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‭Abstract:‬
‭Age‐related hearing impairment is the most common cause of hearing loss and is one of the most prevalent‬
‭conditions affecting the elderly globally. It is influenced by a combination of environmental and genetic factors.‬
‭The mouse and human inner ears are functionally and genetically homologous. Investigating the genetic‬
‭basis of age‐related hearing loss (ARHL) in an outbred mouse model may lead to a better understanding of‬
‭the molecular mechanisms of this condition. We used Carworth Farms White (CFW) outbred mice, because‬
‭they are genetically diverse and exhibit variation in the onset and severity of ARHL. The goal of this study‬
‭was to identify genetic loci involved in regulating ARHL. Hearing at a range of frequencies was measured‬
‭using Auditory Brainstem Response (ABR) thresholds in 946 male and female CFW mice at the age of  1, 6,‬
‭and 10 months.‬
‭We obtained genotypes at 4.18 million single nucleotide polymorphisms (SNP) using low-coverage (mean‬
‭coverage 0.27x) whole-genome sequencing followed by imputation using STITCH. To determine the accuracy‬
‭of the genotypes we sequenced 8 samples at >30x coverage and used calls from those samples to estimate‬
‭the discordance rate, which was 0.45%. We performed genetic analysis for the ABR thresholds for each‬
‭frequency at each age, and for the time of onset of deafness for each frequency. The SNP heritability ranged‬
‭from 0 to 42% for different traits. Genome-wide association analysis identified several regions associated with‬
‭ARHL that contained potential candidate genes, including‬‭Dnah11‬‭,‬‭Rapgef5‬‭,‬‭Cpne4‬‭,‬‭Prkag2‬‭, and‬‭Nek11‬‭. We‬
‭confirmed, using functional study, that Prkag2 deficiency causes age-related hearing loss at high frequency in‬
‭mice; this makes‬‭Prkag2‬‭a candidate gene for further‬‭studies. This work helps to identify genetic risk factors for‬
‭ARHL and to define novel therapeutic targets for the treatment and prevention of ARHL.‬

‭Introduction‬
‭Age‬‭‐‬‭related hearing loss (ARHL) is the most common‬‭cause of hearing loss and is one of the most prevalent‬
‭conditions affecting the elderly globally. Twin and family studies reveal 25-75% of risk for ARHL is due to‬
‭heredity (Momi et al. 2015). There is very little existing information about the genes and pathways responsible‬
‭for ARHL in humans and mice despite the evidence from our lab and others supporting its heritabiltiy and‬
‭polygenic architecture (Fransen et al. 2015). Estimates suggest that approximately two‬‭‐‬‭thirds of people over‬
‭the age of 70 in the United States experience ARHL (Bainbridge and Wallhagen, 2014). ARHL has been‬
‭shown to be independently associated with cognitive decline, dementia, depression, and loneliness and results‬
‭in an estimated annual economic burden of over $3 billion in medical expenditures (Deal et al. 2017; Deal et al.‬
‭2018; Lin and Albert, 2014). Although the use of hearing aids and/or cochlear implants has been shown to‬
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‭improve many of these associated conditions, ARHL remains significantly undertreated and to date, there are‬
‭no targeted therapies (Deal et al. 2018).‬
‭Greater than 100 genes have been identified in association with monogenic, non-age-related deafness.‬
‭However, a substantial fraction of patients with ARHL have no identifiable mutation in any known hearing loss‬
‭gene, suggesting that a significant fraction of hearing loss is due to a combination of environmental causes and‬
‭unidentified monogenic or polygenic causes (Bowl and Dawson, 2018). There is ample evidence that the‬
‭anatomical, cellular, and molecular properties of the mouse and human inner ear are highly homologous. All‬
‭mammalian inner ear development begins with a thickening of the ectoderm (otic placode) (Bok et al. 2007).‬
‭The placode then invaginates to form the otocyst. Within the otocyst Sox2-positive epithelial prosensory‬
‭patches are specified, one of which gives rise to the cochlea. As the cochlear duct extends, there is a wave of‬
‭differentiation within and surrounding the duct. Ultimately, the cochlea consists of three fluid-filled spaces, the‬
‭scala vestibuli, scala media, and scala tympani. The sensory and supporting cells exist within the organ of‬
‭Corti and reside within the scala media. In a recent manuscript describing mouse and human inner ear‬
‭development at the single-cell level, the authors concluded: “Our analysis revealed remarkable similarity‬
‭between human and mouse cell cochlear subpopulations. We observed a remarkably similar pattern of key‬
‭markers of distinct subpopulations in the developing human cochlea to the developing mouse cochlea. Thus,‬
‭we believe that despite the size and timing differences of cochlear development between the mouse and‬
‭human, the mouse is likely a very good model of human cochlear development” (Yu et al. 2019).‬
‭Genome-wide association studies (GWAS) of hearing traits in humans, including ARHL, have identified a few‬
‭genome-wide significant risk loci, but many suffer from a lack of sufficient power (Friedman et al. 2009; Girotto‬
‭et al. 2011; Hoffmann et al. 2016; Van Laer et al. 2010; Vuckovic et al. 2015; Praveen et al. 2022). Our‬
‭laboratory previosuly performed the first human GWAS for ARHL in which we identified a genome-wide‬
‭significant risk locus within intron 2 of‬‭GRM7‬‭(Friedman‬‭et al. 2009).‬ ‭GRM7‬‭was subsequently implicated in‬
‭ARHL by other genetic studies as well (Newman et al. 2012; Van Laer et al. 2010). Recently, two ARHL GWAS‬
‭used data from the UK Biobank (UKBB), which includes genotype and questionnaire (no formal audiograms)‬
‭data from more than 330,000 individuals, identified several genome-wide significant associations, some of‬
‭which were in or near genes that cause Mendelian deafness (Kalra et al. 2020; Wells et al. 2019). Notably, all‬
‭of the candidate genes described were significantly enriched with mouse phenotype ontologies, mostly related‬
‭to mouse inner ear abnormalities and abnormal auditory brainstem response (ABR) with the authors‬
‭concluding “this finding demonstrates the shared genetic pathology in mouse and human auditory systems,‬
‭supporting the use of mouse models to study human auditory function” (Wells et al. 2019). Further support‬
‭comes from our recent work identifying altered expression levels of‬‭Fhod3‬‭, on mouse chromosome 18, which‬
‭results in reduced actin content in the cuticular plate, loss of the third-row stereocilia in the cochlear base, and‬
‭progressive high frequency hearing loss‬‭(‬‭Boussaty‬‭et al. 2023).  A recent analysis of hearing loss diagnoses in‬
‭the Million Veteran Program (MVP) via GWAS revealed several loci containing genes associated with‬
‭stereociliary structure and function in much the same way as‬‭Fhod3‬‭(De Angelis et al. 2023).‬
‭Mouse GWAS have several advantages: the environment can be more carefully controlled, a greater‬
‭proportion of the heritability can be captured, and findings can be followed up using experimental‬
‭manipulations. The Knockout Mouse Project/International Mouse Phenotyping Consortium (KOMP-IMPC) has‬
‭identified 62 novel genes involved in early onset hearing loss by testing Auditory Brainstem Response‬
‭thresholds in 14 week-old mice (‬‭http://www.mousephenotype.org‬‭)‬‭(Bowl et al. 2017). While this valuable‬
‭resource may assist with modeling candidate genes discovered in this work, and we see some overlap, these‬
‭are young mice for ARHL (14 weeks) and are null mutations and therefore the study was biased to Mendelian‬
‭forms of congenital (rather than age-related) deafness. Furthermore, KOMP-IMPC will miss embryonic lethal‬
‭genes, even when modest decreases in those genes' function may produce viable animals with hearing-related‬
‭phenotypes.‬
‭This paper presents the genetic analysis of the hearing function of the aging outbred Carworth Farms White‬
‭(CFW) mice measured through the auditory brainstem response (ABR) thresholds (Du et al. 2022).‬
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‭Commercially available CFW outbred mice (Lynch, 1969)  have reduced linkage disequilibrium (Parker et al.‬
‭2016) and provide fine-scale mapping resolution that is better than panels of inbred strains or other‬
‭commercially available oubred mice (Bowl et al. 2017, Yalcin et al. 2010). The heterogeneity of ABR thresholds‬
‭in genetically diverse CFW mice provides an opportunity to study the genetic landscape of ARHL. We are‬
‭working to continue to accelerate the pace of discovery of polygenic loci and pathways for ARHL through a‬
‭novel “forward genetics” approach and our initial GWAS results are the subject of this manuscript.‬

