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Abstract
Background: Variant Call Format (VCF) is the standard file format for interchanging genetic variation data and associated qualitycontrol metrics. The usual row-wise encoding of the VCF data model (either as text or packed binary) emphasises efficientretrieval of all data for a given variant, but accessing data on a field or sample basis is inefficient. Biobank scale datasets currentlyavailable consist of hundreds of thousands of whole genomes and hundreds of terabytes of compressed VCF. Row-wise data storageis fundamentally unsuitable and a more scalable approach is needed.
Results: We present the VCF Zarr specification, an encoding of the VCF data model using Zarr which makes retrieving subsets ofthe data much more efficient. Zarr is a cloud-native format for storing multi-dimensional data, widely used in scientificcomputing. We show how this format is far more efficient than standard VCF based approaches, and competitive with specialisedmethods for storing genotype data in terms of compression ratios and calculation performance. We demonstrate the VCF Zarrformat (and the vcf2zarr conversion utility) on a subset of the Genomics England aggV2 dataset comprising 78,195 samples and59,880,903 variants, with a 5X reduction in storage and greater than 300X reduction in CPU usage in some representativebenchmarks.
Conclusions: Large row-encoded VCF files are a major bottleneck for current research, and storing and processing these filesincurs a substantial cost. The VCF Zarr specification, building on widely-used, open-source technologies has the potential togreatly reduce these costs, and may enable a diverse ecosystem of next-generation tools for analysing genetic variation datadirectly from cloud-based object stores, while maintaining compatibility with existing file-oriented workflows.
Key words: Variant Call Format; Zarr; Analysis ready data.

Background1

Variant Call Format (VCF) is the standard format for interchanging2 genetic variation data, encoding information about DNA sequence3 polymorphisms among a set of samples with associated quality4 control metrics and metadata [1]. Originally defined specifically5 as a text file, it has been refined and standardised [2] and the un-6

derlying data-model is now deeply embedded in bioinformatics 7practice. Dataset sizes have grown explosively since the introduc- 8tion of VCF as part of 1000 Genomes project [3], with Biobank scale 9initiatives such as Genomics England [4], UK Biobank [5, 6, 7, 8], 10and the All of Us research program [9] collecting genome sequence 11data for hundreds of thousands of humans. Large genetic varia- 12tion datasets are also being generated for other organisms and a 13
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Key Points

• VCF is widely supported, and the underlying data model entrenched in bioinformatics pipelines.• The standard row-wise encoding as text (or binary) is inherently inefficient for large-scale data processing.• The Zarr format provides an efficient solution, by encoding fields in the VCF separately in chunk-compressed binary format.

variety of purposes including agriculture [10, 11], conservation [12]14 and infectious disease surveillance [13]. VCF’s simple text-based15 design and widespread support [14] makes it an excellent archival16 format, but it is an inefficient basis for analysis. Methods that re-17 quire efficient access to genotype data either require conversion to18 the PLINK [15, 16] or BGEN [17] formats [e.g. 18, 19, 20] or use be-19 spoke binary formats that support the required access patterns [e.g.20 21, 22, 23]. While PLINK and BGEN formats are more efficient to21 access than VCF, neither can accommodate the full flexibility of the22 VCF data model and conversion is lossy. PLINK’s approach of stor-23 ing the genotype matrix in uncompressed packed-binary format24 provides efficient access to genotype data, but file sizes are substan-25 tially larger than the equivalent compressed VCF (see Fig 2). For26 example, at two bits per diploid genotype, the full genotype matrix27 for the GraphTyper SNP dataset in the 500K UKB WGS data [8] is28 116 TiB.29

Processing of Biobank scale datasets can be split into a few broad30 categories. The most basic analysis is quality control (QC). Vari-31 ant QC is an involved and multi-faceted task [24, 25, 26, 27], of-32 ten requiring interactive, exploratory analysis and incurring sub-33 stantial computation over multiple QC fields. Genotype calls are34 sometimes refined via statistical methods, for example by phas-35 ing [28, 29, 23, 30], and imputation [21, 31, 32, 33] creating ad-36 ditional dataset copies. A common task to perform is a genome37 wide association study (GWAS) [34]. The majority of tools for per-38 forming GWAS and related analyses require data to be in PLINK or39 BGEN formats [e.g 16, 20, 35, 19], and so data must be “hard-called”40 according to some QC criteria and exported to additional copies.41 Finally, variation datasets are often queried in exploratory analyses,42 to find regions or samples of interest for a particular study [e.g. 36].43

VCF cannot support any of these workflows efficiently at the44 Biobank scale. The most intrinsically limiting aspect of VCF’s de-45 sign is its row-wise layout of data, which means that (for example)46 information for a particular sample or field cannot be obtained47 without retrieving the entire dataset. The file-oriented paradigm48 is also unsuited to the realities of modern datasets, which are too49 large to download and often required to stay in-situ by data-access50 agreements. Large files are currently stored in cloud environments,51 where the file systems that are required by classical file-oriented52 tools are expensively emulated on the basic building blocks of object53 storage. These multiple layers of inefficiencies around processing54 VCF data at scale in the cloud mean that it is time-consuming and55 expensive, and these vast datasets are not utilised to their full po-56 tential.57

To achieve this full potential we need a new generation of tools58 that operate directly on a primary data representation that sup-59 ports efficient access across a range of applications, with native60 support for cloud object storage. Such a representation can be61 termed “analysis-ready” and “cloud-native” [37]. For the rep-62 resentation to be FAIR [38], it must also be accessible, using proto-63 cols that are “open, free, and universally implementable”. There64 is currently no efficient, FAIR representation of genetic variation65 data suitable for cloud deployments. Hail [39, 40] has become66 the dominant platform for quality control of large-scale varia-67 tion datasets, and has been instrumental in projects such as gno-68 madAD [41, 26]. While Hail is built on open components from the69 Hadoop distributed computing ecosystem [42], the details of its70 MatrixTable format are not documented or intended for external71

reuse. Similarly, commercial solutions that have emerged to facil- 72itate the analysis of large-scale genetic variation data are either 73based on proprietary [43, 44, 45, 46, 47] or single-vendor technolo- 74gies [e.g. 48, 49]. The next generation of VCF analysis methods 75requires an open, free and transparent data representation with 76multiple independent implementations. 77

In this article, we decouple the VCF data model from its row- 78oriented file definition, and show how the data can be compactly 79stored and efficiently analysed in a cloud-native, FAIR manner. We 80do this by translating VCF data into Zarr format, a method of storing 81large-scale multidimensional data as a regular grid of compressed 82chunks. Zarr’s elegant simplicity and first-class support for cloud 83object stores have led to it gaining substantial traction across the 84sciences, and it is now used in multiple petabyte-scale datasets in 85cloud deployments (see Methods for details). We present the VCF 86Zarr specification that formalises this mapping, and the vcf2zarr 87utility to reliably convert large-scale VCFs to Zarr. We show that 88VCF Zarr is much more compact than VCF and is competitive with 89state-of-the-art file-based VCF compression tools. Moreover, we 90show that Zarr’s storage of data in an analysis-ready format greatly 91facilitates computation, with various benchmarks being substan- 92tially faster than bcftools based pipelines, and again competitive 93with state-of-the-art file-oriented methods. Finally, we show the 94utility of VCF Zarr on the Genomics England aggV2 dataset, demon- 95strating that common bcftools queries can be performed orders of 96magnitude more quickly using simple Python scripts. 97

