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Abstract
The human cerebral cortex, pivotal for advanced cognitive functions, is composed of six distinct layers and dozens of functionally
specialized areas1,2. The layers and areas are distinguished both molecularly, by diverse neuronal and glial cell subtypes, and structurally,
through intricate spatial organization3,4. While single-cell transcriptomics studies have advanced molecular characterization of human
cortical development, a critical gap exists due to the loss of spatial context during cell dissociation5,6,7,8. Here, we utilized multiplexed
error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based cell segmentation, to examine the
molecular, cellular, and cytoarchitectural development of human fetal cortex with spatially resolved single-cell resolution. Our extensive
spatial atlas, encompassing 16 million single cells, spans eight cortical areas across four time points in the second and third trimesters. We
uncovered an early establishment of the six-layer structure, identifiable in the laminar distribution of excitatory neuronal subtypes by
mid-gestation, long before the emergence of cytoarchitectural layers. Notably, while anterior-posterior gradients of neuronal subtypes
were generally observed in most cortical areas, a striking exception was the sharp molecular border between primary (V1) and secondary
visual cortices (V2) at gestational week 20. Here we discovered an abrupt binary shift in neuronal subtype specification at the earliest
stages, challenging the notion that continuous morphogen gradients dictate mid-gestation cortical arealization6,10. Moreover, integrating
single-nuclei RNA-sequencing and in situ whole transcriptomics revealed an early upregulation of synaptogenesis in V1-specific Layer 4
neurons, suggesting a role of synaptogenesis in this discrete border formation. Collectively, our findings underscore the crucial role of
spatial relationships in determining the molecular specification of cortical layers and areas. This work not only provides a valuable resource
for the field, but also establishes a spatially resolved single-cell analysis paradigm that paves the way for a comprehensive developmental
atlas of the human brain.

Main

Abnormal development of the cerebral cortex is linked to a
wide array of neurological disorders, including autism spec-
trum disorder (ASD), epilepsy, intellectual disability, and vari-
ous neuropsychiatric conditions1. The human neocortex con-
tains a myriad of neuronal and glial cell types, a diversity
that emerges from the interplay of both intrinsic and extrinsic
factors during development3,4,5,11,12. Different areas of the
cortex, such as the frontal lobe and occipital lobe, display signif-
icant variations in neuronal subtype repertoire and cytoarchi-
tecture of the layers, providing the cellular and structural basis
for area-specific circuitry3,5. During early embryonic stages,

polarized secreted factors, called morphogens, induce neural
progenitor cells to acquire preliminary areal identities, creat-
ing the initial blueprint of cortical areas, often referred to as
the "protomap"13,14,15. As development progresses, thalamic
afferents innervating the cortex refine area-specific neuronal
subtype identities through synaptic inputs and localized signal-
ing factors, transforming the relatively homogeneous cortical
sheet, or "protocortex", into highly distinct cortical areas16,17.

Achieving a comprehensive understanding of cortical de-
velopment necessitates simultaneous analysis of molecular and
spatial organization in intact tissues. While in-situ whole-
transcriptome sequencing methods detect mRNA within a
spatial grid, they cannot guarantee single-cell resolution as
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each capture spot is typically occupied by multiple cells18,19.
In contrast, MERFISH provides an imaging-based solution
with sub-micron spatial resolution for precise transcript de-
tection within a pre-designed gene panel9,20,21. In this study,
we employed MERFISH to analyze human fetal cortex sam-
ples across major cortical areas, focusing on the molecular and
cellular specification of cortical layers and areas during the
second and third trimesters (Fig. 1a). We enriched this anal-
ysis with single-nucleus RNA-sequencing (snRNAseq) and
in situ whole-transcriptomics (Visium) on consecutive tissue
sections for a subset of samples. The snRNAseq-augmented
MERFISH analysis then enabled accurate imputation of gene
expression beyond the MERFISH gene panel through envi-
ronmental variational inference (ENVI)22, and imputed results
were validated by ground truth measurement from Visium
(Fig. 1a). Collectively, our integrated approach enables spa-
tially resolved single-cell analysis of the developing human
cortex on an unprecedented scale, revealing critical insights
into the development of cortical layers and areas that were
previously elusive with traditional methodologies.

A spatial atlas of human fetal cortex
We analyzed fetal human tissues from six individuals across
gestational weeks (GW) 15, 20, 22, and 34, covering eight
major cortical areas along the anterior-posterior (A-P) axis
(Fig. 1a, Supplementary Table 1). We curated a panel of
three hundred genes for MERFISH analysis. This panel in-
cluded canonical marker genes for major cell types, alongside
genes selected for their cluster-specific enrichment in a pub-
lished single-cell RNA sequencing (scRNAseq) dataset of the
mid-gestation human fetal cortex (Methods, Supplementary
Table 2, 3)7.

The extraordinarily high cell density in the mid-gestation
human fetal cortex presented a unique challenge for achieving
precise single-cell resolution. To address this, we developed a
custom deep-learning model based on the CellPose 2.0 frame-
work23,24, which performs automated single-cell segmentation
using nucleus staining images co-captured during MERFISH
imaging. After iterative human-in-the-loop training on our
images, the model achieved robust agreement with manual
labeling (Extended Data Fig. 1a-c). The distribution of
cell volume remained consistent across samples, experiments,
and clusters (Extended Data Fig. 1d-f). Following barcode
decoding, detected transcripts were accurately assigned to seg-
mented single cells, and gene expression data from technical
and biological replicates proved to be highly reproducible,
despite some variability in total RNA abundance among dif-
ferent samples, which likely reflects some differences in sample
condition (Extended Data Fig. 1g, h).

In total, we analyzed approximately 16 million single cells
that met quality control criteria, and we integrated all experi-
ments to cluster the cells based on their gene expression fol-
lowing a hierarchical strategy (Fig. 1a). At the first hierarchy,
referred to as H1, eight cell classes were identified, including
radial glia (RG), intermediate progenitor cells (IPC), migrating
excitatory neurons (EN-Mig), intratelencephalic excitatory

neurons (EN-IT), extratelencephalic excitatory neurons (EN-
ET), inhibitory neurons (IN), other glia, and endothelial cells
(ECs) (Fig. 1b). We broadly define all non-IT excitatory
projection neurons, including the corticothalamic (CT) and
pyramidal tract (PT) neurons as EN-ETs25. At the second
hierarchy (H2), these eight H1 cell classes were divided into
33 cell types, which were then subdivided into 114 subtypes at
the third hierarchy (H3), with 58 of these subtypes being EN
subtypes (Fig. 1b, Supplementary Table 4). Our sampling
strategy ensured robust representations of different cortical
areas and gestational ages, with cell type proportions remain-
ing consistent across samples from the same gestational age
(Extended Data Fig. 1i-k).

Clusters across all three hierarchical levels revealed distinct
spatial distribution patterns. The localization of H2 cell types
delineated the apical-basal laminar structures, including the
ventricular zone (VZ), inner and outer subventricular zones
(iSVZ and oSVZ), intermediate zone (IZ), subplate (SP), cor-
tical plate (CP), and marginal zone (MZ) (Fig. 1d, Extended
Data Fig 1l). Clusters exhibited dynamic marker expression,
and cell label transfer analysis showed close alignment to the
fetal human cortex scRNAseq datasets (Fig. 1e, f, Extended
Data Fig. 2a, b)7. For quantitative analysis of cell localization,
we manually annotated each sample based on cytoarchitecture,
creating a framework within a fan-shaped region that captured
a geometrically uniform cortical area (Fig. 1g). Referencing
the Allen Reference Atlas for GW15 and GW2126, we divided
this region into major laminar structures based on the local-
ization of H2 cell types (Methods). Within this framework,
we assigned each cell to a structure and calculated its relative
height (RH) from the apical to basal surfaces. The RH distri-
butions for H2 cell types were consistent across experiments
and cortical areas, accurately reflecting laminar structures (Fig.
1h, Extended Data Fig. 2c).

Surprisingly, we discovered a significant concentration of
inhibitory neurons (IN) and immature IN precursors (INP)
in the VZ of the dorsal forebrain during GW20-22, a phe-
nomenon not seen at GW15 (Fig. 1d, h, Extended Data Fig.
2c, 3a, b). By GW20, these IN populations outnumbered both
RG and IPC within the VZ across most cortical areas, except
in the VZ of occipital cortex where INs were notably sparse
(Extended Data Fig. 3b, c). The degree of VZ localization
varied between IN subtypes, but VZ-enriched subtypes in-
cluded those with transcriptional signatures resembling each of
the three ganglionic eminence (GE) structures: lateral (LGE),
caudal (CGE), and medial (MGE) (Extended Data Fig. 3d, e).
MERFISH and Visium analyses showed high expression of IN
marker genes in the VZ, including those traditionally associ-
ated with olfactory bulb interneurons such as CALB2, PBX3,
TSHZ1 (Extended Data Fig. 3f-j)27. Although our analy-
sis did not trace the lineage of these dorsal VZ-concentrated
INs, their unexpected localization raises the possibility that,
contrary to being ventrally born and migrating into the cor-
tex, they could include some dorsal-born INs, aligning with
findings from several recent studies28,29,30,31.
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Fig. 1: A spatially resolved single-cell atlas of human fetal cortical development.
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Fig. 1: A spatially resolved single-cell atlas of human fetal cortical development. a, Schematics of sampling and workflow. PFC; prefrontal cortex; PMC,
premotor cortex; M1, primary motor cortex; S1, primary somatosensory cortex; Par, parietal cortex; Occi, occipital cortex; Temp, temporal cortex; Cing, cingulate
cortex; Hippo, hippocampus; V1, primary visual cortex; V2, secondary visual cortex. b, c, Uniform Manifold Approximation and Projection (UMAP) of single cells
analyzed by MERFISH, colored by H1 cell classes (b), and by H2 cell types (c). RG, radial glia; IPC, intermediate progenitor cells; EN-Mig, migrating excitatory
neurons; EN-IT, intratelencephalic excitatory neurons; EN-ET, extratelencephalic excitatory neurons; IN, inhibitory neurons; EC, endothelial cells; oRG, outer
radial glia; tRC, truncated radial glia; vRG, ventricular radial glia; INP, inhibitory neuron progenitors; CGE, caudal ganglionic eminence; MGE, medial ganglionic
eminence; OPC, oligodendrocyte precursor cells. d, Spatial maps of H2 cell types from major cortical areas across gestational week (GW) 15 to 34. MZ, marginal
zone; CP, cortical plate; SP, subplate; IZ, intermediate zone; oSVZ, outer subventricular zone; iSVZ, inner subventricular zone; VZ, ventricular zone. Scale bars,
500 µm. e, Dot plot showing expression of marker genes for H2 cell types. f, Cell type correspondence heatmap shows the fraction of cells from MERFISH H2
clusters that associate to clusters from published mid-gestation scRNA-seq dataset7. g, Schematics illustrating the annotated fan-shaped cortical area used
for relative height (RH) and cortical depth (CD) calculation. h, Violin plots showing the laminar distribution of H2 cell types from the apical to basal surface
quantified by the RH. The width of the violin for each cell type is normalized to the maximum value. i, Violin plots showing CD distribution of H3 EN subtypes
within the CP. Dash lines represent the borders between cortical layers (L2-L6) calculated based on the CD distribution of layer-defining clusters. Clusters with
fewer than 50 cells within the annotated region are represented by dots for individual cells instead of a violin.

Progressive formation of cortical layers
The establishment of cortical layer structures during human fe-
tal development has long been elusive due to the lack of cytoar-
chitectural features and validated molecular markers.26,32,33,34

In the adult cerebral cortex, a clear six-layer structure is ob-
served, with neurons arranged into morphologically distinct
layers35. However, such cytoarchitectural distinctions were
not present between GW15 and 22, becoming only discernable
at GW34 (Extended Data Fig. 4a), consistent with previous
observations36. At GW34, the cytoarchitecture of cortical lay-
ers in the CP was comparable to that of the postnatal human
cortex, featuring a granule layer (Layer 4) of densely packed
ENs, flanked by a less dense Layer 3 and a more compact Layer
2 above, and Layers 5 and 6 below (Extended Data Fig. 4a).