‭Methods‬
‭Animals‬‭: All procedures were performed in accordance‬‭with guidelines from the National Institutes of Health‬
‭and the Association for the Assessment and Accreditation of Laboratory Animal Care and approved by the‬
‭Institutional Care and Use Committee at the University of California San Diego. The detailed procedures are‬
‭reported in (Du et al. 2022). Briefly, the animals were obtained from the Crl:CFW(SW)-US_P08 (CFW) stock of‬
‭outbred mice maintained by Charles River Laboratories (Portage, MI). The mice arrived at 3 weeks of age.‬
‭They were tested at 1, 6, and 10 months (‬‭Table 1‬‭,‬‭Fig. 1A‬‭). We requested that only one mouse from one‬‭litter‬
‭was shipped, to avoid using siblings, which reduces the power of GWAS. Subsequent genetic analysis‬
‭demonstrated that about 252 out of 946 mice used in this work were siblings (‬‭Supplemental Fig. 1‬‭).‬
‭Animals were housed 3 per cage with a low lever of ambient noise, on a standard 12:12 h light–dark cycle,‬
‭standard laboratory chow, and water‬‭ad libitum‬‭. Phenotyping‬‭occurred during the light phase.  Spleens were‬
‭harvested after the mice were sacrificed, and used as a source of DNA for genotyping.‬

‭Table 1. Demographic description of subjects‬

‭Males‬ ‭Females‬ ‭Total‬

‭Age group‬ ‭N‬
‭Age mean,‬
‭days‬ ‭Age st. dev, days‬ ‭N‬

‭Age mean,‬
‭days‬ ‭Age st. dev, days‬ ‭N‬

‭1 month‬ ‭97‬ ‭46.5‬ ‭9.6‬ ‭102‬ ‭47.2‬ ‭9.8‬ ‭199‬
‭6 month‬ ‭385‬ ‭197.8‬ ‭14.1‬ ‭363‬ ‭194.5‬ ‭11.9‬ ‭748‬
‭10 month‬ ‭337‬ ‭313.4‬ ‭13.1‬ ‭317‬ ‭315‬ ‭13.2‬ ‭654‬

‭Auditory brainstem response testing‬‭:‬
‭The ABR thresholds were measured at three time points: 5-8 weeks (denoted as “1 month” in this paper), 6‬
‭months, and 10 months of age, as described earlier (Du et al. 2022). Briefly, the mice were anesthetized using‬
‭ketamine (80 mg/kg) and xylazine (16 mg/kg) intraperitoneal injection. All hearing tests were performed in a‬
‭soundproof acoustic chamber. Stimuli were provided by a custom acoustic system consisting of two miniature‬
‭speakers with sound pressure measured by a condenser microphone.Auditory signals were presented as tone‬
‭pips with a rise and a fall time of 0.5 msec and a total duration of 5 msec at the frequencies 4 kHz, 8 kHz, 12‬
‭kHz, 16 kHz, 24 kHz, and 32 kHz. These tone pips started at 20 dB and then increased in 5 dB increments up‬
‭to 100 dB SPL and were presented at a rate of 30/second. The responses were recorded and then filtered with‬
‭a 0.3 to 3 kHz pass-band. 350 waveforms were averaged for each stimulus intensity. Hearing thresholds were‬
‭determined by visual inspection; if no wave form was detected at 100 dB SPL, the hearing threshold was‬
‭recorded as “no response” indicating that a mouse is deaf at this frequency.‬
‭Genotyping‬‭:‬
‭DNA was extracted from mouse spleen tissue using DNAdvance kit (Beckman Coulter). Multiplexed‬
‭sequencing libraries were prepared using the Twist 96-Plex Library Prep kit (TWIST Bioscience), and then‬
‭sequenced on a NovaSeq 6000 or NovaSeq X (Illumina). An average of‬‭∼‬‭3.2 million reads per sample were‬
‭obtained (paired end, 150 bp). The reads were aligned to the mouse reference genome GRCm38‬
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‭(GCA_000001635.2). To generate genotypes at single nucleotide polymorphisms (SNPs) we used STITCH‬
‭software (Davies et al. 2016) without reference panel, with the “niterations” parameter set to 40 and a position‬
‭file as described below, to create a reference panel; then we ran STITCH again with the “niterations” parameter‬
‭set to 1, using with the above result as a reference panel, filtered resulted genotypes by INFO score > 0.9, and‬
‭then performed imputation using BEAGLE software (Browning and Browning, 2016) . To construct the position‬
‭file we used low-coverage sequencing data from earlier generations of CFW mice (Zou et al. 2022; Davis et al.‬
‭2016) and from 8 CFW individuals from the current study sequenced at 30x (see below). The SNPs on X, Y,‬
‭and MT chromosomes were not called, in part because only autosomes were available in the (Zou et al. 2022)‬
‭dataset. After genotypes were called with STITCH, the following SNPs were removed from the analysis: (1)‬
‭monomorphic SNPs, since they are not useful for further genetic analysis, (2) SNPs that violate‬
‭Hardy-Weinberg equilibrium (HWE) with -log‬‭10‬‭(p) >‬‭7, where p is the p-value of the HWE test at a SNP, and (3)‬
‭SNPs that have genotype missingness rate > 0.1 based on the results generated by STITCH. The filtered‬
‭dataset contained ~4.18 million SNPs on 19 autosomes (‬‭Fig.‬‭2‬‭). The data is available from UCSD Library‬
‭(‬‭doi.org/10.6075/j0h13263‬‭). The animals with SNP missingness‬‭rate > 0.2 were removed from the analysis. The‬
‭final dataset for genetic analysis consisted of 946 CFW mice. Eight of those same CFW mice were also‬
‭sequenced at >30x coverage. Genotypes for the >30x data were called by GATK and filtered using bcftools to‬
‭exclude the following SNPs: (1) not biallelic, (2) QUAL < 20, (3) GQ < 20, and (4) genotype missing rate >=‬
‭0.15. The 8 deeply sequenced samples were used as a “truth set” to determine the accuracy of the genotyping‬
‭and estimate the error rate, which was 0.45%.‬
‭The extent of LD (r‬‭2‬‭) decay rates in CFW mice was‬‭estimated as follows: bcftools was used to create the set of‬
‭SNPs pruned to remove sites with r‬‭2‬ ‭> 0.95 within‬‭5Mb, and then vcftools was used to calculate LD metric r‬‭2‬ ‭for‬
‭each pair of SNPs that are within 5 Mb. The relationship curve between physical distance and r‬‭2‬ ‭was fitted‬‭by‬
‭LOESS (locally estimated scatterplot smoothing).‬
‭Genetic analysis‬‭:‬
‭For genetic analysis, each quantitative trait was quantile-normalized. Sex was used as a covariate if it‬
‭explained more than 2% of the variance. There were 2 traits where sex was used as a covarite: ABR threshold‬
‭at 4 khz and at 12 kHz at 1 month of age; the sez explained 3% of variance for these traits. The SNP‬
‭heritability was estimated using GCTA-GREML (Yang et al. 2010). Genetic correlations between traits were‬
‭computed through bivariate GREML analysis performed with GCTA (Lee et al. 2012). GWAS analysis was‬
‭performed using a linear mixed model, as implemented in GCTA (Yang et al. 2011), with the genetic‬
‭relatedness matrix (GRM) used to account for the complex family relationships within the CFW population, and‬
‭the Leave One Chromosome Out (LOCO) method to avoid proximal contamination (Cheng et al. 2013;‬
‭Gonzales et al. 2018). LOCO, which was coined by (Yang‬‭et al. 2014‬‭) and first proposed by (Cheng et al.‬
‭2013), is a computationally efficient strategy to address the concern of “proximal contamination” (Listgarten  et‬
‭al. 2012) that can reduce the statistical power of GWAS. To control for the type I error, the significance‬
‭threshold was estimated by a permutation test (Cheng and Palmer, 2013). We used permutation to establish‬
‭the genome-wide significance thresholds. The genome-wide thresholds for -log10(p) at the significance levels‬
‭0.05 and 0.10 were 5.58 and 5.0 respectively. Quantitative trait loci (QTL) were determined by at least one‬
‭SNP that exceeded the permutation-derived threshold of −log‬‭10‬‭(p) > 5.0, which was supported by a second‬
‭SNP within 0.5 Mb of this SNP that had a p-value that was within 2 − log‬‭10‬‭(p) units of the most significant‬‭SNP.‬
‭Regional association plots were generated using LocusZoom software (Pruim et al. 2010).‬
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‭Results‬
‭Age-related decrease in auditory brainstem response‬‭.‬‭ABR thresholds were measured in 946 outbred CFW‬
‭mice (‬‭Fig. 1A)‬‭. As expected,  an increasing proportion‬‭of mice became deaf with increased age (‬‭Fig. 1B)‬‭,‬‭and‬
‭in those that retained hearing the ABR thresholds increased with age (‬‭Fig. 1C‬‭). A detailed description‬‭of the‬
‭hearing loss patterns in CFW mice was published by (Du et al. 2022) for a subset of the mice that were used‬
‭for the genetic analysis; however, the description and conclusions can be applied to the cohort used in this‬
‭work. We performed two-way ANOVA to determine where there is a difference between males and females.‬
‭The main effect of sex was statistically significant (p < 0.001, F = 28.16, df = 1). The interaction effect between‬
‭sex and time point was also significant (p = 0.015,  F = 4.19, df = 2).‬
‭For the genetic analysis, we considered two types of phenotypes: “deaf vs. not deaf at each frequency” and‬
‭“ABR threshold at each frequency”.‬