Results 98

Storing genetic variation data 99

Although VCF is the standard format for exchanging genetic vari- 100ation data, its limitations both in terms of compression and 101query/compute performance are well known [e.g. 50, 51, 52], and 102many methods have been suggested to improve on these properties. 103Most approaches balance compression with performance on partic- 104ular types of queries, typically using a command line interface (CLI) 105and outputting VCF text [51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. Sev- 106eral specialised algorithms for compressing the genotype matrix 107(i.e., just the genotype calls without additional VCF information) 108have been proposed [61, 62, 63, 64, 65, 66] most notably the Po- 109sitional Burrows–Wheeler Transform (PBWT) [67]. See [68] for 110a review of the techniques employed in genetic data compression. 111The widely-used PLINK binary format stores genotypes in a packed 112binary representation, supporting only biallelic variants without 113phase information. The PLINK 2 PGEN format [69] is more gen- 114eral and compact than PLINK, compressing variant data using spe- 115cialised algorithms [63]. Methods have also been developed which 116store variation data along with annotations in databases to facilitate 117efficient queries [e.g. 70, 71] which either limit to certain classes of 118variant [e.g. 72] or have storage requirements larger than uncom- 119pressed VCF [73]. The SeqArray package [74] builds on the Genomic 120Data Storage container format [75] to store VCF genotype data in a 121packed and compressed format, and is used in several downstream 122R packages [e.g. 76, 77]. 123

VCF is a row-wise format in which observations and metadata 124for a single variant are encoded as a line of text [1]. BCF [78], the 125
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Figure 1. Chunked compressed storage of VCF data using Zarr. The call_genotype
array is a three-dimensional (variants, samples, ploidy) array of integers, split
into a uniform grid of chunks determined by the variant and sample chunk sizes
(10,000 and 1,000 by default in vcf2zarr). Each chunk is associated with a key
defining its location in this grid, which can be stored in any key-value store such as
a standard file-system or cloud object store. Chunks are compressed independently
using standard codecs and pre-compression filters, which can be specified on a
per-array basis. Also shown are the one-dimensional variant_contig (CHROM) and
variant_position arrays (POS). Other fields are stored in a similar fashion.

standard binary representation of VCF, is similarly row-wise, as126 are the majority of proposed alternative storage formats. Row-wise127 storage makes retrieving all information for a given record straight-128 forward and efficient, and works well when records are either rela-129 tively small or we typically want to analyse each record in its entirety.130 When we want to analyse only a subset of a record, row-wise stor-131 age can be inefficient because we will usually need to retrieve more132 information than required from storage. In the case of VCF (and133 BCF) where records are not of a fixed size and are almost always134 compressed in blocks, accessing any information for a set of rows135 means retrieving and decompressing all information from these136 rows.137

The usual alternative to row-wise storage is columnar storage:138 instead of grouping together all the fields for a record, we group139 together all the records for a given field. Columnar storage for-140 mats such as Parquet [79] make retrieving particular columns141 much more efficient and can lead to substantially better compres-142 sion. While columnar techniques have been successfully applied143 in alignment storage [e.g. 80, 81, 82], the use of columnar tech-144 nologies for storing and analysing variation data have had limited145 success [83, 84]. Mapping VCF directly to a columnar layout, in146 which there is a column for the genotypes (and other per-call QC147 metrics) for each sample leads to a large number of columns, which148 can be cumbersome and cause scalability issues. Fundamentally,149 columnar methods are one-dimensional, storing a vector of values150 associated with a particular key, whereas genetic variation data is151 usually modelled as a two-dimensional matrix in which we are in-152 terested in accessing both rows and columns. Just as row-oriented153 storage makes accessing data for a given sample inefficient, colum-154 nar storage makes accessing all the data for a given variant ineffi-155 cient.156

VCF is at its core an encoding of the genotype matrix, where157 each entry describes the observed genotypes for a given sample158 at a given variant site, interleaved with per-variant information159 and other call-level matrices (e.g., the GQ or AD fields). The data is160 largely numerical and of fixed dimension, and is therefore a natural161 mapping to array-oriented or “tensor” storage. We propose the VCF162 Zarr specification which maps the VCF data model into an array-163 oriented layout using Zarr (Fig 1). In the VCF Zarr specification, each164 field in a VCF is mapped to a separately-stored array, allowing for165 efficient retrieval and high levels of compression. See the Methods166 for more detail on Zarr and the VCF Zarr specification.167

One of the key benefits of Zarr is its cloud-native design, but it168 also works well on standard file systems, where arrays and chunks169
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Figure 2. Compression performance on simulated genotypes. Comparison of to-
tal stored bytes for VCF data produced by subsets of a large simulation of French-
Canadians. Sizes for 106 samples are shown on the right. Sizes for Savvy (21.25GiB)
and Zarr (22.06GiB) are very similar. Also shown for reference is the size of genotype
matrix when encoded as two bits per diploid genotype (2bit), as used in the PLINK
binary format.

are stored hierarchically in directories and files (storage as a sin- 170gle Zip archive is also supported). To enable comparison with the 171existing file-based ecosystem of tools, we focus on Zarr’s file sys- 172tem chunk storage in a series of illustrative benchmarks in the 173following sections. (See [85, 86, 87] for Zarr benchmarks in cloud 174settings.) We compare primarily with VCF/BCF based workflows 175using bcftools because this is the standard practice, used in the 176vast majority of cases. We also compare with two representative 177recent specialised utilities; see [54, 60] for further benchmarks of 178these and other tools. Genozip [56, 57] is a tool focused on com- 179pression performance, which uses a custom file format and a CLI to 180extract VCF as text with various filtering options. Savvy [58] is an 181extension of BCF which takes advantage of sparsity in the genotype 182matrix as well as using PBWT-based approaches for improved com- 183pression. Savvy provides a CLI as well as a C++ API. Our benchmarks 184are based on genotype data from subsets of a large and highly real- 185istic simulation of French-Canadians [88] (see Methods for details 186on the dataset and benchmarking methodology). Note that while 187simulations cannot capture all the subtleties of real data, the allele 188frequency and population structure patterns in this dataset have 189been shown to closely follow observations [88] and so it provides 190a reasonable and easily reproducible data point when comparing 191such methods. The simulations only contain genotypes without 192any additional high-entropy QC fields, which is unrealistic (see the 193Genomics England case-study for benchmarks on a large human 194dataset that includes many such fields). Note, however, that such 195minimal, genotype-only data is something of a best-case scenario 196for specialised genotype compression methods using row-wise 197storage. 198