Our MERFISH analysis revealed that most EN subtypes
showed layer-dependent distribution within the CP and the
SP, resulting in detailed layer divisions that evolved over ges-
tational weeks. To precisely analyze the cortical layer distribu-
tion of H3 EN subtypes, we measured their relative position
within the CP as cortical depth (CD) (Fig. 1g, Methods). For
individual H3 EN subtypes, laminar distribution was remark-
ably stable across cortical areas and gestational ages, with grad-
ual refinement in layer specificity over time, particularly evi-
dent when comparing GW34 to earlier time points (Extended
Data Fig. 4b). While the degree of laminar dispersion varied
between clusters, we identified a subset of narrowly dispersed
subtypes exhibiting distribution patterns that aligned with one
of the six morphologically defined cortical layers at GW34
(Fig. 2a, b, Extended Data Fig. 4f ). Based on the CD distri-
bution of these clusters, we defined the border between cortical
layers quantitatively for each annotated region, enabling the
assignment of individual cells to specific cortical layers accord-
ing to their CD values (Fig. 2a, Methods). EN clusters at H2
and H3 were annotated for their predominant localization in
one or two cortical layers at GW34 (Supplementary Table 4),
a classification supported by cell type correspondence analysis
with datasets from the human adult cortex (Extended Data
Fig. 4c)37.

In striking contrast to conventional characterizations, the
distribution of layer-defining H3 EN subtypes clearly delin-
eated all six cortical layers at GW22, despite the absence of
morphological features (Fig. 2c). Cortical layers evolved pro-
gressively over time, with Layers 4-6 visualized at GW15

and Layers 3-6 at GW20, consistent with the inside-out se-
quence of cortical layer formation and proposed corticogenesis
timeline (Fig. 2d, e, Extended Data Fig 4d-f)2,10,25,38. We
quantified the relative proportions of cortical layers across var-
ious areas and gestational ages (Fig. 2f ). Comparison between
the prefrontal cortex (PFC) and the secondary visual cortex
(V2) at GW22 highlighted distinct layer proportions, with
the PFC exhibiting relatively larger Layers 2 and 3, while V2
displayed a larger Layer 4 (Fig. 2c). This alignment with the
known relative layer proportions in the adult human cortex
demonstrated that the mid-gestation blueprint of cortical layer
thickness is predictive of developmental outcomes3.

Contrary to the stability of their laminar localization, the
relative abundance of EN subtypes varied dynamically across
areas and ages. For example, cluster EN-ET-L6-P, the most
abundant subtype in Layer 6 of V2, was sparse in the PFC;
while EN-IT-L3-A, the most abundant subtype in Layer 3
of PFC, was dramatically outnumbered by EN-IT-L3/4-P in
V2 (Fig. 2g-i). At GW15, two clusters of EN-ITs (EN-IT-
L4/5-early and EN-IT-L3/4-early) showed broad distribution
across the CP and outnumbered other EN-IT subtypes with
clearer layer specificity, but became mostly absent in GW20-
34 (Fig. 2h, i). These two clusters also lacked unique marker
gene expression (Extended Data Fig. 2a), indicating that the
spatial organization of EN subtypes co-developed with their
specified molecular identities.

The distribution of EN-ET subtypes was restricted to
Layer 5 or Layer 6 with minimal crossing of the Layer 4-5 bor-
der, but the spatial complexity of EN-IT distribution surpassed
the conventional six-layer definition (Fig. 2g-i). Most EN-IT
subtypes spanned multiple layers and exhibited bell-shaped
distribution curves irrespective of layer boundaries, resulting
in extensive laminar intermixing (Fig. 2h, i, Extended Data
Fig 3-f). This complexity was retained even in GW34, de-
spite the emergence of distinct cytoarchitectures (Fig. 2b).
The finding that different cortical layers do not contain mutu-
ally exclusive subtype repertoires mirrors observations in the
adult cortex, implying that this developmental feature persists
into adulthood37. Additionally, some EN subtypes showed
enrichment within narrower regions inside a cortical layer.
For example, EN-IT-L6 subtypes were more enriched in the
upper portion of Layer 6, while EN-ET-SP subclusters were
enriched in the lower portion of Layer 6, potentially providing

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.05.597673doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.05.597673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Xuyu Qian et al. 5

Fig. 2: Progressive formation and specification of cortical layers.
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Fig. 2: Progressive formation and specification of cortical layers. a, Spatial map (left) shows the cortical layers 2 to 6 are defined by the organization of
selected EN subtypes in the prefrontal cortex (PFC) at GW34; and ridgeline plot (right) shows the cortical depth (CD) distribution of layer-defining EN subtypes.
The height of the ridgeline represents cell density. Dash lines represent the border between layers, calculated based on the CD distribution of layer-defining EN
subtypes. b, Ridgeline plots reveal further spatial complexity among EN-ETs, deep layer (Layers 5&6) EN-IT, and upper layer (Layers 2-4) EN-ITs in the PFC at
GW34. c, Spatial maps and ridgeline plots show the six-layer structure can be visualized and quantitatively defined by the distribution of layer-defining EN
subtypes at GW22, despite lack of cytoarchitectural differences between layers. d, e, Spatial maps and ridgeline plots showing the cortical layers in the PFC
at GW15 and GW20. f, Histogram showing the relative proportion of each cortical layer at GW15 to 34 in the PFC, parietal cortex (Par), and occipital cortex
(Occi). Average is taken for replicate experiments; error bars represent standard deviation when applicable. g, h, i, Spatial maps (left) and ridgeline plots
(right) showing the distribution of EN-ETs (g), deep layer EN-ITs (h), and upper layer EN-ITs (i) in the PFC and V2 at GW22. While many clusters exhibited
area-dependent abundance, their laminar localization is highly consistent between PFC and V2. j, Violin plots showing the laminar distribution of H3 inhibitory
neuron (IN) subtypes within the CP of PFC at GW22 and GW34. Scale bars, 500 µm.

the blueprint for distinct Layers 6a and 6b (Extended Data
Fig. 4b). Between GW34 and earlier gestational ages, several
EN-ET-SP clusters displayed an upward shift into the upper
Layer 6, supporting the existence of a secondary translocation
of SP neurons after their initial migration after neurogenesis
reported in a prior study39.

We extended our analysis to quantify the CD distribu-
tion of IN subtypes. Cortical layer specificity was not evident
during GW15-22, suggesting that layer-dependent IN or-
ganization had not been established at mid-gestation (Fig.
2j). Nevertheless, some layer specificity began to emerge at
GW34, particularly among IN-SSTs, which primarily local-
ized in Layers 2&3, consistent with mouse and human adult
cortices37.

Dynamic laminar gene expression
Because canonical marker genes identified in the adult hu-
man cortex or in mice exhibit reduced specificity for both
laminar positioning and neuronal subtypes in mid-gestation
fetal cortex, we sought to identify more applicable markers7,32.
Building on our CD framework, we assessed the expression
patterns of marker genes validated in the adult human cor-
tex and observed significant divergence in their expression
patterns40 (Fig. 3a). Notably, genes associated with deep
layer EN-ETs, such as B3GALT2, ETV1, NR4A2, SYT6,
TLE4, and TOX, showed greater conservation of expression
patterns than those for EN-ITs. Seeking to identify cortical
layer markers specific to the human fetal cortex, we identi-
fied genes with layer-dependent enrichment and quantified
their laminar expression within the CP for each experiment
(Fig. 3b, Extended Data Fig. 5a). Immunostaining for se-
lected markers using validated antibodies showed concordance
of mRNA localization detected by MERFISH with protein
expression (Extended Data Fig. 5b). While many genes ex-
hibited laminar-restricted expression, their span across multiple
layers suggested the improbability of pinpointing a singular
gene as a definitive marker for any specific cortical layer at
mid-gestation. Instead, combinations of several genes delineate
cortical layers more effectively.

Remarkably, some genes displayed laminar expression pat-
terns that varied significantly with gestational age and cor-
tical area. For example, CBLN2, a synaptic organizer with
a hominin-specific variant in a retinoid acid responsive en-
hancer41, was specifically expressed at relatively low levels in
both EN-ITs and EN-ETs in Layer 6 across all cortical areas

from GW15 to 34. Additionally, CBLN2 displayed strong
frontal enrichment in Layers 2&3 at GW22 and GW34, corre-
lating with its role in synaptic spine development (Fig. 3c)41.
Consequently, CBLN2 could serve as a Layer 6 marker in
parietal, occipital, and temporal cortices, and as a Layer 2&3
marker in the frontal cortex post-GW20. Similarly, CYP26A1,
a retinoic acid metabolizing enzyme13, manifested frontal-
specific expression in Layers 2&3, while remaining highly ex-
pressed in EN-ETs across Layer 6 and the SP in all areas (Fig.
3d). Moreover, a group of genes demonstrated pronounced
frontal enrichment in Layers 2&3, but their peak expression
timing varied: CPNE8 maintained high expression through-
out GW20-34; B3GNT2 had peak expression at GW20, with
SRM, STK32B, and VSTM2L following at GW22, and PENK
peaking at GW34. This suggested the frontal specification
of Layers 2&3 underwent temporally dynamic transcriptional
changes (Fig. 3e). For visualization and comparison, we com-
piled the expression patterns of all genes within our MERFISH
panel into a structured heatmap, serving as a compendium
across cortical areas, layers, and developmental stages (Source
Data Fig. 3).

Areal specification of neuronal subtypes
Bulk and single-cell RNA sequencing has unveiled gene expres-
sion patterns that vary by cortical area in the fetal human cor-
tex, often manifesting as gradients along the anterior-posterior
(A-P) or medial-lateral (M-L) axes6,7,10,33. Our methodology
enabled precise analysis of the area-dependent specification of
neuronal subtypes within each cortical layer. While H2 EN
cell types exhibited clear layer-dependent localization, their
distributions remained largely uniform along the A-P axis
(Extended Data Fig. 1k, l). In contrast, at the H3 subtype
level, 7/25 EN-ET H3 subtypes and 15/24 EN-IT subtypes
displayed gradient-like area enrichment, albeit modestly at
GW15 (Extended Data Fig. 5c). Interestingly, the temporal
(Temp) and primary visual cortices (V1) were unique in con-
taining exclusive EN-IT subtypes absent in other cortical areas.
Unsupervised clustering by EN subtype compositions show-
cased the distinction between major cortical areas at GW20
and 22, presenting an A-P spectrum on the UMAP projection
(Fig. 3f). In contrast to post-migratory ENs (EN-IT and
EN-ET), subtypes of migrating EN (EN-Mig), RGs, and IPCs
displayed no discernible areal preference even in the Temp
and V1 (Extended Data Fig. 5c, d).

