426 of the 

107,549 trauma patients (0.4%), of whom 160 patients (37.6%) suffered penetrating trauma 

[75]. This phenomenon limits the number of cases with traumatic cardiac injury available for 

retrospective analysis of FAST examinations and make prospective validation difficult.

5. Conclusion

We established the first steps in a deep learning approach to rapidly and accurately identify 

the presence and location of pericardial effusion in cardiac POCUS exams (including the 

cardiac component of the FAST exam), extending the state-of-the-art YoloV3 algorithm. Our 

algorithm attained 92% Specificity and 89% Sensitivity in pericardial effusion identification, 

outperforming existing deep learning approaches, and localized pericardial effusion with 

51% Intersection over Union with ground-truth annotations. Moreover, image processing 

demonstrated only 57 msec latency, equivalent to 18 frames per second. Experimental results 

support the hypothesis that it is feasible to develop a deep learning algorithm that is accurate 

and provides rapid results using readily available technology that would be relevant to 

diverse clinical settings for physician overread.

The proposed method and analysis were part of an ongoing project to employ deep learning 

for interpreting FAST examination including all of its component images. Future steps of 

the proposed method will involve including other quadrants of the FAST exam for free 

fluid detection such as pelvic quadrant or including extended FAST with the additional 

lung views to detect pleural effusions (hemothorax in trauma), as well as lung sliding while 

accessing for pneumothorax. The pelvic quadrant may introduce an additional challenge due 

to the anatomical differences between genders. On the technical approach side, the literature 

on Yolo and other deep learning-based object detection models develops fast, with newer 

versions that are even more rapid and accurate in detections than YoloV3. While our work 

took the first steps in a rapid object detection approach for identifying the presence and 

location of pericardial effusion in cardiac POCUS exams, extensions via newer models can 

bring the proposed approach even closer to real-life application, with additional testing on 

computing devices deployed in hospital settings.
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Fig. 1. 
FAST is a rapid bedside ultrasound examination to screen for abdominal free fluid. 

The exam consists of four views: 1) subxiphoid pericardium, 2) right upper quadrant 

abdominal, 3) left upper quadrant abdominal, and 4) the suprapubic pelvic. This study 

focuses on pericardial effusion detection, in which free fluid collects between the heart and 

pericardium.
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Fig. 2. 
Anatomy of the subxiphoid pericardial view, i.e., the cardiac view that we study, as revealed 

by ultrasound. Four chambers of the heart comprising left atrium (LA), right atrium (RA), 

left ventricle (LV) and right ventricle (RV), as well as the surrounding organs and anatomical 

parts are annotated.
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Fig. 3. 
An example of a pericardial effusion identified on POCUS, in which free fluid collects 

between the heart and pericardium. (a) demonstrates manual segmentation annotations of 

pericardial effusion in white color and heart in red color. To prepare the ground-truth 

pericardial effusion annotations for the detection algorithm, we mapped pericardial effusion 

regions to bounding boxes by fitting a tight rectangular bounding box to fully contain each 

pericardial effusion region, as in (b).
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Fig. 4. 
YoloV3 deep learning architecture for automated pericardial effusion detection. YoloV3 

receives a 2D video frame and makes two sets of predictions: (i) rectangular bounding boxes 

that circumscribe potential pericardial effusion regions, and (ii) a confidence score in the 

range 0–1. Each cardiac POCUS exam is analyzed image-by-image and pericardial effusion 

presence in the exam is determined from the most confident detection.
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Fig. 5. 
Example ground-truth vs. detected pericardial effusion boxes. The ground-truth image 

displays a box around the coded pericardial effusion region by experts. The corresponding 

predicted image displays a box provided by YoloV3 that indicates the predicted pericardial 

effusion region. Next to each box, a score that varies between 0 and 1 is shown, indicating 

the confidence on the coded pericardial effusion.
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Fig. 6. 
Example images from 4 ground-truth positive cases that were missed by the algorithm. Each 

case has an example image without annotation on the left and the corresponding annotations 

on the right, with pericardial effusion masked with white and heart masked with red.
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Table 1:

Demographics of the cases in our dataset

Negative ECHO (n=39) Positive ECHO (n=37)

Age, median (IQR) 44 (34–61) 59 (53–72)

Age, mean (SD) 47 (18.96) 60.94 (15.99)

Gender, n (%)

Male 22 (57) 22 (61)

Female 17 (43) 15 (39)

N/A 0 (0) 0 (0)

Race, n (%)

White 17 (42.5) 11 (30.56)

Black or African American 13 (32.5) 17 (47.22)

Asian 1 (2.5) 1 (2.78)

Other 0 (0) 0 (0)

Unknown 8 (22.5) 8 (19.44)

Ethnicity, n (%)

Hispanic or Latino 8 (20) 6 (16.67)

Not Hispanic or Latino 30 (75) 29 (80.56)

N/A 1 (5) 2 (2.78)

Trauma, n (%)

Yes 18 (47) 6 (14)

No 20 (50) 30 (83)

N/A 1 (3) 1 (3)

Device, n (%)

C5–2 0 (0) 0 (0)

C6–2 27 (70) 7 (19.44)

S4–2 12 (30) 15 (41.67)

SP5–1 0 (0) 13 (36.11)

N/A 0 (0) 2 (2.78)

Probe Type, n (%)

Mindray 0 (0) 14 (38.89)

Philips 39 (100) 22 (58.33)

Zonaire 0 (0) 1 (2.78)

N/A 0 (0) 0 (0)
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Table 2:

Detailed breakdown of the convolutional network architecture within YoloV3

Block ID Number of Repetitions of Block Layer Types in Order Number of Channels Size Output Size

I 1 Convolutional 32 3 × 3 filter with stride 1 256 × 256

II 1 Convolutional 64 3 × 3 filter with stride 2 128 × 128

III 1 Convolutional 32 1 × 1 filter with stride 1

Convolutional 64 3 × 3 filter with stride 1

Residual 128 × 128

IV 1 Convolutional 128 3 × 3 filter with stride 2 64 × 64

V 2 Convolutional 64 1 × 1 filter with stride 1

Convolutional 128 3 × 3 filter with stride 1

Residual 64 × 64

VI 1 Convolutional 256 3 × 3 filter with stride 2 32 × 32

VII 8 Convolutional 128 1 × 1 filter with stride 1

Convolutional 256 3 × 3 filter with stride 1

Residual 32 × 32

VIII 1 Convolutional 512 3 × 3 filter with stride 2 16 × 16

IV 8 Convolutional 256 1 × 1 filter with stride 1

Convolutional 512 3 × 3 filter with stride 1

Residual 16 × 16

X 1 Convolutional 1024 3 × 3 filter with stride 2 8 × 8

XI 4 Convolutional 512 1 × 1 filter with stride 1

Convolutional 1024 3 × 3 filter with stride 1

Residual 8 × 8

XII 1 Average Pooling

Fully-connected 1000 neurons

Softmax 
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Table 3:

Pericardial effusion detection and localization performances via YoloV3

Metric Value 95% CI

Sensitivity 89% 56% to 98%

Specificity 92% 77% to 99%

Positive Likelihood Ratio 11.13 2.4 to 98

Negative Likelihood Ratio 0.12 0.02 to 0.57

Positive Predictive Value 92% 59% to 98%

Negative Predictive Value 90% 75% to 99%

Accuracy 91% 73% to 99%

Area Under the Curve (AUC) 94% 75% to 99%

Intersection over Union (IOU) 51%
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Table 4:

Classification and localization performances of YoloV3 vs. U-Net, MaskRCNN and SSD

Specificity Sensitivity Accuracy AUC IOU

YoloV3 92% 89% 91% 94% 51%

U-Net 79% 62% 74% 74% 41%

MaskRCNN 56% 38% 47% 37% 83%

SSD 86% 79% 83% 82% 82%
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