Fig 2 shows compression performance on up to a million sam- 199ples for chromosome 21, with the size of the genotype-matrix en- 200coded as 1-bit per haploid call included for reference. Gzip com- 201pressed VCF performs remarkably well, compressing the data to 202around 5% of the minimal binary encoding of a biallelic genotype 203matrix for 1 million samples. BCF provides a significant improve- 204ment in compression performance over VCF (note the log-log scale). 205Genozip has superb compression, having far smaller file sizes that 206the other methods (although somewhat losing its advantage at 207larger sample sizes). Zarr and Savvy have almost identical compres- 208sion performance in this example. It is remarkable that the simple 209approach of compressing two dimensional chunks of the genotype 210matrix using the Zstandard compressor [89] and the bit-shuffle 211filter from Blosc [90] (see Methods for details) produces compres- 212
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Figure 3. Whole-matrix compute performance with increasing sample size. Total
CPU time required to run bcftools +af-dist and equivalent operations in a single
thread for various tools. Elapsed time is also reported (dotted line). Run-time
for genozip and bcftools on VCF at 106 samples were extrapolated by fitting an
exponential. See Methods for full details.

sion levels competitive with the highly specialised methods used213 by Savvy.214

Calculating with the genotype matrix215

Storing genetic variation data compactly is important, but it is also216 important that we can analyse the data efficiently. Bioinformatics217 workflows tend to emphasise text files and command line utilities218 that consume and produce text [e.g. 91]. Thus, many tools that com-219 press VCF data provide a command line utility with a query language220 to restrict the records examined, perform some pre-specified cal-221 culations and finally output some text, typically VCF or tab/comma222 separated values [51, 52, 54, 55, 56, 57, 60]. These pre-defined223 calculations are by necessity limited in scope, however, and the224 volumes of text involved in Biobank scale datasets make the clas-225 sical approach of custom analyses via Unix utilities in pipelines226 prohibitively slow. Thus, methods have begun to provide Applica-227 tion Programming Interfaces (APIs), providing efficient access to228 genotype and other VCF data [e.g. 50, 58, 59]. By providing pro-229 grammatic access, the data can be retrieved from storage, decoded230 and then analysed in the same memory space without additional231 copies and inter-process communication through pipes.232

To demonstrate the accessibility of genotype data and efficiency233 with which calculations can be performed under the different for-234 mats, we use the bcftools +af-dist plugin (which computes a ta-235 ble of deviations from Hardy-Weinberg expectations in allele fre-236 quency bins) as an example. We chose this particular operation for237 several reasons. First, it is a straightforward calculation that re-238 quires examining every element in the genotype matrix, and can be239 reproduced in different programming languages without too much240 effort. Secondly, it produces a small volume of output and therefore241 the time spent outputting results is negligible. Finally, it has an242 efficient implementation written using the htslib C API [92], and243 therefore running this command on a VCF or BCF file provides a244 reasonable approximation of the limit of what can be achieved in245 terms of whole-matrix computation on these formats.246

Fig 3 shows timing results for running bcftools +af-dist and247 equivalent operations on the data of Fig 2. There is a large difference248 in the time required (note the log-log scale). The slowest approach249 uses Genozip. Because Genozip does not provide an API and only250 outputs VCF text, the best approach available is to pipe its output251 into bcftools +af-dist. This involves first decoding the data from252 Genozip format, then generating large volumes of VCF text (ter-253 abytes, in the largest examples here), which we must subsequently254
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Figure 4. Compute performance on subsets of the matrix. Total CPU time required
to run the af-dist calculation for a contiguous subset of 10,000 variants × 10 samples
from the middle of the matrix for the data in Fig 2. Elapsed time is also reported
(dotted line). The genozip and bcftools pipelines involve multiple commands re-
quired to correctly calculate the AF INFO field required by bcftools +af-dist. See
the Methods for full details on the steps performed.

parse before finally doing the actual calculation. Running bcftools 255

+af-dist directly on the gzipped VCF is substantially faster, indicat- 256ing that Genozip’s excellent compression performance comes at a 257substantial decompression cost. Using a BCF file is again signifi- 258cantly faster, because the packed binary format avoids the overhead 259of parsing VCF text into htslib’s internal data structures. We only 260use BCF for subsequent bcftools benchmarks. 261

The data shown in Fig 3 for Zarr and Savvy is based on custom 262programs written using their respective APIs to implement the 263

af-dist operation. The Zarr program uses the Zarr-Python pack- 264age to iterate over the decoded chunks of the genotype matrix and 265classifies genotypes within a chunk using a 14 line Python function, 266accelerated using the Numba JIT compiler [93]. The allele frequen- 267cies and genotype counts are then analysed to produce the final 268counts within the allele frequency bins with 9 lines of Python using 269NumPy [94] functions. Remarkably, this short and simple Python 270program is substantially faster than the equivalent compiled C us- 271ing htslib APIs on BCF (6.9 hours vs 20.6 hours for 1 million sam- 272ples). The fastest method is the C++ program written using the 273Savvy API. This would largely seem to be due to Savvy’s excellent 274genotype decoding performance (up to 6.6GiB/s vs 1.2GiB/s for Zarr 275on this dataset; Fig S1). Turning off the BitShuffle filter for the Zarr 276dataset, however, leads to a substantial increase in decoding speed 277(3.9GiB/s) at the cost of a roughly 25% increase in storage space 278(29.9GiB up from 22.1GiB for 1 million samples; data not shown). 279Given the relatively small contribution of genotypes to the overall 280storage of real datasets (see the Genomics England example) and 281the frequency that they are likely to be accessed, this would seem 282like a good tradeoff in most cases. This ability to easily tune com- 283pression performance and decoding speed on a field-by-field basis 284is a major strong point of Zarr. The vcf2zarr utility also provides 285functionality to aid with such storage schema tuning. 286

Subsetting the genotype matrix 287

As datasets grow ever larger, the ability to efficiently access subsets 288of the data becomes increasingly important. VCF/BCF achieve effi- 289cient access to the data for genomic ranges by compressing blocks of 290adjacent records using bgzip, and storing secondary indexes along- 291side the original files with a conventional suffix [95]. Thus, for a 292given range query we decompress only the necessary blocks and 293can quickly access the required records. The row-wise nature of 294VCF (and most proposed alternatives), however, means that we can- 295
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Figure 5. Time to extract the genome position and write to a text file. Total CPU time
required to extract the POS field for BCF, sav and Zarr formats for the data in Figure 2.
For the BCF file we used bcftools query -f"%POS\n". For sav, we used the Savvy C++
API to extract position for each variant and output text using the std::cout stream.
For Zarr, we read the variant_position array into a NumPy array, and then wrote to a
text file using the Pandas write_csv method. Zarr CPU time is dominated by writing
the text output; we also show the time required to populate a NumPy array with the
data in Zarr, which is less than a second. Wall-clock time (dotted line) is dominated
in this case by file I/O. Time to output text for Savvy is not significant for > 1000
samples (not shown).