To elucidate the genes driving cortical arealization among
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Fig. 3: Laminar and areal dynamic gene expression underlies neuronal specification.
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Fig. 3: Laminar and areal dynamic gene expression underlies neuronal specification. a, Table compares the laminar expression patterns of validated
layer marker genes between the adult human PFC40 and mid-gestation PFC. Genes that show conserved laminar expression pattern are colored in green,
otherwise in red. b, Violin plots show the laminar expression patterns of layer-dependent genes within the CP of the PFC and V2 at GW22. Width of the violins
represent the cumulative normalized expression in the cells located at a cortical depth (CD). Genes that are enriched in different layers between PFC and V2
are highlighted in red. c, Summary expression heatmap and z-score spatial maps showing the spatial-temporal expression pattern of CBLN2. The summary
heatmap shows different cortical layers and laminar structures from top to bottom as rows, and cortical areas and gestational ages as columns, organized
from anterior to posterior and from young to old. Average is taken for replicate samples from the same area and GW. T, temporal cortex. Scale bar, 500 µm. d,
Summary expression heatmap and z-score spatial maps for CYP26A1. e, Summary expression heatmaps and z-score spatial maps of genes identified with
Layers 2&3 enrichment in the PFC. f, UMAP plot of EN subtype composition in the CP shows an anterior-posterior spectrum for GW20-22. g, Dot plots and
histograms of fold change for top differentially expressed genes (DEGs) between pairs of anterior- and posterior-enriched EN subtypes for each cortical layer at
GW22. Genes that appear repeatedly are highlighted in red (for anterior-enriched) or in blue (for posterior-enriched). h, Spatial graphs showing the laminar
and areal distribution of pairs of anterior- and posterior-enriched EN subtypes. i, Dot plot showing the expression of top areally-enriched genes at GW20 and 22
in all post-migratory EN (EN-IT and EN-ET cell classes). j, Schematic summary of the combinations of 5 marker genes that enable the approximation of cortical
layers of different cortical areas at GW20 to 22.

transcriptionally and spatially related EN subtypes, we selected
5 pairs of subtypes with opposing A-P distributions at GW20
and 22, serving as representatives of areal specification in 5
categories of neurons: Layers 2&3, Layer 4, deep layer EN-
IT, deep layer EN-ET, and SP EN-ET (Fig. 3g, h). The
opposing clusters were transcriptionally similar, leading us
to hypothesize that the differentially expressed genes (DEGs)
within each pair were decisive in areal differentiation. The lists
of top anteriorly and posteriorly enriched DEGs were notably
distinct across the five categories, indicating that arealization
was not orchestrated by a uniform transcriptional program
across the entire CP, but was instead regulated in a layer- and
subtype-specific manner (Fig. 3g, Supplementary Table
5). However, several genes with strong anterior enrichment,
such as CBLN2, CPNE8, VSTML2, and STK32B, frequently
emerged as top DEGs in multiple categories (Fig. 3e). In-
terestingly, CBLN2 was among the top anterior DEGs for
both upper layer EN-ITs and deep layer EN-ETs, but not
for deep layer EN-ITs, suggesting its role in arealization is
not limited to one neuronal class (Fig. 3g). Upon examin-
ing all significant DEGs (adjusted p-value <0.05 and Log fold
change > 0.5), we found 4 genes consistently enriched in ante-
rior regions (STK32B, HCRTR2, PCDH17, and SERPINI1)
and 8 in posterior regions (FOXP1, KITLG, KLHL1, MET,
NPY, OPCML, RORB, and SOX9) across all 5 neuronal cat-
egories (Extended Data Fig. 6a). These common DEGs
also manifested strong anterior or posterior enrichment in the
post-migratory EN population as a whole, suggesting their
potential as overarching markers for cortical arealization (Fig.
3i). Their areal enrichment patterns varied in other cell classes,
limited among RG, IPC, INs, but notably consistent within
EN-Mig (Extended Data Fig. 6b). This observation indicates
that the transcriptional mechanisms underpinning arealization
exhibit considerable dynamism along the differentiation tra-
jectory, with ENs acquiring their areal identities both during
and subsequent to radial migration.

Drawing from our comprehensive spatiotemporal gene
expression data, we developed context-aware marker sets to
facilitate the approximated visualization of mid-gestation cor-
tical layers using conventional methods, such as multichannel
in situ hybridization (Fig. 3j). During GW20-22, FOXP2
and TLE4 labeled Layer 6 and SP respectively in all cortical
areas. ETV1 marked Layer 5 in PFC, PMC, M1, V2 and

Temp, while FOXP1 and TOX marked Layer 5 in Par and V1,
respectively. Markers for Layers 2, 3 and 4 showed increasing
areal differences, including CBLN2, CUX2, CUX1, TMOD1,
RORB, PTK2B, MET and NPY (Extended Data Fig. 6c, d).
It is important to recognize that while these genes’ expressions
peaked within their assigned layers, they were not confined
exclusively to those layers, but we can leverage the overlapping
patterns of these genes to distinguish layers.

Neuronal subtype diversification over time
To analyze EN subtype specification over time, we devised
an alternative approach, by clustering cells from each ges-
tational age separately instead of combining them. Utiliz-
ing the single-cell significant hierarchical clustering (scSHC)
pipeline42, we determined the number of EN subclusters that
achieved transcriptional differences above a fixed statistical
significance threshold between clusters (Methods). To differ-
entiate these clusters from those identified through integrated
analysis, an apostrophe (’) precedes the names of scSHC clus-
ters. This analysis involved down-sampling to 500,000 single
cells for each of the four gestational time points to negate any
bias arising from varying cell counts. Within EN-ET and
EN-IT cell classes, the number of distinct scSHC clusters in-
creased over gestational time, as the analysis yielded 16, 39,
40 and 62 subclusters at GW15, 20, 22, and 34, respectively
(Supplementary Table 6).

To infer the lineage relationships between EN-IT and
EN-ET subtypes from different gestational ages, we applied
a deep-learning cell type classifier to predict the likely ori-
gin of clusters at the earlier time (Methods)43. The resulting
correspondence flows showed high stability of layer identities
across subtypes from different ages, and uncovered contin-
ued diversification particularly dramatic between GW22 and
GW34, aligning with the predicted role of the third trimester
in neuronal subtype specification (Fig. 4a, b)44. Deep layer
EN-ET subtypes demonstrated more stability than EN-ITs
during mid-gestation but also underwent more extensive di-
versification from GW22 to GW34, likely associated to their
earlier birthdate and more advanced maturity (Extended Data
Fig. 7a). For instance,’EN-ET-L6-2-Cluster1 at GW15 cor-
responded strongly with a single cluster at GW20 and GW22,
before branching into nine Layer 6b EN-ET clusters by GW34
(Fig. 4c, Extended Data Fig. 7b). The third trimester specifi-
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cation also led to the refinement of layer specificity, exemplified
by the ’EN-IT-L4/5-1-Cluster2 from GW22 differentiating
into five Layer 5 subtypes and three Layer 4 subtypes by GW34
(Fig. 4d).

Analyzing transcriptional trajectories from GW15 to GW34,
we analyzed the dynamics of EN transcriptional specification
by identifying genes up- or down-regulated across gestational
ages within EN subtypes grouped by correspondence flows
(Fig. 4e). Notably, among the top DEGs, those associated with
the general functional maturation of neurons, like ATP2B4
(ATPase plasma membrane Ca2+ transporting 4) and VAT1L
(vesicle amine transport protein 1 homolog), showed syn-
chronous regulation across all layers (Fig. 4f). In contrast,
genes exhibiting upregulation in specific groups while being
downregulated in others were often specific neurotransmitter
receptors such as GABRA5 (GABA receptor subunit alpha5)
and GLRA2 (glycine receptor alpha2), hinting at transcrip-
tional changes stemming from differential functional specifica-
tion (Fig. 4f, Extended Data Fig. 7c).

To pinpoint the genes driving subtype specification, we
focused on those with the highest variance between EN sub-
types within the same group and gestational age (Fig. 4g).
Many high variance genes demonstrated specific laminar and
areal enrichment (Extended Data Fig. 6a, c, 7d). For exam-
ple, CCN2 (or CTGF), emerged as one of the genes with the
highest variance among EN-ETs in SP and Layer 6b specif-
ically at GW34 (Fig. 4h). Given CCN2’s known role in
differentiating between upright pyramidal neurons (PN) and
other PNs in Layer 6b, its upregulation in certain EN subtypes
could indicate the commencement of PN subtype specifica-
tion45. Conversely, SEMA3E (semaphorin 3E), known for
its involvement in specifying a subset of L5 PNs projecting
to higher-order thalamic and pontine nuclei46, showed high
variance among EN-ET-L5/6 subtypes as early as GW22 (Fig.
4i). This suggests the specification process for these Layer 5
neurons might occur between GW20-22, preceding Layer
6b PN specification, despite their later birthdate. These exam-
ples underscore that subtype specification follows independent,
rather than synchronized, timelines.

A precociously sharp transcriptional border between V1 and
V2
To elucidate the precise differentiation of adjacent cortical
areas, we focused on the primary (V1) and secondary visual
cortices (V2), with the calcarine sulcus serving as a morpho-
logical landmark for their location. While V1 and V2 in the
adult cortex are distinguished by a pronounced morpholog-
ical border3,47, they appeared completely homogeneous in
mid-gestation, as neurons were densely packed without cy-
toarchitectural distinctions (Fig. 5a, Extended Data Fig. 8a).
Strikingly, MERFISH analysis as early as gestational week 20
identified a clear border between V1 and V2, defined by four
opposing pairs of scSHC subtypes, two EN-IT pairs in Layers
3&4 and two EN-ET pairs in Layers 5&6 and SP (Fig. 5b, c).
Their boundary featured a swift transition and was most abrupt
in Layers 3&4 (Fig. 5d). The two subtypes within each pair

(for example, ’EN-IT-L3-c1 and -c4) were derived from the
same H2 cell type and showed identical laminar distribution
(Fig. 5c, e). In contrast, cell subtype localization remained
uniform in the IZ, oSVZ, iSVZ, and VZ, indicating that V1
and V2 identities are distinctly specified in post-migratory
ENs, but not in migrating ENs, IPCs, RGs (Extended Data
Fig. 8b, c). V1-specific EN subtypes were absent in all other
areas, unlike V2-enriched subtypes, which were broadly dis-
tributed with some presence even in the anterior areas (Fig. 5f,
Extended Data Fig. 8d). This pattern showcased a unique,
localized program for neuronal specification within V1, a find-
ing consistently replicated across multiple experiments and
independent samples (Extended Data Fig. 8e and f).

A spatial transition of gene expression underlies the neu-
ronal subtype border (Fig. 5g). While most DEGs showed ex-
pression level changes within 1-2 mm of the border, NPY par-
ticularly stood out by displaying a pronounced binary switch,
with a dramatic enrichment observed in Layers 3&4 of V1
(Fig. 5g). Other V1-enriched genes included IGFBPL1 in
Layers 3&4, TSHZ3 in Layers 5&6, and GABRA5 in SP, while
V2-enriched genes included NEFM and ETV1 in Layers 3&4,
UNC5C in Layers 5&6, and PDE1A in SP (Fig. 5g). Differ-
ential gene expression analysis within each pair of V1- and
V2-clusters revealed that few DEGs were universally shared
among all four pairs (5 for V1, 4 for V2), but more DEGs
were shared within EN-IT and EN-ET, suggesting the V1-
specification of EN-IT and EN-ET may take place via separate
programs (Fig. 5h, Supplementary Table 7). The absence of
a neuronal subtype border at GW15 suggested that V1 spec-
ification occurred between GW15 to 20, likely concurrent
with the formation of Layers 3&4 in the CP (Extended Data
Fig. 9a). Nevertheless, some V1- and V2-enriched genes in
deep layers at GW20, such as TSHZ3 and GABRA5, showed
conserved differential expression patterns in the corresponding
putative areas at GW15 (Extended Data Fig. 9b, c).

To expand our analysis of the V1-V2 border to the whole
transcriptome, we conducted Visium and snRNAseq analysis
on consecutive sections analyzed by MERFISH. At 55µm-
diameter spatial resolution, Visium analysis confirmed a clear
border between V1 and V2 across all cortical layers and SP,
whereas no border was observed in the IZ, oSVZ, iSVZ, and
VZ (Fig. 5i). Such distinction was supported by the UMAP
pattern, demonstrating two parallel trajectories for V1 and V2
that bifurcated at the SP and beyond (Fig. 5i). The spatial
gene expression patterns measured in Visium precisely repli-
cated MERFISH (Extended Data Fig. 10a, b). Comparison
between matching V1 and V2 spots revealed additional genes
that exhibited pronounced changes at the border (Fig. 5j, Ex-
tended Data Fig. 10c). Among them, ABI3BP and PDZRN4
showed V1-exclusive expression pattern with a binary switch
at the border of Layers 3&4, akin to that of NPY, while V2-
enriched genes such as FLRT2 and IL1RAP demonstrated
more gradual transitions over a short distance (Fig. 5j).