‭Figure 1. Mice and phenotypes used for genetic analysis. A‬‭. Mice used in the experiment. Not all animals have‬
‭measurements at all ages, see Table Cohort for the summary.‬ ‭B‬‭.The number of CFW mice that become deaf‬‭and‬
‭retain hearing at different frequencies at three time points.‬‭C‬‭. Ridgeplot of the ABR thresholds in CFW‬‭mice measured‬
‭at three ages at different frequencies. Females are shown above the X-axis, and males are shown below the X-axis for‬
‭each frequency.  The ABR>100 is considered “deaf” and not included in this plot.‬

‭Genetic architecture of the CFW mice.‬‭Polymorphic‬‭SNPs were unevenly distributed across the autosomes; we‬
‭identified several large regions with few or no polymorphic SNPs, which is consistent with prior studied using‬
‭CFW mice (Parker et al. 2016) and likely reflects both a true lack of diversity and regions that may be highly‬
‭repetitive or otherwise difficult to genotype (‬‭Fig.‬‭2A‬‭).  LD decay in this population supports its suitability‬‭for‬
‭high-resolution mapping (‬‭Fig. 2B‬‭). The distribution‬‭of minor allele frequencies (MAF) of SNPs shows that‬
‭85.6% of non-monomorphic SNPs had MAF > 0.05, which is consistent with the history of CFW mice (‬‭Fig.‬‭2C‬‭).‬
‭The genetic structure of the population that can be present due to breeding schema in vendor’s facilities can‬
‭skew the genetic analysis (Gileta et al. 2022), therefore we checked that the CFW population used in this study‬
‭was genetically homogeneous. A heatmap of the genetic relatedness matrix (GRM) demonstrates an absence‬
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‭of a noticeable genetic structure (‬‭Fig. 2D‬‭). Relatedness calculated as π-hat among all pairs of CFW mice in‬
‭this study shows that most of the mice used for the study are not closely related (‬‭Fig. 2E‬‭).‬

‭Figure 2. Genetic architecture of CFW mice. A.‬‭Density‬‭of SNPs called in autosomes 1- 19; bin size is 500 kb.‬ ‭B.‬‭LD‬
‭decay in CFW mice used in this study.‬‭C.‬‭Histogram‬‭of SNP number with MAF>0.‬‭D.‬‭Heatmap of the genetic‬
‭relatedness matrix (GRM) of the genotypes of CFW mice in this study demonstrates an absence of a noticeable genetic‬
‭structure; samples clustered by genetic relatedness.‬‭E‬‭. Relatedness calculated as PiHat among all pairs‬‭of CFW mice‬
‭in this study shows that most of the mice used for the study are not closely related.‬

‭Heritability‬‭estimates for hearing thresholds and‬‭hearing loss traits range between 0 and 42% (‬‭Table‬‭2‬‭). The‬
‭SNP heritability is expected to be lower than the heritability estimated in twin studies or by using inbred strains.‬
‭In this dataset, the heritability was moderate across the different measures of hearing.‬