not efficiently subset by sample (e.g., to calculate statistics within a296 particular cohort). In the extreme case, if we want to access only the297 genotypes for a single sample we must still retrieve and decompress298 the entire dataset.299

We illustrate this cost of row-wise encoding in Fig 4, where300 we run the af-dist calculation on a small fixed-size subset of the301 genotype matrices of Fig 2. The two-dimensional chunking of Zarr302 means that this sub-matrix can be efficiently extracted, and there-303 fore the execution time depends very weakly on the overall dataset304 size, with the computation requiring around 1 second for 1 million305 samples. Because of their row-wise encoding, CPU time scales with306 the number of samples for all the other methods. Fig S2 shows per-307 formance for the same operation when selecting half of the samples308 in the dataset.309

Extracting, inserting and updating fields310

We have focused on the genotype matrix up to this point, contrast-311 ing Zarr with existing row-wise methods. Real-world VCFs encap-312 sulate much more than just the genotype matrix, and can contain313 large numbers of additional fields. Fig 5 shows the time required314 to extract the genomic position of each variant in the simulated315 benchmark dataset, which we can use as an indicative example316 of a per-variant query. Although Savvy is many times faster than317

bcftools query here, the row-wise storage strategy that they share318 means that the entire dataset must be read into memory and de-319 compressed to extract just one field from each record. Zarr excels at320 these tasks: we only read and decompress the information required.321

Many of the additional fields that we find in real-world VCFs are322 variant-level annotations, extensively used in downstream applica-323 tions. For example, a common workflow is to add or update variant324 IDs in a VCF using a reference database such as dbSNP [96]. The325 standard approach to this (using e.g. bcftools annotate) is to cre-326 ate a copy of the VCF which includes these new annotations. Thus,327 even though we may only be altering a single field comprising a tiny328 fraction of the data, we still read, decompress, update, compress329 and write the entire dataset to a new file. With Zarr, we can update330 an existing field or add arbitrary additional fields without touching331 the rest of the data or creating redundant copies.332

Table 1. Summary for a selection of the largest VCF Zarr columnsproduced for Genomics England aggV2 VCFs on chromosome 2 using
vcf2zarr default settings. Each field is stored independently as a Zarrarray with the given type (sufficient to represent all values in the data).We show the total storage consumed (reported via du) in power-of-twounits, and the compression ratio achieved on that array. We also showthe percentage of the overall storage that each array consumes (omittingvalues < 0.01%).

Field type storage compress %total
/call_AD int16 658.4G 26 25.35 %/call_GQ int16 654.5G 13 25.20%/call_DP int16 570.0G 15 21.95%/call_DPF int16 447.1 G 20 17.22%/call_PL int16 162.6G 160 6.26%/call_GQX int16 41.0G 210 1.58%/call_FT string 25.0G 1400 0.96%/call_genotype int8 21.5G 410 0.83%/call_genotype_mask bool 12.8G 680 0.49%/call_genotype_phased bool 2.4G 1900 0.09%/call_PS int8 383.4M 12 000 0.01 %/variant_position int32 111.6M 2/variant_quality float32 87.4M 2.6/variant_allele string 69.3M 13/variant_AN int32 47.3M 4.8/variant_filter bool 6.4M 570/sample_id str 268.1 K 2.3

Case study: Genomics England 100,000 genomes 333

In this section we demonstrate the utility of VCF Zarr on a large 334human dataset and the scalability of the vcf2zarr conversion utility. 335Genomics England’s multi-sample VCF dataset (aggV2) is an ag- 336gregate of 78,195 gVCFs from rare disease and cancer participants 337recruited as part of the 100,000 Genomes Project [4]. The dataset 338comprises approximately 722 million annotated single-nucleotide 339variants and small indels split into 1,371 roughly equal chunks and 340totalling 165.3 TiB of VCF data after bgzip compression. The dataset 341is used for a variety of research purposes, ranging from GWAS [97] 342and imputation [98] to simple queries involving single gene re- 343gions [99, 100]. 344

As described in the Methods, conversion to Zarr using vcf2zarr 345is a two-step process. We first converted the 106 VCF files (12.81 TiB) 346for chromosome 2 into the intermediate columnar format (ICF). 347This task was split into 14,605 partitions, and distributed using the 348Genomics England HPC cluster. The average run-time per partition 349was 20.7 min. The ICF representation used a total of 9.94 TiB over 3503,960,177 data storage files. We then converted the ICF to Zarr, 351partitioned into 5989 independent jobs, with an 18.6 min average 352run time. This produced a dataset with 44 arrays, consuming a 353total of 2.54 TiB of storage over 6,312,488 chunk files. This is a 354roughly 5X reduction in total storage space over the original VCF. 355The top fields in terms of storage are detailed in Table 1. We do not 356compare with other tools such as Genozip and Savvy here because 357they have fundamental limitations (as shown in earlier simulation- 358based benchmarks), and conversion of these large VCFs is a major 359undertaking. 360

Table 1 shows that the dataset storage size is dominated by a few 361columns with the top four (call_AD, call_GQ, call_DP and call_DPF) 362accounting for 90% of the total. These fields are much less com- 363pressible than genotype data (which uses < 1% of the total space 364here) because of their inherent noisiness [55]. Note that these top 365four fields are stored as 16 bit integers because they contain rare 366outliers that cannot be stored as 8 bits. While the fields could likely 367be truncated to have a maximum of 127 with minimal loss of infor- 368mation, the compression gains from doing so are relatively minor, 369and we therefore opt for fully lossless compression here for simplic- 370ity. The call_PS field here has an extremely high compression ratio 371
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because it consists entirely of missing data (i.e., it was listed in the372 header but never used in the VCF).373

To demonstrate the computational accessibility of Zarr on this374 large human dataset, we performed some illustrative benchmarks.375 As these benchmarks take some time to run, we focus on a sin-376 gle 132GiB compressed VCF file covering positions 58,219,159–377 60,650,943 (562,640 variants) from the middle of the list of 106 files378 for chromosome 2. We report both the total CPU time and elapsed379 wall-clock time here as both are relevant. First, we extracted the380 genome position for each variant in this single VCF chunk using381

bcftools query and Python Zarr code as described in Fig 5. The382

bcftools command required 55.42 min CPU and 85.85 min elapsed.383 The Zarr code required 2.78 sec CPU and 1.73 min elapsed. This is a384 1196X smaller CPU burden and a 50X speed-up in elapsed time. The385 major difference between CPU time and wall-time is noteworthy386 here, and indicates some opportunities for improvement in VCF387 Zarr in high-latency environments such as the shared file system388 in the Genomics England HPC system. Currently VCF Zarr does not389 store any specialised index to map genomic coordinates to array390 positions along the variants dimension. Instead, to find the relevant391 slice of records corresponding to the range of positions in the target392 VCF file, we load the entire variant_position array and binary search.393 This entails reading 5,989 chunk files (the chunk size is 100,000394 variants) which incurs a substantial latency penalty on this system.395 Later versions of the specification may solve this problem by storing396 an array of size (approximately) the number variant chunks which397 maps ranges of genome coordinates to chunk indexes, or a more398 specialised structure that supports overlap queries.399