To expand the gene content of the MERFISH cells, snR-
NAseq analysis of 91,898 cells from the same samples was
integrated with the MERFISH cells to impute expression of
genes outside of the MERFISH panel using environmental vari-
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Fig. 4: Diversification of EN subtypes over time show continued post-mitotic fate specification.
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Fig. 4: Diversification of EN subtypes over time show continued post-mitotic fate specification. a, b, Sankey diagram showing the correspondence between
EN-ET (a) and EN-IT (b) subclusters from different gestational time points. Clustering was performed separately for each gestational age and the number of
subclusters was determined single cell significant hierarchical clustering (scSHC).42 Nodes represent EN subtypes from this alternative clustering strategy. To
differentiate these clusters from those identified through integrated analysis, an apostrophe (’) prefixes the names of scSHC clusters. Thickness of edges
represents the fraction of cells showing with correspondence, and edges with <0.1 fraction were hidden. Nodes and edges are colored based on the most
enriched layer identity of the EN subtype. c, Spatial graphs for an inferred lineage (bolded in a) of Layer 6/SP EN-ETs across GW15 to GW34 show a conserved
stream from GW15 to 22 before dramatic diversification at GW34. Scale bars, 500 µm. d, Spatial graphs showing a GW22 cluster EN-ITs spamming both Layers 4
and 5 specifying into seven GW34 clusters with refined layer specificity in either Layer 4 or 5 (bolded in b). Scale bars, 500 µm. e, Dot plots showing the top
genes that are down- or up-regulated with gestational age among EN subtypes from each layer-based group. The genes that are downregulated over time
in some categories but upregulated in others are highlighted in red. f, Curve plots show the change of relative expression over time in different groups for
selected genes. g, Heatmap showing the genes with high expression variance among EN subtypes within the same group and gestational age. h, i, Dot plots
showing the expression of high variance genes among EN subtypes in EN-ET-SP/L6b group at GW34 and EN-ET-L5/6 group at GW22.

ational inference (ENVI) (Extended Data Fig. 10d)22. The
imputed spatial expression patterns of additional V1-V2 border
markers, such as ABI3BP and PDZRN4, precisely matched
Visium results, showcasing the sharp Layers 3&4 border that
coincided with the NPY expression (Fig. 5k). Utilizing the
imputation results, we expanded our MERFISH analysis to in-
clude the top 1000 highly variable genes from snRNAseq, and
constructed a constellation plot to analyze the nearest neighbor
connection between cell type nodes of PFC, V1, and V2 (Fig.
5l, Methods). Nodes representing RG, IPC, and EN-Mig
between V1 and V2 were connected strongly (connection
fraction >0.2) but not with PFC, suggesting that the transcrip-
tional distinction between V1 and V2, unlike A-P distinction,
was not well-established from the progenitor stage. Notably,
EN nodes of V1 and V2 were strongly connected in SP and
Layers 5&6, but not in Layers 3&4 (Fig. 5l, Supplementary
Table 8). The transcriptional proximity between V1 and V2
throughout the differentiation trajectory, despite the sharp
molecular border, suggested a model wherein V1-specific EN
subtypes shared a developmental lineage with V2-enriched EN
subtypes but were induced to diverge due to external factors
post-migration.

To uncover potential mechanisms driving V1 specification,
we conducted cell label transfer analysis, revealing that the EN-
IT-L4-V1 cluster from snRNAseq strongly and exclusively
corresponded to V1-specific Layer 3&4 subtypes from MER-
FISH, while the EN-IT-UL-2 cluster corresponded to those
enriched in V2 (Extended Data Fig. 10e). The exclusivity of
V1-specific subtype was validated by the absence of EN-IT-
L4-V1 cells in the PFC sample, and DEGs between the two
clusters were highly consistent with MERFISH and Visium
results (Extended Data Fig. 10f-i, Supplementary Table 9).
Gene ontology (GO) analysis of V1-enriched DEGs revealed
cell adhesion and synapse assembly as the most associated bi-
ological processes, with most associated cellular components
being synapse-related membrane components (Fig. 5m, Ex-
tended Data Fig. 10j). These GO terms were not significant
for V2-enriched DEGs, suggesting that V1-specific Layers
3&4 EN-IT subtypes underwent unique aspects of synaptoge-
nesis at this early stage of development. This observation was
corroborated by ligand-receptor cell-cell communication anal-
ysis using CellChat49, which highlighted neurexin-neuroligin
(NRXN-NLGN) signaling, fundamental to synapse forma-
tion50, as the most uniquely enriched signal received by EN-
IT-L4-V1 (Fig. 5n). While other upper layer EN-IT clusters

also received NRXN signal from IN sources, EN-IT-L4-V1
was unique in also receiving strong NRXN signals from EN
sources (Fig. 5o, Extended Data Fig. 10k). However, as our
data only included cells in the cerebral cortex, further investi-
gation is required to determine whether external sources of
NRXN-NLGN, such as thalamic neurons projecting to V1,
contribute to the heightened synaptogenesis in V1. Recent
studies on postnatal mouse V1 identifies critical roles of visual
inputs during the postnatal "critical period (P21-38)" in es-
tablishing V1-specific neuronal identities, marked by CDH13
down-regulation and TRPC6 up-regulation in Layers 2&351.
Our GW20 V1 data exhibited expression patterns of CDH13
and TRPC6 that aligned with mouse P28 but not with earlier
times (Extended Data Fig. 10l). Notably, lower CDH13
and higher TRPC6 levels observed in V1 compared to V2 at
GW20 suggested V1-specific CDH13 downregulation and
TRPC6 upregulation might accompany V1-V2 fate diver-
gence. This implies that thalamic afferents may contribute to
human V1-V2 differentiation at a much earlier developmental
stage than previously predicted4,10.

Discussion
In this study, we employed MERFISH to create the most exten-
sive spatially resolved single-cell atlas of the developing human
cerebral cortex to date. To facilitate broad accessibility of our
data, we have built an interactive web-based browser for our
spatial atlas, which will become publicly available upon publi-
cation of the study. Our study emphasizes the synergistic anal-
ysis of molecular and spatial data, yielding insights previously
unattainable through droplet-based single-cell methodologies.
To achieve systematic integration of spatial information with
molecular profiling, we developed a novel framework that
converts tissue cytoarchitecture into measurable parameters.
This approach allowed us to delineate cortical layers based on
the quantitative distribution of specific neuronal subtypes, and
find that the CP’s six-layer structure is already in place by
GW22, long before morphological differentiation is evident.

Contrary to the dynamic nature of gene expression patterns
within laminae, we observed a remarkable stability in the
laminar distribution of transcriptionally defined EN subtypes
across cortical areas and time. Nevertheless, while all EN
subtypes showed distinct laminar-dependent distribution, most
EN-IT subtypes exhibited a near-normal distribution curve
within the cortical plate (CP), irrespective of cortical layer
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Fig. 5: Sharp molecular border between V1 and V2 at GW20 reveals early V1 specification.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.05.597673doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.05.597673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Xuyu Qian et al. 13

Fig. 5: Sharp molecular border between V1 and V2 at GW20 reveals early V1 specification. a, The primary (V1) and secondary visual cortices (V2) do not
exhibit morphological differences at GW20-21. Schematics and Nissl staining are taken from the Allen Reference Atlas for GW21 human fetal brain48. DAPI
staining image co-captured with MERFISH; H&E staining image co-captured with Visium. b, c Spatial maps for selected EN subtypes show distinct border
between V1 and V2 marked by sharp transition at GW20. Scale bars 500 µm. d, Ridgeline plots showing the horizontal cell density profile for V1- and V2-
enriched EN subtypes in the CP near the border. e, Ridgeline plots showing the laminar distribution for V1- and V2- enriched EN subtypes. Dash lines represent
the borders between cortical layers. f, Histograms for areal distribution show V2-enriched subtypes distribute broadly in other cortical areas, while V1-enriched
subtypes are exclusive to the occipital cortex. g, Z-score spatial maps of V1- and V2- enriched genes. h, Venn diagrams for the overlap between V2-enriched
(left) and V1- (right) DEGs across the four pairs of subtypes in c. Only strong DEGs with Log fold change >0.5 and adjusted p-value <0.0001 were considered. See
Supplementary Table 7. i, Spatial graph (left) and UMAP (right) from Visium analysis show clear V1-V2 border across all cortical layers and two parallel UMAP
trajectories for V1 and V2 that bifurcated from the SP. Capture area, 6.5 x 6.5 mm. j, Spatial graphs showing additional genes identified by Visium exhibiting clear
transition at the V1-V2 border. k, Imputed expression patterns for additional V1-V2 border genes matches with Visium results. l, Constellation plots of cell types
in different cortical areas show V1 and V2 share a developmental lineage that is distinct with PFC. Matching nodes between V1 and V2 have connection fraction
> 0.2 except for EN-IT-L3 and EN-IT-L4. See Supplementary Table 8. m, Gene ontology (GO) analysis reveals synapse and cell adhesion-associated biological
processes are upregulated in V1-specific Layer 4 neurons. n, Heatmap for incoming signaling pathways shows neurexin (NRXN) signaling is specifically enriched
in EN-IT-L4-V1 cluster comparing to other upper layer (UL) EN-IT clusters. o, Network heatmap shows EN-IT-L4-V1 is unique among upper layer EN-ITs to receive
NRXN signaling from both IN and EN sources, leading to significant increase in overall interaction strength. The bar graphs on the top and right side are sum of
interaction strength as incoming and outgoing signals, respectively.

boundaries. This observation aligns with recent discoveries
in the adult cortex37, and suggests that while the six-layer
model facilitates our analysis design and data interpretation, the
structural complexity of neuronal lamination likely surpasses
the traditional six-layer model, underscoring the advantage of
direct spatial profiling over microdissection.

Our investigation into cortical arealization suggests an in-
tegrated view of the "protomap" and "protocortex" models10.
Echoing prior studies, we observed gradients of transcriptional
changes and cell subtype variation along the A-P axis, indicat-
ing a foundational role for morphogen gradients in establish-
ing preliminary areal identities6. Yet, our identification of a
distinct border between V1 and V2 by GW20 suggests that
detailed areal specification may occur concurrently with the
peak of neurogenesis, prompting a reevaluation of the cortical
development timeline. The distinctness of the V1-V2 border,
coupled with the exclusivity of V1-specific subtypes and the
uniformity of migrating neurons and progenitors, starkly con-
trasts the outcome of continuous A-P morphogen gradient as
seen across other areas analyzed.

The pronounced V1-V2 demarcation implicates a potential
role for afferents, presumably from the dorsal lateral geniculate
nucleus (dLGN) of the thalamus, which reach the SP and CP
by GW12-14 in human, much earlier than in rodents52. These
afferents initiate synapse formation and transmit spontaneous
thalamic activity to the cortex, altering V1 neuronal identi-
ties via activity-induced mechanisms10,52,53,54,55. Damage to
these afferents in macaque disrupts normal V1 cytoarchitecture
formation56,57, whereas studies in rodents demonstrated visual
disruptions lead to failure in fate specification of V1 neurons,
resulting in a shift towards V2-like "default" molecular iden-
tities and blurring of V1-V2 border51,53,58,59. The V1-V2
boundary observed in EN-ITs of Layers 3&4 and in EN-ETs
of the deep layer and SP, but not in deep layer EN-ITs, may
result from thalamic axons’ initial interaction with SP neu-
rons and subsequent targeting into Layer 460. Furthermore,
the similarity in key marker expression patterns observed af-
ter vision-dependent V1 specification in postnatal mice hints
at a much earlier V1 specification timeline in human than
rodents53. This development is in line with the timing of eye-
opening in human fetuses around GW26, compared to P14

in mice61. While the calcarine sulcus allowed identification of
V1 and V2 independent of gene expression, the lack of similar
landmarks precluded identification of the primary somatosen-
sory cortex and primary auditory cortex in our samples, but
it is possible that further analysis with comprehensive areal
coverage would uncover border formation mechanisms akin
to V1 in other primary sensory areas.