‭Table 2. Heritability of traits‬
‭Trait‬ ‭N‬ ‭SNP heritability‬ ‭SNP heritability SEM‬ ‭p-value‬
‭deaf_06mo_04khz‬ ‭748‬ ‭0.106‬ ‭0.055‬ ‭0.02‬
‭deaf_06mo_08khz‬ ‭748‬ ‭0.054‬ ‭0.052‬ ‭0.157‬
‭deaf_06mo_12khz‬ ‭748‬ ‭0.1‬ ‭0.056‬ ‭0.034‬
‭deaf_06mo_16khz‬ ‭748‬ ‭0.148‬ ‭0.059‬ ‭0.003‬
‭deaf_06mo_24khz‬ ‭748‬ ‭0.19‬ ‭0.06‬ ‭0‬
‭deaf_06mo_32khz‬ ‭745‬ ‭0.187‬ ‭0.059‬ ‭0‬
‭deaf_10mo_04khz‬ ‭654‬ ‭0.132‬ ‭0.063‬ ‭0.01‬
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‭deaf_10mo_08khz‬ ‭654‬ ‭0‬ ‭0.048‬ ‭0.5‬
‭deaf_10mo_12khz‬ ‭654‬ ‭0.06‬ ‭0.054‬ ‭0.11‬
‭deaf_10mo_16khz‬ ‭653‬ ‭0.047‬ ‭0.055‬ ‭0.18‬
‭deaf_10mo_24khz‬ ‭651‬ ‭0.032‬ ‭0.053‬ ‭0.263‬
‭deaf_10mo_32khz‬ ‭636‬ ‭0.033‬ ‭0.055‬ ‭0.264‬
‭thr_01mo_04khz‬ ‭190‬ ‭0‬ ‭0.154‬ ‭0.5‬
‭thr_01mo_08khz‬ ‭195‬ ‭0.346‬ ‭0.166‬ ‭0.014‬
‭thr_01mo_12khz‬ ‭191‬ ‭0.212‬ ‭0.171‬ ‭0.094‬
‭thr_01mo_16khz‬ ‭186‬ ‭0.18‬ ‭0.198‬ ‭0.222‬
‭thr_01mo_24khz‬ ‭191‬ ‭0.417‬ ‭0.169‬ ‭0.005‬
‭thr_01mo_32khz‬ ‭176‬ ‭0.22‬ ‭0.193‬ ‭0.142‬
‭thr_06mo_04khz‬ ‭493‬ ‭0.086‬ ‭0.074‬ ‭0.109‬
‭thr_06mo_08khz‬ ‭523‬ ‭0.208‬ ‭0.076‬ ‭0.001‬
‭thr_06mo_12khz‬ ‭497‬ ‭0.109‬ ‭0.072‬ ‭0.044‬
‭thr_06mo_16khz‬ ‭464‬ ‭0.123‬ ‭0.082‬ ‭0.048‬
‭thr_06mo_24khz‬ ‭453‬ ‭0.035‬ ‭0.074‬ ‭0.312‬
‭thr_06mo_32khz‬ ‭427‬ ‭0.2‬ ‭0.099‬ ‭0.023‬
‭thr_10mo_04khz‬ ‭390‬ ‭0.089‬ ‭0.097‬ ‭0.18‬
‭thr_10mo_08khz‬ ‭437‬ ‭0.226‬ ‭0.096‬ ‭0.006‬
‭thr_10mo_12khz‬ ‭427‬ ‭0.106‬ ‭0.094‬ ‭0.144‬
‭thr_10mo_16khz‬ ‭405‬ ‭0.176‬ ‭0.097‬ ‭0.024‬
‭thr_10mo_24khz‬ ‭382‬ ‭0.23‬ ‭0.108‬ ‭0.014‬
‭thr_10mo_32khz‬ ‭329‬ ‭0.188‬ ‭0.126‬ ‭0.078‬

‭Genetic correlations‬‭.‬
‭To examine the genetic relatedness among thresholds and deafness, genetic correlations were computed‬
‭(‬‭Figure 3‬‭). Correlations were not calculated for the‬‭“deaf at 1 month” traits because of an imbalanced number‬
‭of deaf mice and a small sample size. The deafness at 6 month for any frequency had strong genetic‬
‭correlates with deafness at 6 month for all frequencies. Similarly, ABR thresholds at 6 month at any frequency‬
‭had strong genetic correlation with ABR thresholds at 6 month at other frequencies. The ABR thresholds at 1‬
‭month tend to have negative correlation with ABR thresholds at 10 month.‬
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‭Figure 3‬‭. Genetic correlation for the hearing traits‬‭measured at three time points. The color of the circle indicates‬
‭correlation. The size of the circle shows significance of the correlation. The values on the diagonal show heritability for‬
‭each trait.‬

‭GWAS results‬‭.‬
‭GWAS was performed to identify loci that were significantly associated with hearing thresholds and with‬
‭deafness for each threshold, at each timepoint. We identified 10 QTLs for 7 traits. The list of QTLs with effect‬
‭sizes and top SNP frequencies is shown in‬‭Table 3‬‭.‬‭The chromosomal locations for identified regions of‬
‭interest are shown as a porcupine plot (‬‭Figure 4‬‭).‬‭The full genetic report is available in‬‭Supplemental‬
‭Materials‬‭.‬

‭Table 3. Description of QTLs‬

‭Trait‬ ‭Top SNP‬
‭Top SNP‬
‭allele‬

‭Effect‬
‭size‬

‭Effect‬
‭size SE‬

‭-log10(p) for‬
‭the top SNP‬

‭Number of‬
‭genes‬
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‭frequency‬
‭deaf at 06 mo 08 khz‬ ‭chr12:117,951,339‬ ‭0.140‬ ‭0.181‬ ‭0.037‬ ‭5.99‬ ‭4‬
‭deaf at 06 mo 16 khz‬ ‭chr2:49,860,512‬ ‭0.183‬ ‭-0.153‬ ‭0.034‬ ‭5.24‬ ‭2‬
‭deaf at 06 mo 16 khz‬ ‭chr12:91,900,313‬ ‭0.951‬ ‭-0.274‬ ‭0.059‬ ‭5.52‬ ‭2‬
‭deaf at 10 mo 04 khz‬ ‭chr1:95,110,035‬ ‭0.844‬ ‭0.190‬ ‭0.040‬ ‭5.56‬ ‭0‬
‭deaf at 10 mo 16 khz‬ ‭chr10:67,242,708‬ ‭0.315‬ ‭0.141‬ ‭0.031‬ ‭5.24‬ ‭5‬
‭deaf at 10 mo 24 khz‬ ‭chr4:155,998,026‬ ‭0.051‬ ‭0.283‬ ‭0.064‬ ‭5.00‬ ‭6‬
‭deaf at 10 mo 24 khz‬ ‭chr10:67,229,071‬ ‭0.315‬ ‭0.142‬ ‭0.032‬ ‭5.11‬ ‭5‬
‭ABR threshold at 06‬
‭mo 08 khz‬ ‭chr5:24,688,891‬ ‭0.146‬ ‭0.434‬ ‭0.090‬ ‭5.87‬ ‭35‬
‭ABR threshold at 06‬
‭mo 08 khz‬ ‭chr9:105,380,885‬ ‭0.057‬ ‭0.605‬ ‭0.133‬ ‭5.29‬ ‭5‬
‭ABR threshold at 10‬
‭mo 32 khz‬ ‭chr11:16,309,495‬ ‭0.132‬ ‭-0.578‬ ‭0.119‬ ‭5.90‬ ‭2‬

‭Figure 4.‬‭Porcupine plot for all measured ARHL traits.‬‭The red line indicated a threshold for genome-wide alpha of <‬
‭0.10 (-log10(p) > 5.0); the blue line indicated a threshold for genome-wide alpha of < 0.05 (-log10(p) > 5.58). Triangles‬
‭indicate top SNPs, with colors showing a specific trait.‬