We then ran the af-dist calculation (Figs 3 and 4) on the VCF400 file using bcftools +af-dist as before. The elapsed time for this401 operation was 716.28 min CPU, 716.3 min elapsed. Repeating this402 operation for the same coordinates in Zarr (using Python code de-403 scribed in previous sections) gave a total CPU time of 2.32 min and404 elapsed time of 4.25 min. This is a 309X reduction in CPU burden405 and a 169X speed-up in elapsed time. It is worth noting here that406

bcftools +af-dist cannot be performed in parallel across multi-407 ple slices of a chromosome, and if we did want to run it on all of408 chromosome 2 we would need to concatenate the 106 VCF files.409 While af-dist itself is not a common operation, many tasks share410 this property of not being straightforwardly decomposable across411 multiple VCF files.412

Finally, to illustrate performance on a common filtering task,413 we created a copy of the VCF chunk which contains only vari-414 ants that pass some common filtering criteria using bcftools view415

-I –include "FORMAT/DP>10 & FORMAT/GQ>20", following standard416 practices [e.g. 101, 97, 26]. This used 689.46 min CPU time, with417 an elapsed time of 689.48 min. In comparison, computing and418 storing a variant mask (i.e., a boolean value for each variant de-419 noting whether it should be considered or not for analysis) based420 on the same criteria using Zarr consumed 1.96 min CPU time with421 an elapsed time of 11 min. This is a 358X reduction in CPU usage,422 and 63X reduction in elapsed time. There is an important distinc-423 tion here between creating a copy of the data (an implicit part of424 VCF based workflows) and creating an additionalmask. As Table 1425 illustrates, call-level masks are cheap (the standard genotype miss-426 ingness mask, call_genotype_mask, uses 0.49% of the overall stor-427 age) and variant or sample level masks require negligible storage.428 If downstream software can use configurable masks (at variant,429 sample and call level) rather than expecting full copies of the data,430 major storage savings and improvements in processing efficiency431 can be made. The transition from the manifold inefficiencies of432 present-day “copy-oriented” computing, to the “mask-oriented”433 analysis of large immutable, single-source datasets is a potentially434 transformational change enabled by Zarr.435

Discussion 436

VCF is a central element of modern genomics, facilitating the ex- 437change of data in a large ecosystem of interoperating tools. Its 438current row-oriented form, however, is fundamentally inefficient, 439profoundly limiting the scalability of the present generation of 440bioinformatics tools. Large scale VCF data cannot currently be pro- 441cessed without incurring a substantial economic (and environmen- 442tal [102]) cost. We have shown here that this is not a necessary 443situation, and that greatly improved efficiency can be achieved by 444using more appropriate storage representations tuned to the real- 445ities of modern computing. We have argued that Zarr provides a 446powerful basis for cloud-based storage and analysis of large-scale 447genetic variation data. We propose the VCF Zarr specification which 448losslessly maps VCF data to Zarr, and provide an efficient and scal- 449able tool to perform conversion. 450

Zarr provides pragmatic solutions to some of the more pressing 451problems facing the analysis of large-scale genetic variation data, 452but it is not a panacea. Firstly, any dataset containing a variant with 453a large number of alleles (perhaps due to indels) will cause problems 454because the dimensions of fields are determined by theirmaximum 455dimension among all variants. In particular this is problematic 456for fields like PL in which the dimension depends quadratically on 457the number of alleles (although practical solutions have been sug- 458gested that we plan to implement [103]). Secondly, the design of VCF 459Zarr emphasises efficiency of analysis for a fixed dataset, and does 460not consider how samples (and the corresponding novel variants) 461should be added. Thirdly, Zarr works best for numerical data of a 462fixed dimension, and therefore may not suitable for representing 463the unstructured data often included in VCF INFO fields. 464

Nonetheless, there are numerous datasets that exist today that 465would likely reap significant benefits from being deployed in a 466cloud-native fashion using Zarr. Object stores typically allow for 467individual objects (chunks, in Zarr) to be associated with “tags”, 468which can then be used to associate storage class, user access con- 469trol and encryption keys. Aside from the performance benefits we 470have focused on here provided by Zarr, the ability to (for exam- 471ple) use high-performance storage for commonly used data such 472as the variant position and more cost-effective storage classes for 473infrequently used bulk QC data should provide significant oper- 474ational benefits. Granular access controls would similarly allow 475non-identifiable variant-level data to be shared relatively freely, 476with genotype and other data more tightly controlled as required. 477Even finer granularity is possible if samples are grouped by access 478level within chunks (padding partially filled chunks as needed and 479using an appropriate sample mask). Providing client applications 480direct access to the data over HTTP and delegating access control to 481the cloud provider makes custom web APIs [104] and cryptographic 482container formats [105] largely unnecessary in this setting. 483

The VCF Zarr specification and scalable vcf2zarr conversion 484utility provided here are a necessary starting point for such cloud- 485native biobank repositories and open up many possibilities, but 486significant investment and development would be needed to pro- 487vide a viable alternative to standard bioinformatics workflows. Two 488initial directions for development, however, may quickly yield suf- 489ficient results to both greatly improve researcher productivity on 490large, centrally managed datasets such as Genomics England and 491motivate further research and development. The first direction is 492to provide compatibility with existing workflows via a “vcztools” 493command line utility which implements a subset of bcftools func- 494tionality (such as view and query) on a VCF Zarr dataset. Such a tool 495would speed up some common queries by orders of magnitude, and 496reduce the need for user orchestration of operations among man- 497ually split VCF chunks (large VCF datasets are typically split into 498hundreds of files; see the Genomics England case study). Datasets 499could then be hosted in cloud object stores, while still presenting 500file-like semantics for existing workflows. This could provide an 501evolutionary path, allowing established analysis workflows to co- 502

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.06.11.598241doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.11.598241
http://creativecommons.org/licenses/by/4.0/