Our findings reveal that the expression of individual genes
varies considerably across different cortical areas and develop-
mental stages, challenging the traditional reliance on a limited
set of canonical layer markers to delineate the evolving land-
scape of the developing human cortex. The lack of accurate
markers has impeded the advancement of brain organoid stud-
ies, which depend on comparisons with primary fetal samples
for benchmarking. Our analysis indicates that, during mid-
gestation, many markers lack the layer specificity canonically
attributed to them, and the observed lack of layering in cor-
tical organoids might partially reflect uninformative marker
choice62. Therefore, an accurate characterization of neuronal
layers in organoids should incorporate markers tailored to the
matching developmental stage and cortical area. Our compre-
hensive molecular and structural mapping provides a founda-
tional reference for future studies in organoid development.

Methods
Sample preparation and acquisition
Research performed on samples of human origin was con-
ducted according to protocols approved by the institutional
review boards (IRB) of Boston Children’s Hospital and Beth
Israel Deaconess Medical Center. Samples were collected after
obtaining written informed consent. De-identified human
fetal tissues were acquired from two sources: (1) Samples were
received after release from clinical pathology at Beth Israel
Deaconess Medical Center, with a maximum post-mortem in-
terval of 4 hours. Tissue was transported in Hibernate-E media
on ice to the laboratory for research processing. Cortical tissue
was then dissected into coronal pieces of 1-3 cm2 cross-section
area and 0.5-1 cm thickness. The dissection was performed
under the supervision of a neuropathologist to provide annota-
tion of cortical areas based on anatomical location and features.
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Tissue pieces were then directly frozen in liquid nitrogen and
stored in -80◦C. (2) Banked de-identified fresh-frozen tissues
were obtained from the University of Maryland Brain and
Tissue Bank through the NIH NeuroBioBank. Only samples
with postnatal interval < 12 hours were used. Cortical area
annotation was provided by the NeuroBioBank. Tissue was
shipped overnight in dry ice and stored in -80◦C. For both
sources, only samples with no neurological anomalies were an-
alyzed. Samples were screened for RNA quality by collecting
50µm-thick cryosections, isolating total RNA and measur-
ing RNA Integrity Number (RIN) using the Agilent 4200
TapeStation System, and RNA Integrity Number (RIN) >=
6.5 were used in the study. The samples used are summarized
in Supplementary Table 1.

Annotation of cortical areas
The cortical areas of tissue sections used in MERFISH anal-
ysis were annotated based on the Reference Atlas for human
fetal brain developed by Allen Institute for Brain Science
(https://atlas.brain-map.org/)26. For GW20 and GW22
samples, dissection of the tissue was performed under the super-
vision of a neuropathologist to distinguish between the frontal
lobe, parietal lobe, occipital lobe, and temporal lobe. The rela-
tive anterior-posterior, dorsal-ventral, and medial-lateral loca-
tion of each piece of dissected tissue was recorded by notes and
photographs. For GW15 samples obtained from NIH Neuro-
BioBank, annotation for cortical lobes were provided by Neu-
roBioBank staff. For more specific annotation of cortical areas,
the GW15 samples were compared with the GW15 Reference
Atlas (https://atlas.brain-map.org/atlas?atlas=138322603), and
the GW20 and GW22 samples were compared with the GW21
Reference Atlas (https://atlas.brain-map.org/atlas?atlas=3).
The relative anterior-posterior locations of tissue sections were
matched with the Reference Atlas and cytoarchitectural fea-
tures like early sulci were used as reference landmarks. The
transition between premotor (PMC) and primary motor cor-
tices (M1) lacks clear definition in mid-gestation, and there-
fore some tissues analyzed were annotated as "PMC/M1". In
contrast, the calcarine sulcus was well-defined morphologi-
cally in GW15-22, enabling identification of primary (V1)
and secondary visual cortices (V2). For GW34 samples from
NeuroBioBank, the specific Brodmann’s Area (BA) corre-
sponding to the postnatal human cortex was determined by
NeuroBioBank, and was provided when tissues were requested.
Definition of specific BA is possible only for GW34 because
by this gestational age the major sulci and gyri structures have
formed, which is not the case in GW15-22. The cortical area
annotation for all samples is summarized in Supplementary
Table 1.

Immunohistochemistry and microscopy
10µm-thick cryosections of tissue were placed on Superfrost
slides (Fisher) for immunohistochemistry. The sample was
first fixed in 4% PFA for 15 minutes at room temperature,
followed by permeabilization with 0.5% Triton-X in PBS for
1hr and blocked with blocking solution of 10% donkey serum

in PBS and 0.05% Triton-X (PBST) for 30 min. Primary
antibodies diluted 1:500 in blocking solution were applied
to the sections overnight at 4◦C. Primary antibodies used
were rat anti-CTIP2 (Abcam, ab18465), mouse anti-SATB2
(Abcam, ab9244), and rabbit anti-TBR1 (Abcam, ab31940).
After washing with PBST for a minimum of 5 times, secondary
antibodies and DAPI (1:2000) diluted in blocking solution
were applied to the sections for 1-4 hrs at room temperature or
overnight at 4◦C. Secondary anti-bodies were: AlexaFluor 488,
555, or 647 -conjugated donkey antibodies (Invitrogen) used
at 1:500 dilution. Finally, sections were washed with PBST
for a minimum of 5 times before mounting with Vectashield
Vibrance Antifade Mounting Medium. Images were captured
by a Zeiss LSM 980 confocal microscope. Z-stack function was
used to image a 10µm thickness, and tile-stitching function
was used. Sample images were prepared in ImageJ software.

MERFISH gene panel selection and probe construction
We designed a panel of 300 genes (Supplementary Table 2)
that contained 39 canonical markers for major cell types in the
human fetal cortex, including markers for excitatory (ENs) and
inhibitory neurons (INs), intermediate progenitor cells (IPCs)
and neural progenitor cells (NPCs); 32 were validated cortical
layer markers in adult human cerebral cortex from a previous
study40. 30 autism spectrum disorders (ASD)-associated genes
were selected from the SFARI database63, and one putative
regulator long non-coding RNAs (LncRNA) for each SFARI
gene was included (30 total). The remaining genes on the
panel were obtained from the top enriched cluster markers in
published single-cell RNA SMART-seq data of mid-gestation
human fetal cerebral cortex7. Single cell clustering and marker
identification based on differential expression were performed
in the original study7. The top 20 marker genes based on
fold change for excitatory neuron clusters, and the top 5-10
marker genes for other clusters were manually curated. The
genes that did not overlap with previous selected categories
were included in the gene panel, resulting in a total of 300
genes. All genes within the panel were included for subsequent
analysis. Merscope encoding probes for the 300 genes were
constructed by Vizgen using commercial pipeline. Each of the
300 genes was assigned a unique binary barcode drawn from a
22-bit, Hamming-Distance-4, Hamming-Weight-4 encoding
scheme (Supplementary Table 3)9. 15 extra barcodes were
included as "blank" barcodes, which were not assigned to
any genes to provide a measure of the false positive rate in
MERFISH as previously described9.

MERFISH imaging
MERFISH analysis was performed using the Vizgen Mer-
scope system. Sample preparation was performed according
to manufacturer’s instructions (MERSCOPE Fresh and Fixed
Frozen Tissue Sample Preparation User Guide, Doc. number
91600002). Briefly, fresh frozen tissues were embedded in
OCT and sectioned into 10µm-thick sections using a cryostat
(Leica) and adhered to a Merscope slide (Vizgen, 1050001)
placed in a 6-cm petri dish. For GW15-22 samples, slides were
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kept inside the cryostat maintained at -15◦C for 30 minutes to
allow the section to dry and firmly adhere to the glass slides
before fixation; for GW34 samples, slides were kept inside the
cryostat for 5 minutes, and then transferred to room temper-
ature for 15 minutes before fixation. Slides were then fixed
in 4% paraformaldehyde (PFA), and permeabilized by 70%
ethanol overnight, with parafilm sealing the petri dish to pre-
vent evaporation. Slides were then treated in the MERSCOPE
Photo-bleacher instrument for autofluorescence quenching
for 3 hours. Slides were stored overnight or up to one week
before proceeding to the next step. The encoding probe mix
was added directly on top of the tissue section for hybridization
at 37◦C for 36 hours in a humidified incubator. Post probe
hybridization, sections were fixed again using formamide and
embedded in gel. After gel embedding, tissue samples were
cleared using a clearing mix solution supplemented with pro-
teinase K for 24-48 hours at 37◦C until no visible tissue was
evident in the gel. After clearing, sections were stained for
DAPI and PolyT and fixed with formamide prior to imag-
ing. No additional cell boundary staining was used. Reagents
used for these steps were included in Merscope sample prep
kit (Vizgen 10400012).

The MERFISH imaging process was done according to
the Merscope Instrument Preparation Guide (Doc. Number
91500001). Briefly, an imaging kit was thawed in a 37◦C water
bath for 45 minutes, activated and loaded into the Merscope in-
strument. The flow chamber was then assembled, fluidics were
primed, and flow chamber filled with liquid. A low-resolution
image for the DAPI and PolyT staining was taken under 10x
magnification, and a region of interest (ROI) was manually
drawn in the Merscope software, followed by automated image
acquisition and fluidic control in the Merscope instrument. For
each section, the ROI of up to 1cm2 area is imaged as 2,000-
2,500 tiles at 40x magnification, and images were collected in
the 750-nm, 650-nm, and 560-nm channels for the readout
probes and in the 488-nm and 405-nm channels for PolyT and
DAPI staining, respectively. 7 z-stacks were captured over a
thickness of 10µm. After imaging, image processing and tran-
script decoding were performed using Merscope proprietary
software. The transcript matrix with spatial coordinates, and
the stitched tiled DAPI images acquired were transferred for
subsequent processing and single-cell segmentation.

Cell segmentation and MERFISH data processing
Automated segmentation was performed on the DAPI channel
using a custom CellPose model23,24. The model was initialized
with the CellPose "cyto" weights, then trained for 300 epochs
with a learning rate of 0.1 and weight decay of 1e-4 using
145 manually segmented images for training and 3 for testing.
All images, before training and running segmentation, were
filtered using a difference of Gaussians filter, consisting of a
positive Gaussian having zero standard deviation (all weight
at zero) and a negative Gaussian with a standard deviation
of 20 pixels. When running the CellPose segmentation, for
testing and in the Vizgen pipeline, the cell diameter was set to
55 pixels (average from training data), the flow threshold was

set to 0.5, the cell probability threshold was set to -3, and the
minimum mask size was 500 pixels.

The Vizgen MERSCOPE output consisted of 7 planes
evenly spaced across 10µm. Given the wide point spread func-
tion (PSF) and the small spacing, we used the maximum pro-
jection image over the first six planes as input to the CellPose
segmentation algorithm, using the CellPose parameters and fil-
tering as specified above. Because the nucleus staining (DAPI)
was used, we dilated the masks by 10 pixels to approximate
the cytoplasmic area of the cells. These processing steps were
added to the Vizgen processing pipeline, the modified code is
available here: https://github.com/carsen-stringer/vizgen-pos
tprocessing. The Vizgen processing pipeline uses the CellPose
masks to define ROIs and then assigns the RNA transcripts
to each ROI to return a cell by gene matrix. In Extended
Data Fig. 1, we quantified the segmentation accuracy using
the average precision (AP) metric, which is the number of
true positives divided by the total number of true positives,
false negatives and false positives24. The true positives were
defined as segmented ROIs that matched ground-truth ROIs
at or above a defined intersection-over-union (IoU) threshold.
The false negatives were the ground-truth ROIs that were
missed, and the false positives were the predicted ROIs which
did not match any ground-truth ROIs.