‭Due to the high resolution of genetic mapping in the CFW population most QTLs contained only a few genes.‬
‭Each QTL interval was examined at the Mouse Genome Informatics portal (MGI) (Blake et al. 2021) which‬
‭aggregates data on previously reported QTLs and mutant phenotypes, as well as gene expression. To identify‬
‭candidate genes within each QTL, we considered several criteria: whether the gene was located within an‬
‭interval that contains SNP in a high LD with the top SNP (r‬‭2‬ ‭> 0.8), the presence of moderate or high‬‭impact‬
‭variants located within the gene, as predicted by SnpEff (Cingolani et al., 2012), and the expression in the‬
‭tissue of interest, cochlea, in the publicly available datasets that are available in the MGI database and the‬
‭gEAR  portal (umgear.org). In addition, the dataset from (Boussaty et al. 2023) was obtained from 48 10-month‬
‭old CFW mice with and without hearing loss; 45 of the mice from (Boussaty et al. 2023) are included in the‬
‭current study. Five of the genes that were found in the QTL regions identified in this study were also detected‬
‭in (Boussaty et al. 2023), and are discussed below.‬
‭We detected three QTLs for elevated thresholds at 6 months (genetic report in‬‭Supplemental Materials‬‭).‬
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‭QTL on chromosome 12 at around 118 Mb‬‭(‬‭Figure 5A).‬‭No hearing-related mutations or QTLs have been‬
‭reported for this locus in any organisms, this work is the first report. This QTL is associated with being deaf at 6‬
‭months at 4 kHz, and also shows a trend towards an  association with elevated thresholds at 6mo at 12kHz‬
‭(-log10(p) = 4.6).There are 4 genes in this locus:‬‭Dnah11‬‭(dynein, axonemal, heavy chain 11), Cdca7l‬‭(cell‬
‭division cycle associated 7 like),‬‭Sp4‬‭(trans-acting‬‭transcription factor 4),‬‭Rapgef5‬‭(Rap guanine nucleotide‬
‭exchange factor 5).‬
‭Dnah11‬‭has no previously reported connection to hearing/vestibular‬‭phenotypes in mice, according to MGI‬
‭database. In humans, mutations in this gene cause diseases related to the dysfunction of the cilia during‬
‭embryologic development, such as situs inversus (abnormal distribution of the major visceral organs within the‬
‭chest and abdomen). Dnah11 is expressed in hair cells in 10-month old CFW mice (Boussaty et al. 2023).‬
‭Other genes that encode dynein heavy chains are known to cause hearing dysfunction:‬‭DNAH2‬‭is predicted‬‭to‬
‭cause ARHL in humans, as determined by presence of a rare variant tha affects protein function in a cohort of‬
‭hearing loss patients (Lewis et al. 2018); another related gene‬‭Dync1li1‬‭is required for the survival‬‭cochlear‬
‭hair cells in mice (Zhang et al. 2022). In CFW mice‬‭Dnah11‬‭has two missense mutations, both in linkage‬
‭disequilibrium with the top SNP: 12:118,190,825 (c719A>G; Glu240Gly, r‬‭2‬ ‭with the top SNP 0.982) and‬
‭12:118,198,712 (c121C>T; Arg41Cys, r‬‭2‬ ‭with the top‬‭SNP 0.972).‬
‭Rapgef5‬‭(Rap guanine nucleotide exchange factor 5)‬‭has not been previously associated with‬
‭hearing/vestibular phenotypes in any species. An indel mutation in RAPGEF5 causes epilepsy in dogs‬
‭(Belanger et al. 2022).  The function of RapGEFs can vary depending on the specific isoform and the cellular‬
‭context, they regulate cell adhesion, cytoskeletal dynamics, and tissue morphogenesis; these processes are‬
‭important for the development and maintenance of the structures of the inner ear, making‬‭Rapgef5‬ ‭a plausible‬
‭novel candidate gene. In 10-month old CFW mice, this gene was found to be expressed in endothelial cells,‬
‭border cells and pillar cells (Boussaty et al. 2023).‬
‭QTL on chromosome 2 at 49.7 Mb‬‭(‬‭Figure 5B‬‭). This locus‬‭was associated with being deaf at 6 months at 16‬
‭kHz, and also trending towards associations with hearing loss at 6 months for all other tested frequencies,‬
‭although these associations do not reach the significance threshold (-log10(p) range from 4.01 to 4.55). There‬
‭are two genes in this locus:‬‭Kif5c‬‭(kinesin family‬‭member 5C) and‬‭Lypd6b‬‭(LY6/PLAUR domain containing‬‭6B).‬
‭Kif5c‬‭(kinesin family member 5C) encodes a protein‬‭which has microtubule motor activity and is located in the‬
‭related cellular components, including ciliary rootlet. Although we are not aware of any previously reports that‬
‭Kif5c‬‭is involved in hearing in any species, other‬‭kinesin motor proteins are known to be associated with‬
‭hearing loss. For example,‬‭Klc2‬‭(kinesin light chain‬‭2) knock out mice have early hearing loss at low‬
‭frequencies, and KLC2  binds KIF5C in the mouse cochlea, as shown in co-immunoprecipitation experiments‬
‭(Fu et al. 2021). This gene was not detected in 10-month old CFW mice (Boussaty et al. 2023), but is‬
‭expressed in inner hair cells in young mice (Liu et al. 2018).‬
‭QTL on chromosome 12 at 92 Mb.‬ ‭(‬‭genetic report in‬‭Supplemental Materials‬‭). The most strongly associated‬
‭SNP for this QTL also showed a trend towards an association  with hearing loss at 6 months for 12 kHz and 24‬
‭kHz (-log10(p)=4.4 and 5.02). This locus contains genes‬‭Ston2‬‭(stonin 2) and‬‭Sel1l‬‭(sel-1 suppressor‬‭of‬
‭lin-12-like). These two genes are not known to be associated with hearing loss and were not expressed in‬
‭10-month old CFW mice (Boussaty et al. 2023), however‬‭Sel1l‬‭was expressed in cochlea cells in several of the‬
‭gEAR datasets (Sun et al. 2023; Su et al. 2019).‬
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‭Figure 5.‬‭QTLs for the traits of being deaf at 6 months.‬‭The x-axis shows the position on a chromosome (in‬‭Mb); the‬
‭y-axis shows the significance of the association (-log10 p-value). The individual points represent SNPs. The SNP with‬
‭the most significnat p-value (“top SNP”) is highlighted in purple. The colors represent the LD between the topSNP and‬
‭the other SNP. The red line indicates the threshold for genome-wide alpha of < 0.10 (-log10(p) > 5.0); the blue line‬
‭indicates the threshold for genome-wide alpha of < 0.05 (-log10(p) > 5.58). The effect plots for the top SNP are shown‬
‭on the right, minor allele frequency (MAF) indicated.‬

‭We detected three QTLs for being deaf at 10 months (genetic report in‬‭Supplemental Materials‬‭).‬
‭QTL on chromosome 1 at 95.2 Mb‬‭(genetic report in‬‭Supplemental Materials‬‭). This locus is associated with‬
‭hearing loss at 10 months at 4 kHz, and also showed a trend towards an association with being deaf at 10‬
‭month for the 16 kHz and 32 kHz frequencies (-log10(p)= 4.26 and 4.13 correspondingly). This locus does not‬
‭contain any known genes, but may contain unknown genes or transcripts or regulatory sequences that‬

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.10.598304doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.10.598304
http://creativecommons.org/licenses/by-nd/4.0/