Czech et al. | 7

exist with new Zarr-native approaches, working from the same503 primary data.504 The second natural direction for development is to create these505 Zarr-native applications, which can take advantage of the efficient506 data representation across multiple programming languages (see507 Methods). The Python data science ecosystem, in particular, has a508 rich suite of powerful tools [e.g. 106, 93, 107, 94, 108] and is increas-509 ingly popular in recent biological applications [e.g. 109, 110, 111, 112].510 Xarray [113] provides a unified interface for working with multi-511 dimensional arrays in Python, and libraries like Dask [114] and512 Cubed [115] allow these operations to be scaled out transparently513 across processors and clusters. This scaling is achieved by distribut-514 ing calculations over grid-based array representations like Zarr,515 where chunks provide the basic unit for parallel computation. The516 VCF Zarr specification introduced here was created to facilitate work517 on a scalable genetics toolkit for Python [116] built on Xarray. While518 the high-level facilities for distributed computation provided by519 Xarray are very powerful, they are not needed or indeed appropri-520 ate in all contexts. Our benchmarks here illustrate that working at521 the lowest level, by sequentially applying optimised kernels on a522 chunk-by-chunk basis is both straightforward to implement and523 highly performant. Thus, a range of possibilities exist in which524 developers can build utilities using the VCF Zarr specification using525 the appropriate level of abstraction and tool chain on a case-by-case526 basis.527 While Zarr is now widely used across the sciences (see Meth-528 ods) it was originally developed to store genetic variation data from529 the Anopheles gambiae 1000 Genomes Project [117] and is in active530 use in this setting [e.g. 118, 119]. The VCF Zarr specification pre-531 sented here builds on this real-world experience but is still a draft532 proposal that would benefit from wider input across a range of ap-533 plications. With some refinements and sufficient uptake it may534 be suitable for standardisation [2]. The benefits of Zarr are sub-535 stantial, and, in certain settings, worth the cost of retooling away536 from classical file-oriented workflows. For example, the Malar-537 iaGEN Vector Observatory currently uses Zarr to store data from538 whole-genome sequencing of 23,000 Anophelesmosquitoes from539 31 African countries [120]. The data is hosted in Google Cloud Stor-540 age and can be analysed interactively using free cloud computing541 services like Google Colab, enabling the use of data by scientists542 in malaria-endemic countries where access to local computing in-543 frastructure and sufficient network bandwidth to download large544 datasets may be limited. VCF Zarr could similarly reduce the costs545 of analysing large-scale human data, and effectively open access to546 biobanks for a much broader group of researchers than currently547 possible.548

Methods549

Zarr and block-based compression550

In the interest of completeness it is useful to provide a high-level551 overview of Zarr and the technologies that it depends upon. Zarr552 is a specialised format for storing large-scale n-dimensional data553 (arrays). Arrays are split into chunks, which are compressed and554 stored separately. Chunks are addressed by their indexes along555 the dimensions of the array, and the compressed data associated556 with this key. Chunks can be stored in individual files (as we do557 here), but a wide array of different storage backends are supported558 including cloud object stores and NoSQL databases; in principle,559 Zarr can store data in any key-value store. Metadata describing560 the array and its properties is then stored in JSON format along561 with the chunks. The simplicity and transparency of this design562 has substantial advantages over technologies such as HDF [121]563 and NetCDF [122] which are based on complex layouts of multi-564 dimensional data within a single file, and cannot be accessed in565 practice without the corresponding library. (See [37] for further dis-566

cussion of the benefits of Zarr over these monolithic file-oriented 567formats.) In contrast, there are numerous implementations of the 568Zarr specification, ranging from the mature Zarr-Python [123] 569and TensorStore [124] implementations to more experimental ex- 570tensions to packages like GDAL [125], NetCDF [126], N5 [127] and 571xtensor [128] as well as standalone libraries for JavaScript [129], 572Julia [130], Rust [131] and R [132]. 573

Zarr is flexible in allowing different compression codecs and pre- 574compression filters to be specified on a per-array basis. Two key 575technologies often used in conjunction with Zarr are the Blosc meta- 576compressor [90] and Zstandard compression algorithm [89]. Blosc 577is a high-performance compressor optimised for numerical data 578which uses “blocking” [90] to optimise CPU-cache access patterns, 579as well as highly optimised bit and byte shuffle filters. Remarkably, 580on highly compressible datasets, Blosc decompression can be faster 581than memcpy. Blosc is written in C, with APIs for C, Python, Julia, 582Rust and others. Blosc is a “meta-compressor” because it provides 583access to several different compression codecs. The Zstandard codec 584is of particular interest here as it achieves very high compression 585ratios with good decompression speeds (Figs S1, S3). Zstandard is 586also used in several recent VCF compression methods [e.g. 58, 59]. 587

Scientific datasets are increasingly overwhelming the classical 588model of downloading and analysing locally, and are migrating to 589centralised cloud repositories [37, 86]. The combination of Zarr’s 590simple and cloud-friendly storage of data chunks with state-of- 591the-art compression methods has led to Zarr gaining significant 592traction in these settings. Multiple petabyte-scale datasets are now 593stored using Zarr [e.g. 87, 133, 134] or under active consideration for 594migration [85, 135]. The Open GeoSpatial consortium has formally 595recognised Zarr as a community standard [136] and has formed a 596new GeoZarr Standards Working Group to establish a Zarr encoding 597for geospatial data [137]. 598

Zarr has recently been gaining popularity in biological ap- 599plications. The Open Microscopy Environment has developed 600OME-Zarr [138] as one of its “next generation” cloud ready file 601formats [86]. OME-Zarr already has a rich suite of support- 602ing tools [138, 139]. Zarr has also seen recent uptake in single- 603cell single-cell genomics [140, 141] and multimodal spatial omics 604data [142, 143]. Recent additions using Zarr include the application 605of deep learning models to genomic sequence data [144], storage 606and manipulation of large-scale linkage disequilibrium matrices 607[145], and a browser for genetic variation data [146]. 608

The VCF Zarr specification 609

The VCF Zarr specification is a direct mapping from the VCF data 610model to a chunked binary array format using Zarr, and is an evo- 611lution of the Zarr format used in the scikit-allel package [147]. 612VCF Zarr takes advantage of Zarr’s hierarchical structure by repre- 613senting a VCF file as a top-level Zarr group containing Zarr arrays. 614Each VCF field (fixed fields, INFO fields, and FORMAT fields) is 615represented as a separate array in the Zarr hierarchy. Some of the 616structures from the VCF header are also represented as arrays, in- 617cluding contigs, filters, and samples. 618

The specification defines the name, shape, dimension names, 619and data type for each array in the Zarr store. These “logical” prop- 620erties are mandated, in contrast to “physical” Zarr array properties 621such as chunk sizes and compression, which can be freely chosen by 622the implementation. This separation makes it straightforward for 623tools and applications to consume VCF Zarr data since the data has 624a well-defined structure, while allowing implementations enough 625room to optimise chunk sizes and compression according to the 626application’s needs. 627

The specification defines a clear mapping of VCF field names 628(keys) to array names, VCF Number to array shape, and VCF 629Type to array data type. To take one example, consider the 630VCF AD genotype field defined by the following VCF header: 631
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##FORMAT=<ID=AD,Number=A,Type=Integer,Description="Allele632