MERFISH data quality control and integrated hierarchical
clustering
After performing cell segmentation, for each experiment, we
filtered out all cells with a total transcript count below the tenth
percentile specific to that experiment. We then normalized
each cell by its total transcript count using scanpy.pp.normalize_
total(). Transcript counts were then log-transformed and Z-
score normalized using scanpy.pp.log1p() and scanpy.pp.scale(),
respectively. Once preprocessed, we integrated the gene ex-
pression data from all samples. Subsequently, hierarchical clus-
tering was performed on the integrated dataset to identify
groups of cells with similar gene expression profiles. Initially,
all cells were grouped into 8 H1 clusters at the first hierarchy
(cell class). Following this, each H1 cluster was sub-clustered
into 5 preliminary H2 clusters, resulting in 40 preliminary H2
clusters (cell type). Each H2 cluster was further subdivided into
5 preliminary H3 clusters, forming a total of 200 preliminary
H3 clusters (cell subtypes). The clustering results at each hier-
archy were obtained using sklearn.cluster.KMeans(). Marker
genes were then identified using scanpy.tl.rank_gene_groups()
and scanpy.get.rank_genes_group_df(). For a given H1 cluster,
genes with a log2 fold change of at least 0.25 compared to the
cells in all other H1 clusters were denoted as marker genes
for that cluster. Marker genes for each H2 or H3 cluster were
identified using the log2 fold change between that cluster and
the other four clusters belonging to the same H1 or H2 group,
respectively.

Cluster annotations were conducted sequentially from H1-
H3, based on marker gene list and spatial distribution of each
cluster. The 8 H1 cell classes were annotated based on ex-
pression of canonical markers. Some preliminary H2 and H3
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clusters were manually merged. Because endothelial cells (EC)
were not of particular interest in our study and our gene panel
has very limited relevant genes for ECs, all EC clusters were
merged into one cluster. Similarly, astrocytes and oligoden-
drocyte (OPC) clusters were merged into 3 H2 clusters, and
subsequently 5 H3 clusters. H3 clusters for intermediate pro-
genitor cells (IPC) derived from each H2 IPC cluster were
highly similar in spatial distribution and gene expression, and
were therefore also merged. Finally, we noticed that a few
clusters exhibited aberrant spatial distribution reflecting tech-
nical artifact during the imaging process. These clusters, easily
recognizable with exclusive localization at the edge of certain
tissue sections or surrounding bubbles within the tissue section,
were the accidental result of tissue hydrogel detaching from
the surface during imaging. We removed cells from these
artifact clusters from all subsequent analysis.

After transcript count filtering, artifact cluster removal and
supervised merging, we analyzed a total of 15,927,370 cells
that were clustered into 8 H1 clusters, 33 H2 clusters, and 114
H3 clusters (Supplementary Table 4). H2 cell types were
annotated to reflect their spatial distribution. For excitatory
neuron (EN-IT, EN-ET, EN-Mig) clusters, their approxi-
mated layer enrichment at GW34 were denoted. For radial
glia (RG) and IPC, their enriched laminar structures (such as
ventricular zone (VZ), subventricular zone (SVZ), intermedi-
ate zone(IZ)) were denoted in cluster annotation. In addition,
if a cluster is predominantly present only in GW15 samples,
it was denoted with "early", while a cluster predominantly
present only in GW34 was denoted with "late". H3 EN clus-
ters were annotated similarly to reflect their layer enrichment
as well as their areal distribution enrichment (A for anterior, P
for posterior, T for temporal lobe, etc.).

Cell label transfer analysis
Reference-based cell type annotation was conducted using
SingleR64 (v.1.8.1) to transfer cell type labels from the ref-
erence data to the testing data with the following parame-
ters: "genes": "de"; "de.method": "classic"; "fine.tune": TRUE;
"prune": TRUE. The three separate analyses are summarized
below: (1) For Fig. 1f and Extended Data Fig. 2b, the fetal
human cortex scRNA-seq data7 was used as a reference to
transfer labels to our MERFISH data. In the reference, we
excluded "MGE-" (cells from dorsal cortical specimens) and
"unknown" clusters and aggregated all "nIN" subclusters into
one and denoted it as "IN". (2) For Extended Data Fig. 4c,
cells from EN clusters in the adult human cortex scRNA-seq
data37 were extracted and served as a reference to transfer cell
type labels to EN-ET and EN-IT cells in our MERFISH data.
For simplicity, the 56 original excitatory neuron clusters in
the adult human cortex dataset were merged into 14 groups
based on their shared layer and molecular marker identities.
(3) For Extended Data Fig. 10e, cells from the EN clusters in
our snRNA-seq data were employed as a reference to transfer
labels to EN cells/spots in our MERFISH and Visium data sep-
arately. The pruned labels returned from SingleR were used
to annotate the target cells. Correspondences between raw

and transferred cell types in the target data were visualized
through heatmaps.

Quantitative spatial analysis of MERFISH data
For most tissue sections analyzed by MERFISH, one or two
fan-shaped regions were manually drawn for quantitative spa-
tial analysis. The fan-shaped regions were selected on the
basis of relative geometrical uniformity, avoiding anatomical
structures such as sulci, which may complicate location quan-
tification. Areas with tissue section tears and bubbles were also
avoided. For each tissue section analyzed by MERFISH, spatial
graphs of H1 cell class distribution were generated. Based on
these graphs, each fan-shaped region is made of hand-traced
vector lines marking the apical surface and basal surface, and
connected by two straight lines using the Pen tool in Adobe
Photoshop software. The basal borders were defined by the
pial surface of the cortex. For GW15 and GW20, the apical
borders were drawn at the ventricular surface. For GW22,
the apical borders were drawn within the outer subventricular
zone (oSVZ) as the VZ could not fit within the imaged area
due to larger tissue size. For GW34, the apical surfaces were
drawn at the approximated transition between Layer 6b and
the white matter.

Within each fan-shaped region, laminar structures of the
developing cerebral cortex were further defined manually with
respect to the distribution and morphology of cell classes. The
cortical plate (CP) was defined as the condensed layer of ex-
citatory neurons (EN-IT and EN-ET) near the pial surface.
The thin layer above the CP to the pial surface was defined
as the marginal zone (MZ). The subplate (SP) was defined as
the layer containing only EN-ET, below the CP, and with
lower cell density than the CP. The intermediate zone (IZ)
was defined as the relatively cell-sparse layer predominantly
composed of EN-Mig below the SP. The oSVZ was defined
as the region composed of a mixture of EN-Mig, IPC, and
RG below the IZ. The VZ was defined as the condensed layer
of RG showing clear ventricular morphology at the apical sur-
face. The thin layer above the VZ composed of high density of
IPC was defined as the inner subventricular zone (iSVZ). The
boundaries between each neighboring laminar structures were
manually traced using the Pen tool in Photoshop, establishing
an annotated vector mask for each fan-shaped region.

The vector mask was then imported into the computational
analysis object by overlapping the spatial coordinates of cells
with the vectors. Therefore, each cell within the fan-shaped
region was also assigned with its laminar structure (VZ, iSVZ,
oSVZ, IZ, SP, CP, and MZ). For each annotated region, three
images were exported from Photoshop: (1) a mask containing
the boundary of the fan-shaped region along with the lines de-
lineating the boundaries of the annotated structures; (2) a mask
containing only the boundary of the fan-shaped region; (3) a
mask containing the boundary of the fan-shaped region, where
the lines marking the apical surface and basal surface were re-
placed by straight lines. The initial objective was to determine
the coordinates of the apical and basal surfaces. Using image
(3), we applied cv2.goodFeaturesToTrack() to identify the four
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corners of the fan shape. Using the orientation of the anno-
tated region (up, down, left, right), corner coordinates were
assigned to their respective ends of the apical and basal surfaces.
We calculated the equations of the lines connecting the corners
of the apical and basal surfaces, and the point at which the lines
intersected (O) was determined. To identify all points compris-
ing the apical and basal surfaces, we first set all pixels equal to
0 in the mask of image (1) that were in a 3-pixel radius of each
of the corners. We then used cv2.connectedComponents() to
categorize each of the four lines in the mask into different
components. The component IDs for the apical and basal sur-
faces were then determined based on the previously calculated
corner locations. To extract the cells within a specific layer,
we first subtracted image (2) from image (1) to eliminate the
boundaries of the fan-shaped region, including the apical and
basal surfaces. With only the layer-defining boundaries re-
maining, we applied cv2.connectedComponents() to assign
each boundary to a different component. The component IDs
corresponding to each of the layer boundaries were determined
using the orientation of the fan-shaped region. To calculate
the mask boundary for a given layer, we used cv2.line() to
draw lines between the corresponding endpoints on the top
and bottom boundaries for that layer. We then created the
mask by applying cv2.binary_fill_holes() to the boundary. Us-
ing the coordinates of the cells located within the annotated
region, we then extracted all cells with coordinates contained
within the layer-specific mask.

For each cell within the annotated fan-shaped region, its
"Relative Height (RH)" is calculated to represent its laminar
location from the apical to basal surfaces. The RH calculation
normalizes for the tilting of the fan-shape created by the asym-
metrical morphology of the human cerebral cortex. Similarly,
for a cell within the CP of an annotated fan-shaped region,
its "Cortical Depth (CD)" is calculated to quantify its relative
laminar location within the CP. To calculate the RH for a
given cell, we utilized cv2.line() to draw a line from point O
to the cell’s location at point C. Using the mask containing
this line, we identified intersection points with the apical and
basal surfaces (designated as C3 and C1, respectively). The
Euclidean distances between C3 and C1, and between C and
C1 were then computed. The relative height of the cell was
then calculated as the ratio of these distances. To calculate CD,
we first extracted all cells located within the cortical plate of
the fan-shaped region. Then, for each cell located within the
cortical plate, we used cv2.line() to draw a line connecting O
and the location of the cell, C. Using the mask containing this
line, we identified the points where the line intersected with
the top and bottom boundaries of the cortical plate (denoted
by C3 and C2, respectively). We then calculated the Euclidean
distances between C3 and C, and between C and C2. The
ratio of these distances defined the CD of the cell. For a given
annotated region, the RH violin plot was constructed using the
H2 cell type annotations for all cells within that region. The
CD violin plot was created using the H3 cell type annotations
for all EN-IT, EN-ET, and EN-Mig cells within the cortical
plate of that region. For any clusters with fewer than 50 cells
within that region, we represented the RH or CD distribution

with individual cell dots instead of a violin plot.
Cortical layers within the CP of an annotated region were

defined computationally by the distribution of CD values for
specific H3 EN subtypes. While the laminar location of most
H3 EN subtypes were consistent across gestational ages, some
clusters showed varying abundance with gestational age, pre-
venting us from using the same set of H3 EN subtypes for the
definition of cortical layers in samples from all GWs analyzed.
For GW15, EN-IT-L4-1, EN-ET-L5-1, EN-IT-L6-1 were
used to defined Layer 3/4, Layer 5, and Layer 6 respectively.
For GW20, EN-IT-L2/3-A1, EN-IT-L4-1, EN-ET-L5-1,
EN-IT-L6-1 were used to defined Layer 2/3, Layer 4, Layer 5,
and Layer 6 respectively. For GW22, EN-L2-1, EN-IT-L3-A,
EN-IT-L4-1, EN-ET-L5-1, EN-IT-L6-1 were used to define
Layer 2, Layer 3, Layer 4, Layer 5, and Layer 6 respectively.
For GW34, EN-L2-4, EN-IT-L3-late, EN-IT-L4-late, EN-
ET-L5-1, EN-IT-L6-late were used to define Layer 2, Layer
3, Layer 4, Layer 5, and Layer 6 respectively. The borders
between adjacent layers, for example, between Layer 5 and
Layer 6, were calculated as the mean CD value between the
lower 25% of the Layer 5 cells and the upper 75% of the Layer
6 cells. Therefore, the CD value for each cell within the CP
was used to assign a cortical layer identity for that cell.