‭influences the expression of genes outside the associated region. As far as we know, this locus has not been‬
‭previously associated with hearing loss in any species.‬
‭QTL on chromosome 10 at 67 Mb‬‭(‬‭Figure 6‬‭). This chromosomal‬‭region contains QTLs for hearing loss at 10‬
‭months for both 16 kHz and 24 kHz. . It contains 3 genes:‬ ‭Reep3‬‭(receptor accessory protein 3),‬‭Jmjd1c‬
‭(jumonji domain containing 1C), and the predicted gene‬‭Gm31763‬‭.‬
‭Reep3‬‭is predicted to play a role in tubular network‬‭organization. It is expressed in cochlea (Rousset et al.,‬
‭2020, Liu et al. 2018, Kolla et al. 2020), but was not detected in 10 month old CFW mice, and is not known to‬
‭be associated with hearing loss in any species.‬‭Reep3‬‭has a missense variant in CFW mice in high LD with‬‭the‬
‭top SNP of the QTL (c50T>C; Phe17>Ser, r‬‭2‬ ‭with the‬‭top SNP 0.911).‬
‭Jmjd1c‬‭is‬‭a‬‭predicted histone demethylase and coactivator‬‭for transcription factors. It is expressed in inner and‬
‭outer hair cells in embryonic and young mice (Liu et al. 2018, Kolla et al. 2020, Elcon et al. 2015), but was not‬
‭detected in 10 month old CFW mice (Boussaty et al. 2023), and is not known to be associated with hearing‬
‭loss in any species.‬
‭QTL on chromosome 4 at 156 Mb‬‭(genetic report in‬‭Supplemental‬‭Materials‬‭). This chromosomal region‬
‭contains QTLs for hearing loss at 10 months for 24 kHz.‬‭The top SNP for this QTL also shows an association‬
‭with hearing loss at 10 months for 32 kHz (-log10(p)= 4.89). This region contains 6 genes:‬‭B3galt6‬
‭(UDP-Gal:betaGal beta 1,3-galactosyltransferase, polypeptide 6),‬‭Sdf4‬‭(stromal cell derived factor 4),‬‭Tnfrsf4‬
‭(TNF Receptor Superfamily Member 4),‬‭Tnfrsf18‬‭(TNF‬‭Receptor Superfamily Member 18), Ttll10 (tubulin‬
‭tyrosine ligase-like family, member 10), and‬‭Gm16008‬‭(predicted long non-coding RNA). None of these genes‬
‭are expressed in 10 month old CFW mice (Boussaty et al. 2023), although they are expressed at various levels‬
‭in cochlea of E16, P0, P1, P7, P16 mice (Rousset et al. 2020; Waldhaus et al. 2015; Liu et al. 2018; Kolla et al.‬
‭2020; Elcon et al. 2015; Cai et al. 2015). None of these genes were known to be associated with hearing loss‬
‭in any other species.‬

‭Figure 6.‬‭QTL for the trait of being deaf at 10 month.‬‭The regional association plots are shown on the left. The x-axis‬
‭shows the position on a chromosome (in Mb); the y-axis shows the significance of the association (-log10 p-value). The‬
‭individual points represent SNPs. The SNP with the lowest p-value (“top SNP”) is highlighted in purple. The colors‬
‭represent the correlation between the topSNP and the other SNP. The red line indicated a threshold for genome-wide‬
‭alpha of < 0.10 (-log10(p) > 5.0); the blue line indicated a threshold for genome-wide alpha of < 0.05 (-log10(p) > 5.58).‬
‭The effect plots for the top SNP are shown on the right, minor allele frequency (MAF) indicated.‬
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‭We detected three QTLs for elevated ABR thresholds.‬
‭QTL on chromosome 5 around 24 Mb‬‭(‬‭Figure 7A‬‭). This‬‭QTL for elevated ABR threshold at 6 months for 8 kHz‬
‭encompasses a >1 Mb chromosomal region containing 35 genes.‬‭SNPs in this QTL also show association with‬
‭hearing loss at 6 months for 4 kHz, and at 10 months for 4 kHz and 24 kHz, although these associations do not‬
‭reach the significance threshold (-log10(p)= 5.05, 4.84, and 4.11, respectively). This QTL contains several‬
‭genes that have previously been known to affect hearing.‬‭Asic3‬‭(acid-sensing ion channel 3) is expressed in‬
‭sensory neurons and participates in neuronal mechanotransduction (Lin et al. 2016; Chuang et al. 2022; Cai et‬
‭al. 2015), and is expressed in supporting cells in adult CBA/J mice (Liu et al. 2018). Knocking out this gene is‬
‭known to disrupt hearing in mice (Wu et al. 2009).‬‭Asic3‬‭expression was not detected in 10 month old‬‭CFW‬
‭mice (Boussaty et al. 2023).‬
‭Slc4a2‬‭(solute carrier family 4 (anion exchanger),‬‭member 2) plays a role in ion homeostasis, and is expressed‬
‭in the inner ear (Hosoya et al. 2016; Liu et al. 2018). Knockout mice have multiple severe phenotypes,‬
‭including deafness (Gawenis et al., 2004).‬‭Slc4a2‬‭expression was not detected in 10 month old CFW mice‬
‭(Boussaty et al. 2023).‬
‭Crygn‬‭(crystallin, gamma N) is expressed in newborn‬‭(Cai et al. 2015) and adult mice (Liu et al. 2018), its‬
‭expression is required for post migratory survival and proper function of auditory hindbrain neurons; ablation of‬
‭this gene does not affect ABR thresholds but causes an increase in the amplitude of wave IV (Hartwich et al.‬
‭2016).‬‭Crygn‬‭expression was not detected in 10 month‬‭old CFW mice (Boussaty et al. 2023).‬
‭Nos3‬‭(‬‭nitric oxide synthase 3, endothelial cell) is‬‭expressed in inner and outer hair cells of newborn (‬‭Cai et‬
‭al. 2015‬‭) and adult mice (‬‭(Liu et al. 2018‬‭). In humans,‬‭polymorphisms in‬‭NOS3 are associated with sudden‬
‭sensorineural hearing loss (Kitoh et al. 2017).‬‭Nos3‬‭expression was not detected in 10 month old CFW mice‬
‭(Boussaty et al. 2023).‬
‭Cdk5‬‭(cyclin-dependent kinase 5) is expressed ubiquitously‬‭in the cochlea of newborn (Elkon et al. 2015; Cai‬
‭et al. 2015) and adult mice (Zhai et al. 2018; Liu et al. 2018). The cochlea-specific inactivation of Cdk5 causes‬
‭hearing loss in mice due to loss of stereocilia (Zhai et al. 2018).‬‭Cdk5‬‭expression was not detected in‬‭10 month‬
‭old CFW mice (Boussaty et al. 2023).‬
‭The other genes located in this QTL were not previously reported to be associated with hearing loss. Only one‬
‭of them,‬‭Prkag2‬‭(protein kinase AMP-activated non-catalytic‬‭subunit gamma 2) is expressed in 10 month old‬
‭CFW mice, mostly in hair cells and spiral ganglion neurons (Boussaty et al. 2023). Due to the number of genes‬
‭in this interval, it is unclear which one might be the causal gene in this population. However, our work provides‬
‭support for the role of‬‭Prkag2‬‭in hearing loss (see‬‭below).‬
‭QTL on chromosome 9 around 105 Mb‬‭(‬‭Figure 7B‬‭). This‬‭chromosomal region contains QTLs for elevated‬
‭ABR threshold at 6 months for 8 kHz. It contains 6 genes:‬‭Cpne4‬‭(copine IV),‬‭Mrpl3‬‭(mitochondrial ribosomal‬
‭protein L3),‬‭Nudt16‬‭(nudix hydrolase 16),‬‭Nek11‬‭(NIMA‬‭(never in mitosis gene a)-related expressed kinase 11),‬
‭and‬‭Aste1‬‭(asteroid homolog 1).‬
‭Cpne4‬‭is expressed in supporting cells in newborn‬‭mice (Cai et al. 2015) and at low levels in pillar cells in adult‬
‭mice (Liu et al. 2018). In 10 month old CFW mice,‬‭Cpne4‬‭expression was detected in spiral ganglion neurons‬
‭(Boussaty et al. 2023). Copine family of Ca-dependent membrane adaptors are well studied in retinal ganglion‬
‭cells (Goel et al. 2019; Goel et al. 2021). This study raise a possibility that‬‭Cpna4‬‭is also involved in functioning‬
‭of spiral ganglion cells in cochlea, and associated with hearing loss.‬
‭Mrpl3‬‭is expressed in cochlear cells of newborn (Elkon‬‭et al. 2015; Cai et al. 2015) and adult mice (Liu et al.‬
‭2018). The expression is not detected in 10 month old CFW mice (Boussaty et al. 2023). CFW mice have a‬
‭missense mutation in‬‭Mrpl3‬‭(c55G>A; Ala19Thr, r‬‭2‬ ‭with the top SNP 0.822). Mutations in‬‭Mrpl3‬‭have been‬
‭previously reported to cause altered ribosome assembly and abnormal function of respiratory chain complexes‬
‭(Bursle et al. 2017).‬
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‭Nudt16‬‭is expressed in the cochlea of newborn (Kolla‬‭et al. 2020; Elkon et al. 2015; Cai et al. 2015) and adult‬
‭mice (Liu et al. 2018). It was not detected in 10 month old CFW mice (Boussaty et al. 2023). CFW mice have a‬
‭missense mutation in‬‭Nudt16‬ ‭(c457C>A; Val153Met,‬‭r‬‭2‬ ‭with the top SNP 0.911).‬
‭Nek11‬‭regulates cell cycle. It‬‭is expressed in hair‬‭cells in newborn and adult mice (Kolla et al. 2020; Elkon et al.‬
‭2015; Cai et al. 2015).  In 10 month old CFW mice it is detected in hair cells at low level, but mostly expressed‬
‭in a novel cell type characterized by expression of‬‭Dnah12‬‭and‬‭Rgs22‬‭(Boussaty et al. 2023).‬ ‭Dnah11‬‭,‬‭a‬
‭candidate gene discussed above, is also expressed in this novel cell type, providing an intriguing possibility of‬
‭the role of this novel cell type in hearing loss.‬
‭Aste1‬‭is expressed mostly in hair cells in newborn‬‭and adult mice (Kolla et al. 2020; Elkon et al. 2015; Cai et‬
‭al. 2015). It is not detected in 10 month old CFW mice (Boussaty et al. 2023).‬