Depths">. The FORMAT key ID maps to an array name of call_AD633 (FORMAT fields have a call_ prefix, while INFO fields have a634

variant_ prefix; both are followed by the key name). Arrays635 corresponding to FORMAT fields are 3-dimensional with shapes636 that look like (variants, samples, <Number>) in general. In637 this case, the Number A entry indicates that the field has one638 value per alternate allele, which in VCF Zarr is represented as639 the alt_alleles dimension name, so the shape of this array is640

(variants, samples, alt_alleles). The VCF Integer type can be641 represented as any Zarr integer type, and the specification doesn’t642 mandate particular integer widths. The vcf2zarr (see the next643 section) conversion utility chooses the narrowest integer width644 that can represent the data in each field.645

An important aspect of VCF Zarr is that field dimensions are646 global and fixed, and defined as the maximum across all rows. Con-647 tinuing the example above, the third dimension of the array is the648 maximum number of alternate alleles across all variants. For vari-649 ants at which there are less than the maximum number of alter-650 native alleles, the third dimension of the call_AD array is padded651 with a sentinel value (-2 for integers and a specific non-signalling652 NaN for floats). While this is not a problem in practice for datasets653 in which all four bases are observed, it is a substantial issue for654 fields that have a quadratic dependency on the number of alleles655 (Number=G) such as PL. Such fields are already known to cause656 significant problems, and the “local alleles” proposal provides an657 elegant solution [103]. As this approach is on a likely path to stan-658 dardisation [148], we plan to include support in later versions of659 VCF Zarr.660

The VCF Zarr specification can represent anything described661 by BCF (which is somewhat more restrictive than VCF) except for662 two corner cases related to the encoding of missing data. Firstly,663 VCF Zarr does not distinguish between a field that is not present664 and one that is present but contains missing data. For example,665 a variant with an INFO field NS=. is represented in the same way666 in VCF Zarr as an INFO field with no NS key. Secondly, because of667 the use of sentinel values to represent missing and fill values for668 integers (-1 and -2, respectively), a field containing these original669 values cannot be stored. In practice this doesn’t seem to be much670 of an issue (we have not found a real VCF that contains negative671 integers). However, if -1 and -2 need to be stored, a float field can672 be used without issues.673

The VCF Zarr specification is general and can be mapped to file674 formats such as PLINK [15, 16] and BGEN [17] with some minor675 extensions.676

vcf2zarr677

Converting VCF to Zarr at Biobank scale is challenging. One prob-678 lem is to determine the dimension of fields, (i.e., finding the maxi-679 mum number of alternate alleles and the maximum size of Number=.680 fields) which requires a full pass through the data. Another chal-681 lenge is to keep memory usage within reasonable limits: although682 we can view each record in the VCF one-by-one, we must buffer a683 full chunk (10,000 variants is the default in vcf2zarr) in the vari-684 ants dimension for each of the fields to convert to Zarr. For VCFs685 with many FORMAT fields and large numbers of samples this can686 require tens of gigabytes of RAM per worker, making parallelism687 difficult. Reading the VCF multiple times for different fields is pos-688 sible, but would be prohibitively slow for multi-terabyte VCFs.689

The vcf2zarr utility solves this problem by first converting the690 VCF data (which can be split across many files) into an Intermediate691 Columnar Format (ICF). The vcf2zarr explode command takes a692 set of VCFs, and reads through them using cyvcf2 [149], storing693 each field independently in (approximately) fixed-size compressed694 chunks. Large files can be partitioned based on information ex-695 tracted from the CSI or Tabix indexes, and so different parts of a696

file can be converted to ICF in parallel. Once all partitions have com- 697pleted, information about the number of records in each partition 698and chunk of a given field is stored so that the record at a particular 699index can be efficiently retrieved. Summaries such as maximum 700dimension and the minimum and maximum value of each field are 701also maintained, to aid choice of data types later. A set of VCF files 702can be converted to intermediate columnar format in parallel on a 703single machine using the explode command, or can be distributed 704across a cluster using the dexplode-init, dexplode-partition and 705

dexplode-finalise commands. 706

Once the VCF data has been converted to the intermediate colum- 707nar format, it can then be converted to Zarr using the vcf2zarr 708

encode command. By default we choose integer widths based on 709the maximum and minimum values observed during conversion to 710ICF along with reasonable compressor defaults (see next section). 711Default choices can be modified by generating a JSON-formatted 712storage schema, which can be edited and supplied as an argument 713to encode. Encoding a given field (for example, call_AD) involves 714creating a buffer to hold a full variant-chunk of the array in ques- 715tion, and then sequentially filling this buffer with values read from 716ICF and flushing to file. Similar to the explode command, en- 717coding to Zarr can be done in parallel on a single machine using 718the encode command, or can be distributed across a cluster using 719the dencode-init, dencode-partition and dencode-finalise com- 720mands. The distributed commands are fault-tolerant, reporting 721any failed partitions so that they can be retried. 722

Choosing default compressor settings 723

To inform the choice of compression settings across different fields 724in VCF data, we analysed their effect on compression ratio on recent 725high-coverage WGS data from the 1000 Genomes project [150]. We 726began by downloading the first 100,000 lines of the VCF for chro- 727mosome 22 (giving a 1.1GiB compressed VCF) and converted to Zarr 728using vcf2zarr with default settings. We then systematically ex- 729amined the effects of varying chunk sizes and compressor settings 730on the compression ratio for call-level fields. We excluded call_PL 731from this analysis as it requires conversion to a “local alleles” en- 732coding [103] to be efficient, which is planned for implementation 733in a future version of vcf2zarr. 734

Fig S3 shows the effect of varying compression codecs in Blosc. 735The combination of outstanding compression performance and 736competitive decoding speed (Fig S1) makes zstd a good default 737choice. 738

The shuffle parameter in the Blosc meta-compressor [90] can 739result in substantially better compression, albeit at the cost of some- 740what slower decoding (see Fig S1). Fig S4 shows the effect of bit 741shuffle (grouping together bits at the same position across bytes 742before compression), and byte shuffle (grouping together bytes 743at the sample position across words before compression) on com- 744pression ratio. Bit shuffle provides a significant improvement in 745compression for the call_genotype field because the vast major- 746ity of genotype calls will be 0 or 1, and therefore bits 1 to 7 will 747be 0. Thus, grouping these bits together will lead to significantly 748better compression. This strategy also works well when compress- 749ing boolean fields stored as 8 bit integers, where the top 7 bits are 750always 0. In practice, boolean fields stored in this way have very 751similar compression to using a bit-packing pre-compression filter 752(data not shown). Although byte shuffle leads to somewhat better 753compression for call_AD and call_DP, it gives substantially worse 754compression on call_AB than no shuffling. The default in vcf2zarr 755is therefore to use bit shuffle for call_genotype and all boolean 756fields, and to not use byte shuffling on any field. These defaults can 757be easily overruled, however, by outputting and modifying a JSON 758formatted storage schema before encoding to Zarr. 759