Spatio-temporal expression patterns of genes
For each gestational week and cortical area, we isolated all
cells within each annotated layer using their coordinates and
the corresponding layer-defining masks. Cells within the CP
were assigned to specific cortical layers based on their CD
values. Subsequently, for each gene, we calculated the mean
expression across all cells within each annotated layer for a
given gestational age. We then standardize the expression for
that gene to the [0, 1] range across all layers and gestational
weeks. The results were visualized in the summary expression
heatmaps (Source Data Fig. 3). To construct z-score expres-
sion spatial graphs for a given cortical area, the normalized
expression values for all cells within the area were extracted
and gene expression values were Z-score normalized using
scanpy.pp.scale(). Gene expression heatmaps were then plotted
using scanpy.pl.embedding().

Cell number proportion and enrichment quantifications
The two panels at the top of Extended Data Fig. 5c illustrate
(i) the proportion of cells in an H3 cell type for each cortical
area (PFC, PMC/M1, Par, Temp, and Occi) and (ii) the cell
number of an H3 cell type for each gestational week (GW 15,
20, 22, and 34). For the cortical area proportion plot in (i), the
proportion of cells for each cortical area (CA) was calculated
as the total number of cells for each CA for the H3 cell type
divided by the total number of cells for that H3 cell type across
all the CAs. rCA,H3 = NCA,H3

NH3
where NCA,H3 is the number of

cells for a CA at H3 and NH3 is the total number of cells at
H3. For the number of cells plot in (ii), the number of cells for
each gestational week at each H3 subcluster is shown.

The results of spatial-temporal enrichment analysis of EN
subtypes (EN-ET, EN-IT, and EN-Mig) in the bottom panel
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of Extended Data Fig. 5c and RG, IPC, and IN subtypes in
Extended Data Fig. 5d were done through the normalization
process described below. The total number of cells for each
sample-region (SR) pair at H1 and H3 were counted separately
for each gestational week. The number of cells of SR pairs at
each H3 cell type is then divided by the number of cells of
SR pairs at the corresponding H1 cell type. rSR,H3 = NSR,H3

NSR,H1

where NSR,H1 is the number of cells of a SR pair at H1 and
NSR,H3 is the number of cells of a SR pair at H3. The ratio
above is then divided by the maximum number of cells of SR
pairs at H3. normalized(rSR,H3) = rSR,H3

RH3
RH3 is the maximum

of rSR,H3 among all the SR pairs at that H3 cell type.
For Extended Data Fig. 1k, the proportions of all H2 cell

types in each SR pair was calculated. The number of cells of
SR pairs at each H2 cell type is divided by the total number of
cells in that SR. rH2,SR = NH2,SR

NSR
where NH2,SR is the number

of cells of an SR pair at H2 and NSR is the total number of
cells of an SR pair. Extended Data Fig. 3e and Fig. 5c were
calculated similarly.

For UMAP of EN subtype composition (Fig. 3f), all EN-
ET and EN-IT cells from each annotated cortical region were
extracted. The relative proportion of the EN-ET and EN-
IT H3 subtypes was calculated for each cortical area. We
computed the UMAP projection of the matrix of relative EN
H3 cell type proportions, providing a 2D representation for
each cortical area based on EN subtype composition.

Differential gene expression analysis between MERFISH clus-
ters

The results of differentially expressed gene (DEG) analysis
between clusters are visualized in Fig. 3g and Extended Data
Fig. 9b. (1) In Fig. 3g, five pairs of anteriorly-enriched
and posteriorly-enriched neuronal subtype H3 clusters were
compared based on their DEGs: EN-IT-L2/3-A2 vs. EN-
IT-L3-P, EN-IT-L4-A vs. EN-IT-L4-late, EN-IT-L4/5-1 vs.
EN-IT-L5/6-P, EN-ET-L6-A vs. EN-ET-L6-P, and EN-ET-
SP-A vs. EN-ET-SP-P1. (2) In Extended Data Fig. 9b, three
pairs of H1 cell types (EN-IT, EN-ET, and EN-Mig) in V1
and V2 regions in the sample UMB1367-O1 were compared
based on their DEG. The DEGs were detected through the
"scanpy.tl.rank_genes_groups()" function with the default t-
test from the Scanpy_1.7.2 in Python version 3.10. The top 10
and bottom 10 genes were selected separately based on their
log fold change, and the log10(p-value) is used to break the
ties. The top 10 genes represent the most upregulated genes
in the DEG analysis, while the bottom 10 genes represent
the most downregulated genes. In the bubble plots, the mean
expressions for each gene across all the cells are calculated and
represented by the spot color. The percentage of expressed
cells is calculated by dividing the number of cells expressed for
each gene by the total number of cells expressed across all the
genes, represented by the spot size.

Identification of area-enriched genes
To identify area-enriched genes in Fig. 3i, we analyzed EN-
ET and EN-IT cells from GW20 and 22 within the annotated
fan-shaped regions. Cells in PFC and PMC/M1 were grouped
as anterior regions and cells in Par and V2 were grouped as
posterior regions. We identified anteriorly and posteriorly en-
riched genes by t-test through the "scanpy.tl.rank_gene_groups"
function. The top 10 genes with the highest anterior enrich-
ment and posterior enrichment were selected separately based
on their p-values. Additionally, the top 5 genes with the most
enrichment in Temp exclusively were detected using the same
methods.

Clustering by individual gestational age and scSHC sub-clustering
To compare neuronal subtypes at different gestational ages,
we employed an alternative clustering strategy in Fig. 4 &
5, where only cells from the same gestational age were clus-
tered together. Using the preprocessed data, all cells belonging
to samples from the same gestational week were combined.
Subsequently, hierarchical clustering was conducted for each
gestational week independently. Analogous to the method
applied for the integrated analysis, for each time point, we first
clustered the cells into 8 H1 and 40 preliminary H2 clusters
using sklearn.cluster.KMeans(). H1 and H2 clusters were anno-
tated following the same strategy as the integrated clustering
described above.

Single-cell significant hierarchical clustering (scSHC) pipeline
(v.0.1.0) was used to unbiasedly determine the number of sig-
nificant H3 subclusters42. ScSHC adopts a hypothesis testing
approach, recursively dividing the cells into two groups, and
testing the statistical significance of each split with an adjusted
threshold to control the family-wised error rate (FWER). It
defines Ward linkage as test statistics and employs parametric
bootstrap to estimate its null distribution. If the p-value at
a given node is larger than the adjusted threshold, the two
subsequent branches are merged. For each gestational age, we
randomly sampled 500,000 cells and ran scSHC within each H2
cluster. To ensure model robustness, we increased the number
of cells used for null distribution estimation from 1,000 in the
original method to one-third of the cluster size. Furthermore,
to avoid overly small subclusters, if one subcluster comprised
fewer than 10% of the cluster size, we stopped further splitting.
For each run of scSHC, "alpha", the FWER, was fixed at 5e-4;
"num_features", the number of genes used as features, was set
to 300 (all MERFISH panel genes); "num_PCs", the number of
top principal components retained for gene expression dimen-
sion reduction, was set to be 30. The H3 subclusters generated
by scSHC are summarized in Supplementary Table 6.

ScSHC subcluster correspondence analysis across gestational
ages
To evaluate the transcriptomic correspondence of EN-ET and
EN-IT scSHC subclusters across different ages, we applied XG-
Boost43, a distributed gradient-boosted decision tree-based
classification method. For each adjacent pair of gestational
stages, we trained an XGBoost classifier to learn cluster labels
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from gene expression data within the earlier stage. Conse-
quently, we used the classifier to classify cells from the later
stage. The correspondence between the original clusters and
the classifier-assigned labels in the later gestational age dataset
were utilized to map clusters between ages. The general classi-
fication workflow is described below and was applied to each
adjacent gestational age pair.

Let XE represent the earlier stage dataset grouped into NE
clusters, and XL denote the later stage dataset grouped into
NL clusters. Two gene expression matrices are normalized and
log-transformed. The main steps are as follows:

1. We trained a multi-class XGBoost classifier on XE using
all 300 genes as features. For clusters with fewer than
15,000 cells, we upsampled by bootstrapping to 15,000
cells to make the dataset more balanced. XGBoost classifier
parameters were set to the following values: "objective":
"multi:softmax"; "eval_metric": "mlogloss"; "num_class":
NE; "eta": 0.2; "max_depth": 20; "subsample": 0.6;
"num_boost_round": 1000.

2. For validation, we randomly sampled 80% of cells in each
cluster of XE to train the classifier and predicted the cluster
labels for the remaining 20% of cells. For each testing cell
k, the classifier returns a cluster assignment probability
vector p ∈ RNE , and the final cluster label is assigned as
cluster(k) = argmaxipi. For EN-ET cells, the classifiers
achieved over 90% accuracy (96.17%, 90.40%, 92.98%);
while for EN-IT cells, the accuracy was more than 83%
(93.65%, 88.96%, 83.09%).

3. For prediction, we re-trained the classifier on 100% of cells
in XE and applied it to XL to obtain the predicted label
for each cell. The overall correspondence flows between
clusters across gestational ages were visualized through
Sankey diagrams (Fig. 4a, b, Extended Data Fig. 7a).

To identify genes exhibiting up- or down-regulation across
gestational ages within one layer-based EN group, we calcu-
lated the expressed cell fraction and mean expression for each
gene at each time point. We then fit gene-specific linear regres-
sion models for each of these two metrics, using time points as
input, where the time points were encoded as 1, 2, 3, and 4 for
GW15, 20, 22, and 34 respectively. Genes were ranked accord-
ing to the regression coefficient, with the top 10 positive ones
indicating up-regulated genes, and the top 10 negative ones
indicating down-regulated genes. The analyses were repeated
for each EN group, and the expression patterns of identified
genes were visualized in dot plots (Fig. 4e). Cluster-specific
expressions of identified genes were shown in Extended Data
Fig. 7b.

Moreover, to pinpoint genes that drive subcluster specifica-
tion, we first created a pseudobulk for each cluster within the
same EN group and gestational age by averaging cell expres-
sion. Subsequently, if there were more than one cluster within
the same EN group and gestational age pair, we computed
the pseudobulk expression variance for each gene. Next, we
selected genes with expression variances greater than 1 in at
least one EN group and gestational age pair and showed their

expression variances using a heatmap (Fig. 4g). Addition-
ally, we picked the top 10 genes with the highest expression
variance within each EN group and gestational age pair and
visualized their expression patterns as dot plots (Fig. 4h, i).

Visium spatial transcriptomics analysis
Visium Spatial Gene Expression Analysis (10x Genomics) was
performed according to manufacturer’s user guide and demon-
strated protocol (Visium CytAssist Spatial Gene Expression for
Fresh Frozen – Methanol Fixation, H&E Staining, Imaging
& Destaining, CG000614, Rev A; Visium CytAssist Spatial
Gene Expression Reagent Kits User Guide, CG000495, Rev
D). Briefly, 10µm-thick cryosections adjacent to the sections
used for MERFISH analysis were adhered to Superfrost slides.
Two samples were used for Visium analysis, FB080-O1, GW20
occipital cortex sample containing the V1 and V2, and FB121-
F1, GW20 prefrontal cortex. FB080-O1 is coded as "A1" and
FB121-F1 is coded as "D1" in the data processing and analysis.