‭Figure 7‬‭.‬‭Regional association plot for the ABR threshold‬‭at 6 months for 8 kHz.The x-axis shows the position on a‬
‭chromosome (in Mb); the y-axis shows the significance of the association (-log10 p-value). The individual points‬
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‭QTL on chromosome 11 around 16 Mb‬‭(genetic report in‬‭Supplemental Materials‬‭). This QTL is associated‬
‭with elevated ABR thresholds at 10 months at 32 kHz. It contains two genes:‬‭Vstm2a‬‭(V-set and‬
‭transmembrane domain containing 2A) and‬‭Sec61g‬‭(SEC61‬‭translocon subunit gamma).‬
‭Vstm2a‬‭and‬‭Sec61g‬‭are expressed in supporting cells‬‭of newborn mice (Elkon et al. 2015’ Cai et al. 2015), but‬
‭were not detected in 10 month old CFW mice (Boussaty et al. 2023). We are not aware of any prior‬
‭associations between these genes and any hearing related phenotypes.‬
‭Prkag2 deficiency causes Age-related hearing loss at high frequency.‬
‭We constructed Prkag2 constitutive null mice, and aged these animals, along with the littermate controls, in an‬
‭effort to assess the impact of Prkag2 deficiency on hearing.  The onset of high frequency hearing loss at 20‬
‭weeks in the mutants in comparison to the wild-type (‬‭Figure 8‬‭) and the loss of not only outer hair cells,‬‭as‬
‭expected on the C57BL/6 background, but inner hair cells at 2 years (‬‭Figure 8‬‭) confirms a role for Prkag2‬‭in‬
‭hearing.‬

‭represent SNPs. The SNP with the lowest p-value (“top SNP”) is highlighted in purple. The colors represent the‬
‭correlation between the topSNP and the other SNP. Box plots are showing ABR thresholds in each animal grouped by‬
‭the genotype at the top SNP, minor allele frequency (MAF) indicated.‬
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‭Discussion‬
‭ARHL is a complex trait, meaning that is influenced by many genetic variants, each having a small effect size.‬
‭In humans, 153 genes that are associated with hearing loss were described as of 2024 (Walls et al. 2024), with‬
‭various effect sizes and various degrees of confidence. However, this list is not exhaustive and the genetic‬
‭architecture of hearing loss remains an active field of discovery. Animal models allow gene discovery, which‬
‭can help to refine our understanding of biological pathways that  contribute to hearing loss. In the current work,‬
‭we use CFW mice to find the genetic underpinnings of age-related hearing loss. The variability in hearing loss‬