Fig S5 shows that chunk size has a weak influence on compres- 760sion ratio for most fields. Increasing sample chunk size slightly 761
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increases compression on call_AB, and has no effect on less com-762 pressible fields. Variant chunk size appears to have almost no effect763 on compression ratio. Interestingly, the choice of chunk size along764 the sample dimension for the genotype matrix does have a signifi-765 cant effect. With six evenly spaced points between 100 and 2504,766 Fig S5A shows a somewhat unpredictable relationship between767 sample chunk size and compression ratio. The more fine-grained768 analysis of Fig S6 shows that three distinct trend lines emerge de-769 pending on the chunk size divisibility, with the modulus (i.e., the770 remainder in the last chunk) also having a minor effect. At greater771 than 40X, compression ratio is high in all cases, and given that geno-772 types contribute relatively little to the total storage of real datasets773 (Table 1) the effect will likely be fairly minor in practice. Thus, we774 do not expect the choice of chunk size to have a significant impact775 on overall storage usage, and so choice may be determined by other776 considerations such as expected data access patterns.777

Benchmarks778

In this section we describe the methodology used for the simulation-779 based benchmarks of Figs 2,3, 4 and 5. The benchmarks use data780 simulated by conditioning on a large pedigree of French-Canadians781 using msprime [151], which have been shown to follow patterns ob-782 served in real data from the same population to a remarkable de-783 gree [88]. We begin by downloading the simulated ancestral recom-784 bination graph [152, 153, 154] for chromosome 21 from Zenodo [155]785 in compressed tszip format. This 552M file contains the simulated786 ancestry and mutations for 1.4 million present-day samples. We787 then subset the full simulation down to 101, 102, . . . , 106 samples788 using ARG simplification [156, 154], storing the subsets in tskit789 format [157]. Note that this procedure captures the growth in the790 number of variants (shown in the top x-axis labels) as we increase791 sample sizes as a natural consequence of population-genetic pro-792 cesses. As a result of simulated mutational processes, most sites793 have one alternate allele, with 7.9% having two and 0.2% having794 three alternate alleles in the 106 samples dataset. We then export the795 variation data from each subset to VCF using tskit vcf subset.ts796

| bgzip > subset.vcf.gz as the starting point for other tools.797

We used bcftools version 1.18, Savvy 2.1.0, Genozip 5.0.26,798 vcf2zarr 0.0.9, and Zarr-Python 2.17.2. All tools used default set-799 tings, unless otherwise stated. All simulation-based benchmarks800 were performed on a dual CPU (Intel Xeon E5-2680 v2) server801 with 256GiB of RAM running Debian GNU/Linux 11. To ensure802 that the true effects of having data distributed over a large num-803 ber of files were reported, benchmarks for Zarr and Savvy were804 performed on a cold disk cache by running echo 3 | sudo tee805

/proc/sys/vm/drop_caches before each run. The I/O subsystem806 used is based on a RAID 5 of 12 SATA hard drives. For the CPU807 time benchmarks we measure the sum of the total user and sys-808 tem times required to execute the full command (as reported by809 GNU time) as well as elapsed wall-clock time. Total CPU time is810 shown as a solid line, with wall-clock time as a dashed line of the811 same colour. In the case of pipelines, where some processing is812 conducted concurrently wall-clock time can be less than total CPU813 (e.g. genozip in Fig 3). When I/0 costs are significant, wall-clock814 time can be greater than total CPU (e.g. Zarr and Savvy in Fig 4).815 Each tool was instructed to use one thread, where the options were816 provided. Where possible in pipelines we use uncompressed BCF817 output (-Ou) to make processing more efficient [148]. We do not818 use BCF output in genozip because it is not supported directly.819

Because bcftools +af-dist requires the AF INFO field and this820 is not kept in sync by bcftools view (although the AC and AN fields821 are), the subset calculation for Fig 4 requires an additional step. The822 resulting pipeline is bcftools view -r REGION -S SAMPLESFILE823

-IOu BCFFILE | bcftools +fill-tags -Ou | bcftools +af-dist.824 Genozip similarly requires a +fill-tags step in the pipeline.825

Availability of source code and requirements 826

The VCF Zarr specification is available on GitHub at https://github. 827

com/sgkit-dev/vcf-zarr-spec/. All source code for running bench- 828marks, analyses and creating plots in this article is available at 829

https://github.com/sgkit-dev/vcf-zarr-publication. Vcf2zarr 830is freely available under the terms of the Apache 2.0 license as part 831of the bio2zarr suite (https://github.com/sgkit-dev/bio2zarr/) 832and can be installed from the Python Package Index (https://pypi. 833

org/project/bio2zarr/). 834
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Figure S1. Genotype decoding performance. Total CPU time required to decode
genotypes into memory using the Zarr-Python and Savvy C++ APIs for the data in
Figure 2. Elapsed time is also reported (dotted line). This corresponds to a maximum
rate of 1.2GiB/s for Zarr (Zstd + BitShuffle), 3.9 GiB/s Zarr (Zstd), and 6.6 GiB/s for
Savvy.
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Figure S2. Compute performance on a large subset of the genotype matrix. Total
CPU time required to run the af-dist calculation for a subset of half of the samples
and 10000 variants from the middle of the matrix for the data in Figure 2. Elapsed
time is also reported (dotted line). Genozip did not run for n > 104 samples because
it does not support a file to specify sample IDs, and the command line was therefore
too long for the shell to execute.
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Figure S3. Effects of Blosc compression codec on compression ratio on call-level
fields in 1000 Genomes data. In all cases compression level=7 was used, with a
variant chunk size of 10,000 and sample chunk size of 1,000. Bit shuffle was used
for call_genotype, and no shuffle used for the other fields.
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Figure S4. Effects of Blosc shuffle settings on compression ratio on call-level fields
in 1000 Genomes data. In all cases the zstd compressor with compression level=7
was used, with a variant chunk size of 10,000 and sample chunk size of 1,000.
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Figure S5. Effects of chunk sizes on compression ratio on call-level fields in 1000
Genomes data. (A) Varying sample chunk size, holding variant chunk size fixed at
10,000. (B) Varying variant chunk size, holding sample chunk size fixed at 1,000. In
all cases the zstd compressor with compression level=7 was used. Bit shuffle was
used for call_genotype, and no shuffle used for the other fields. Values are chosen to
be evenly spaced on a linear scale between 100 and 2504 (the number of samples) in
(A) and evenly spaced between 100 and 96514 on a log scale in (B).
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Figure S6. Effects of sample chunk size on compression ratio on the call_genotype
field in 1000 Genomes data. The same analysis as in Fig S5, except we only consider
call_genotype and we examine all sample chunk sizes from 100 to 256. Distinct trend-
lines emerge for odd, even and multiple-of-four chunk sizes (shown by markers).
The size of the final chunk also has a minor effect (shown by colour).
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