The tissues were fixed in chilled methanol at -20◦C for
30 minutes and stained with Hematoxylin and Eosin. The
slides were mounted with 85% glycerol in water. H&E stain-
ing was imaged at 20x magnification using a Zeiss Axioscan
7 microscope. After imaging, the slides were placed in Vi-
sium Tissue Slide Cassette with 6.5 mm gasket and destained
with 0.1N HCL for 15 min at 42◦C. Probe hybridization was
performed overnight at 50◦C on a thermal cycler using the
provided slide adaptor, followed by post hybridization buff.
Probe ligation mix was then added into the slide gasket and
incubated for 1 hour at 37◦C, followed by post-ligation wash.
RNA digestion and tissue removal were performed using the
CytAssist instrument (10x Genomics) before probe extension
and probe elution. Pre-amplification, SPRIselect, and library
construction were performed according to the user’s guide.
GEX post-library construction QC was performed using the
Agilent 4200 TapeStation System.

Visium libraries were sequenced on a NovaSeq6000 accord-
ing to 10x Genomics’ recommended parameters to the depth
of 214 to 235 million PE150 reads. Demultiplexed reads were
processed with Spaceranger-count with default parameters
and manual alignment. Visium data analysis was conducted
separately on two slices, A1 (FB080-O1) and D1(FB121-F1).
For visualization and clustering, Seurat_5.0.1 and R version
4.3.1 (2023-06-16) were utilized on the BCH compute nodes.
SCTransform normalization was performed with the "spatial"
assay parameter. Optimal clusters were generated, and clus-
ters with negligible cells were removed. Marker identification
was performed using FindAllMarkers analysis from the Seurat
package using Wilcoxon rank sum test with the following
parameters: (1) Only return positive markers; (2) Only test
genes that are detected in a minimum fraction of 1% of cells in
either of the two populations. This is the default. Following
these results, we filtered for markers grouped by clusters with
an average log2 fold change greater than 1. We generated
different visualizations using top genes from this analysis. R
version 4.1.2 (2021-11-01) along with Seurat_4.1.1 were used
for both exploratory analysis and final visualization on local
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machine. Spatial Feature Plots were generated to visualize the
expression of genes of interest within the tissue sections.

Nuclei isolation and single-nucleus RNA sequencing
100µm-thick cryosections consecutive to the ones collected
for MERFISH and Visium analyses were collected in a 1.5mL
tube. Nuclei were isolated from the cryosection as previously
described with minor modification65. Briefly, one cryosec-
tion per sample was resuspended in 1mL homogenization
buffer with additives (10mM Tris Buffer pH 8.0, 250mM Su-
crose, 25mM KCl, 5mM MgCl2, 0.1% Triton X-100, 0.1mM
DTT, 1X cOmpleteTM, Mini, EDTA-free Protease Inhibitor
Cocktail (Roche 11836170001), 25ul Protector RNAse in-
hibitor (Roche 3335399001, 0.2U/µl)) and transferred to a
7mL douncer and dounced 10 times with a "tight" pestle. Ho-
mogenized nuclei were spun for 10min at 900g at 4C, then
washed once with Blocking Buffer (1X PBS pH 7.4, 1% BSA),
spinning for 5min at 400g at 4C. All spins were done in a bucket
centrifuge. Nuclei were resuspended in 300ul Blocking Buffer
with Protector RNAse inhibitor (Roche 3335399001, 1U/ul)
and Dapi (final concentration 1ug/ml) and passed through a
40µm filter. Dapi positive nuclei (13,500 nuclei per 10X re-
action) were Fluorescence-Activated Nuclei Sorted (FANS)
directly into Chromium Next GEM Single Cell 3′ Reagent
Kit v3.1 GEM master mix (Step 1.1) minus RT Enzyme C.
RT Enzyme C was then added and reactions loaded into the
Chromium Next GEM Chip and single-nuclei RNA-seq li-
braries generated according to the Chromium Next GEM
Single Cell 3′ Reagent Kit v3.1 manual with 11 PCR cycles
for cDNA amplification and 11-12 PCR cycles used for final
amplification of Gene Expression Libraries. 5 reactions were
performed for FB080-O1 and 3 reactions were performed for
FB121-F1 samples. In addition, 3 reactions were performed
on FB080-O2, a consecutive tissue block posterior to FB080-
O1, near the occipital pole of the brain. Single-nuclei RNA-
seq libraries were sequenced on a NovaSeq6000 according to
10x Genomics’ recommended parameters to the depth of 909
PE150 million reads for FB080-O1, 541 million PE150 reads
for FB080-O2, and 484 million PE150 reads for FB121-F1.

SnRNAseq processing, clustering, and analysis
Demultiplexed reads were processed with cellranger-count
with default parameters, resulting in 41,740 estimated cells for
FB080-O1, 23,001 estimated cells for FB080-O2 and 26,161
estimated cells for FB121-F1. For visualization and clustering,
Seurat_5.0.1 and R version 4.3.1 (2023-06-16) were employed
on BCH Compute nodes, ensuring efficient clustering. Addi-
tionally, R version 4.1.2 (2021-11-01) along with Seurat_4.1.1
was utilized for generating figures on a local machine. Clus-
tering optimization was achieved through iterative application
of the FindClusters algorithm to attain optimal cluster reso-
lution. Feature plots were constructed for genes of interest,
and integration into cell-by-gene tool was verified. Contribu-
tion plots were generated to observe the contribution of cell
types to the overall dataset. To find differentially expressed
genes (DEGs) between V1-enriched (EN-IT-L4-V1) and V2-

enriched (EN-IT-UL-2) clusters, we performed Wilcoxon
rank sum test at log2FC > 0.5 and Bonferroni corrected p-
value < 0.05. Only test genes that are detected in a minimum
fraction of 25% of cells in either of the two populations are con-
sidered, filtering the genes that are infrequently expressed and
only returning positive markers. To verify that we captured
DEGs between V1-V2, we also identified DEGs between V1-
V2 regions in Merscope which revealed overlap only between
V1-upregulated genes (50%) or V2-upregulated genes (73%)
but not vice versa (0%). For gene ontology (GO) analysis,
we used the clusterProfiler package to perform gene ontology
analyses in R (https://bioconductor.org/packages/release/bioc
/html/motifmatchr.html). Specifically, DEGs upregulated in
V1 or V2 were both tested for gene ontology enrichments us-
ing a background of all genes tested for differential expression
(odds ratio > 2 and FDR < 0.01).

ENVI-imputation from scRNAseq to MERSCOPE
We utilized environmental variational inference (ENVI) (v.0.1.0)22

on our MERFISH and snRNA-seq data to expand the MER-
FISH gene panel. ENVI leverages a conditional variational au-
toencoder to integrate spatial and snRNA-seq data, which can
simultaneously impute missing gene expression for genes that
are not included in the spatial transcriptomics data and transfer
spatial information onto the snRNA-seq data. We selected the
top 1,000 highly variable genes from snRNA-seq, along with
additional genes of interest for imputation: ABI3BP, PDZRN4,
FLRT2, TAFA2, NR1D1, IL1RAP,CCBE1, THSD7B,TRPC6,
CHRM2, LUZP2, LRP1B,LRRTM4, HDAC9, FBXL7, DTNA,
SYNDIG1, SDK1, LMO3, TRIQK, UNC13C, CNTNAP2,
KCNIP4, PDZRN3, DLX6, DLX6-AS1, ADARB2, ERBB4,
NRXN3, DLX2, ZNF536, PRKCA, THRB, TSHZ1, PBX3,
MEIS2, CALB2, CDCA7L, SYNPR, SP8, CASZ1, FOXP4.
We ran ENVI with the following key parameters: "k_nearest":
100; "num_cov_genes": 50; "num_layers": 3; "num_neurons":
1024; "latent_dim": 512; "spatial_dist": "pois"; "sc_dist": "nb";
"cov_dist": "OT"; "prior_dist": "norm"; "spatial_coeff": 1;
"sc_coeff": 1; "cov_coeff": 1; "kl_coeff": 0.3.

Constellation plot analysis
The constellation plot was generated using the ENVI impu-
tation results. We selected all RG, IPC, EN-Mig, EN-ET,
and EN-IT cells from the primary (V1) and secondary visual
cortices (V2) of FB080-O1c and the prefrontal cortex (PFC)
of FB121-F1. Based on the H2 annotations, we combined all
EN-ET cells from layers 5 and 6 into a single node (EN-ET
L5/6) and did the same for layer 5 and 6 EN-IT cells (EN-IT
L5/6). Other EN-ET and EN-IT cells were categorized into
nodes according to their H2 annotations, while RG and IPC
cells were classified by their H1 annotations. Cells were fur-
ther subclassified based on the sample and annotated region in
which they were located. The positions of the cell types on the
constellation plot were determined using the median UMAP
coordinates of all cells of each type. Node sizes were scaled ac-
cording to the number of cells of each type. To establish edges
between pairs of cell types, we first performed principal com-
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ponent analysis (PCA) on the ENVI gene expression matrix.
Using the top 50 principal components, we then identified the
15 nearest neighbors for each cell by applying the Ball Tree
algorithm. For any given pair of cell types, A and B, we added
a connection from A to B if a cell in A had a nearest neighbor
in B. We then calculated the total number of connections from
A to B (nA→B), and the total number of connections from A
to all types (nA). An edge was drawn between A and B on
the constellation plot if both nA→B/nA and nB→A/nB exceeded
0.02. The edge from A to B was colored according to the
proportion of connections from A to B relative to the total
connections from A (nA→B/nA).

Cell-cell communication analysis
We employed the CellChat package (version 1.6.1) to decipher
cell-cell communication networks using its extensive database
of known human ligand-receptor interactions. To assess the
communication probability, we followed the methodologies
outlined in the original research paper by Jin et al49. This
method applies the law of mass action to the average expres-
sion levels of ligands and receptors across annotated cell groups
and evaluates their significance using the random permutation
statistical test. Interactions with p-values below 0.05 are con-
sidered significant and those identified in fewer than 10 cells
in each cell group are discarded to enhance the robustness of
our findings. For this study, we analyzed all cell types avail-
able in our dataset but specifically focused on EN-IT-L4-V1,
EN-IT-UL-1, EN-IT-UL-2, EN-IT-UL-3, EN-IT-UL-4,
and EN-IT-UL-5 as receivers in the NRXN pathway. Visu-
alization of the communication networks and pathways was
performed using CellChat’s native plotting functions, which
facilitated a comprehensive representation of the cellular in-
teractions within our dataset.

CELLxGENE web-based data browser
For the visualization and interactive exploration of our single-
cell RNA sequencing and MERFISH data, we utilized in-house
self-host CELLxGENE portal which was deployed with CEL-
LxGENE (v1.1.0) and CELLxGENE gateway (v0.3.10)66. The
processed Seurat object data for MERFISH data were con-
verted into the .h5ad file format via the SeuratDisk package
(v0.0.0.9020), which is compatible with the self-host CELLx-
GENE portal. This setup enabled us to launch a locally hosted
web-based interactive interface for real-time data analysis and
exploration, facilitating UMAP visualization, analysis of cell
type subpopulations, and gene expression querying.

Statistics and reproducibility
Replicates and statistical tests are described in the figure legends
and Methods. Sample sizes were not predetermined utilizing
statistical methods. Tissue samples were not randomized, nor
were the investigators blinded during collection as no subjec-
tive measurements were taken. Data for snRNA-seq, Visium
and MERFISH were collected from all available samples and
no randomization was necessary. To identify differentially

expressed genes between clusters, a Wilcoxon rank sum tests
were performed.

Data availability
Raw sequencing data from Visium, processed Merfish data,
and processed snRNAseq data will be deposited prior to pub-
lication. Raw data that support the findings of this study are
available from the lead contact Dr. Christopher A. Walsh
(Christopher.Walsh@childrens.harvard.edu) upon reasonable
request.

Code availability
Codes for Merscope Processing and Cellpose cell segmentation
pipelines are available at: https://github.com/carsen-str
inger/vizgen-postprocessing. Code used for MERFISH
data analysis in this manuscript is available at GitHub: https:
//github.com/ShunzhouJiang/Spatial-Single-cell-Analysi
s-Decodes-Cortical-Layer-and-Area-Specification
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