‭Figure Prkag2.‬‭Prkag2-deficient mice show increased‬‭sensitivity to ARHL.‬‭A‬‭. Prkag2-deficient mice show‬
‭high frequency hearing loss as measured by ABR thresholds in 20 month old mice, N = 5.‬‭B‬‭. Confocal‬
‭images from cochkea samples of 2 years old mice shaw that wild type littermates have higher IHC‬
‭preservation in comparison to Prkag2-deficient mice. Scale bar is 10 micorometers.‬
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‭in CFW mice has been reported previously, where a subset of mice did not respond to the 120 dB pulses at the‬
‭age around 4 month old (Parker et al. 2016), in agreement with the current report.  This strain was not‬
‭previously used for genetic studies of hearing loss, therefore we are taking advantage of the genetic variation‬
‭present in this strain. The outbred nature of the population allows for precise mapping meaning that identified‬
‭loci often contain a small number of genes.‬
‭The SNP heritability of the traits ranged from 0 to 0.42 (‬‭Table 2‬‭). Unlike heritability estimates from‬‭inbred strain‬
‭panels or twins designs, SNP heritability is expected to be lower, since it measures the proportion of‬
‭phenotypic variance explained by all measured SNPs (Yang et al. 2017).‬
‭Heritability of hearing thresholds reported in human studies varies from 0.2 to 0.54 in twin studies (Duan et al.‬
‭2019), and 0.13 to 0.7 for SNP-based heritability (Schmitz et al. 2021). Similaraly, the heritability of age-related‬
‭hearing impairment tends to be higher in twin study designs (0 to 0.65; Bogo et al. 2015, Karlsson et al. 1997)‬
‭than in association studies (0.03 to 0.22; Fransen et al. 2015; Hoffmann et al. 2016; Huyghe et al. 2008; Wells‬
‭et al. 2019). In animal models, using a panel of BXD mouse strains, heritability was estimated from 0.21 to‬
‭0.70, depending on the exact phenotype (Nagtegaal et al. 2012; Zheng et al. 2020).‬
‭We examined the genetic correlations between all possible pairs of traits (‬‭Fig. 3‬‭). Within each age, the‬
‭correlations between frequencies tend to be higher, forming a characteristic “triangle”. The correlation between‬
‭ABR thresholds measured at 1 month and ABR threshold or deafness at 6 and 10 months were lower,‬
‭suggesting that the genetic underpinnings of hearing loss in older mice is less similar to that observed in‬
‭younger mice.‬
‭We discovered 10 loci associated with 7 ARHL traits. Due to the small size of most of the implicated regions‬
‭(‬‭Fig. 2B‬‭), the QTLs contained from 0 to 35 genes (‬‭Table‬‭3‬‭).‬
‭The most interesting genes are those with known coding variation, those that are expressed in cochlea tissue‬
‭based on several datasets publicly available in gEAR portal (Boussaty et al. 2023; Kolla et al. 2020; Elkon et‬
‭al. 2015; Cai et al. 2015; Waldhaus et al. 2015; Liu et al. 2018) and those that are supported by previous‬
‭publications. We confirmed the role of‬‭Prkag2‬‭in hearing‬‭loss by demonstrating the oncet of high-frequency‬
‭hearing loss in 20-month old Prkag2 constitutive null mice, comparing to the wild type littermates accompanied‬
‭by the loss od both inner hair cells and out hair cells. In the future we hope to examine eQTLs in the cochlea of‬
‭CFW mice, which would offer an additional line of evidence not available in the current analysis.‬
‭Previous mouse studies identified multiple loci related to hearing and hearing loss. In particular, many inbred‬
‭and outbred mice experience very early hearing loss resulting in severe hearing loss as early as 9 weeks‬
‭(Zheng et al. 1999). In contrast, few CFW mice showed deafness by 4-6 weeks of age, the first time point,‬
‭when hearing has been measured. However, by the 6 month time point, 30-43% of mice were categorized as‬
‭being deaf at different frequencies, demonstrating the presence of alleles that cause relatively early onset of‬
‭deafness. The current study replicates some of those findings. The lack of replication for other loci may simply‬
‭reflect the fact that CFW mice do not segregate the same variants as other populations, or could be due to‬
‭insufficient sample size, or type I and type II errors in the current or prior studies.‬
‭Previous studies of genetics of hearing loss in mice were focused mostly on the early onset hearing loss. Many‬
‭mouse strains are homozygous for an‬‭ahl‬‭locus, corresponding‬‭to the Cdh23‬‭753A‬ ‭variant (SNP rs257098870)‬
‭which causes early hearing loss (Johnson et al. 2000; Zheng et al. 1999). The position of this variant‬
‭corresponds to the last nucleotide of exon 7 in GenBank sequence AF308939 and to the last nucleotide of‬
‭exon 9 in Ref Seq NM_023370 and NM_001252635. The mechanism is mediated by the effect of this SNP on‬
‭splicing: G at this position results in normal exon splicing, whereas A disrupts the donor splice site sequence‬
‭and causes in-frame exon skipping (Noben-Trauth et al. 2003). The Cdh23‬‭753G‬ ‭allele is associated with‬
‭resistance to ARHL and is dominant to the recessive Cdh23‬‭753A‬ ‭allele, which is associated with ARHL‬
‭susceptibility. CFW mice carry the Cdh23‬‭753A‬ ‭variant‬‭at ~0.63 allele frequency. This was estimated by using a‬
‭subset of 86 mice that had at least 3 sequence reads spanning rs257098870, enabling the genotype for‬
‭rs257098870 to be called by bcftools without imputation. Using these data, we confirmed that homozygosity for‬
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‭Cdh23‬‭753A‬ ‭significantly increases susceptibility to age-related hearing loss in our cohort (data not shown).‬
‭However our imputaton-based genotyping strategy was not able to reliably genotype the region around‬
‭rs257098870. In CFW this region appears to have structural variation that does not align with the reference‬
‭genome (data not shown). However, this variant is not the only cause of age-related hearing loss, and our‬
‭other results remain valid, despite our current inability to accurately genotype rs257098870.‬
‭Our genetic analysis in CFW mice did not find several other QTLs that have been previously reported in other‬
‭mouse strains. The regions corresponding to‬‭ahl3‬‭and‬‭ahl6‬‭have not been narrowed down to a specific gene‬‭or‬
‭a variant, but we were not able to reliably call genotypes for‬‭ahl3‬‭and‬‭ahl6‬‭genomic regions, have a similar‬
‭issue as ahl locus: we did not call genotypes in this region, most likely because there is no variability in these‬
‭regions in CFW population, as has been shown previously (Parker et al. 2016).‬‭ahl3‬‭(chromosome 17,  67.2‬
‭Mb) was discovered in consomic C57BL/6J and MSM mice (Nemoto et al. 2004);‬‭ahl6‬‭(chromosome 18, 44.2‬
‭cM) was discovered in outbred Black Swiss mice (Drayton and Noben-Trauth, 2006). Chromosomal regions‬
‭corresponding to other previously reported loci were both polymorphic and successfully genotyped, therefore‬
‭we can confidently report that we did not detect hearing loss in CFW mice that is associated with the following‬
‭loci:‬‭ahl2‬‭(chromosome 5, 79.6 Mb), discovered in‬‭C57BL/6J * NOD/LtJ cross (Johnson,and Zheng, 2002,‬
‭Ohlemiller  et al. 2008),‬‭ahl5‬‭(chromosome 10, 81.1‬‭Mb), corresponding to gene Gipc3 and discovered in‬
‭outbred Black Swiss mice (Drayton and Noben-Trauth, 2006),‬‭ahl8‬‭(chromosome 11, 120 Mb), corresponding‬
‭to gene Fscn2 and discovered in BXD mice mice (Johnson et al. 2008), M5Ahl8 (chromosome 5,‬
‭approximately 78-118 Mb) discovered in BXD mice (Johnson et al. 2015) and‬‭ahp‬‭(chromosome 16)‬
‭discovered in BXD mice (Zheng et al. 2020). It is not surprising that we do not detect QTLs found in other‬
‭populations. The main reason is that the two causal alleles might not be polymorphic in CFW population; but it‬
‭is also possible that the original finding was a false positive or our inability to find a QTL could be a false‬
‭negative or insufficient sample size.‬
‭This study is not without limitations. The number of discoveries in a GWAS is dictated by sample size. In this‬
‭study, the largest sample sizes were obtained at the 6 month time point. We had originally planned to use a 14‬
‭month time point but found that a significant fraction of mice did not live long enough, thus, the 10 month time‬
‭point was introduced after the study was initiated, and so has fewer subjects. In addition, because a signifncat‬
‭number of mice were deaf by the 6 and 10 month time points, they could not be used for the  analysis of ABR‬
‭threshold. Another limitation of this study is that we did not explore the onset of deafness, which occurred in‬
‭30-43% of mice (varies for different frequencies) sometime between the 1 and 6 month time points. Future‬
‭studies that examine this process could yield additional insights. Finally, our analysis of genes within implicated‬
‭regions accounted for coding polymorphisms, but did not examine eQTLs because no eQTL data for the‬
‭cochlea of CFW mice are available.  We plan to develop such data in the future.‬
‭In conclusions, we performed a GWAS for ARHL traits using 946 CFW outbred mice - a population previously‬
‭not used in hearing loss studies. We identified 10 QTLs that offer new insights into genetic underpinning of this‬
‭pathology, identifying novel candidate genes, including‬‭Dnah11‬‭,‬‭Rapgef5‬‭,‬‭Cpne4‬‭,‬‭Prkag2‬‭, and‬‭Nek11‬‭. Using‬
‭constitutive knockout mouse model, we confirmed that‬‭Prkag2‬‭plays a role in age-related hearing loss.‬‭Other‬
‭candidate genes identified in this and future studies can be manipulated to explore their role in hearing loss.‬
‭Another important future direction will be to explore expression of the candidate genes in spatial manner to‬
‭better identify cells and structures that are affected.‬
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‭Supplemental materials:‬
‭1.‬ ‭The Genetic Analysis Report‬

‭https://palmerlab.s3.sdsc.edu/tsanches_dash_genotypes/gwas_results/r01_friedman_arhl_2020/results‬
‭/gwas_report.html‬

‭2.‬ ‭Supplemental Figure 1.‬

‭Supplemental Figure 1.‬‭Scatterplot of relatedness‬‭expressed as‬
‭Identical By State (IBS) score and GRM metric shows that there is‬
‭a group of pairs with high relatedness. There are 252 unique mice‬
‭in the group that have IBS >0.87 and  GRM >0.35, most likely‬
‭siblings or close cousins.‬
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