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Abstract—The most discriminative and revealing patterns in
the neuroimaging population are often confined to smaller subdi-
visions of the samples and features. Especially in neuropsychiatric
conditions, symptoms are expressed within micro subgroups
of individuals and may only underly a subset of neurologi-
cal mechanisms. As such, running a whole-population analysis
yields suboptimal outcomes leading to reduced specificity and
interpretability. Biclustering is a potential solution since subject
heterogeneity makes one-dimensional clustering less effective in
this realm. Yet, high dimensional sparse input space and seman-
tically incoherent grouping of attributes make post hoc analysis
challenging. Therefore, we propose a deep neural network called
semantic locality preserving auto decoder (SpaDE), for unsuper-
vised feature learning and biclustering. SpaDE produces coherent
subgroups of subjects and neural features preserving semantic
locality and enhancing neurobiological interpretability. Also, it
regularizes for sparsity to improve representation learning. We
employ SpaDE on human brain connectome collected from
schizophrenia (SZ) and healthy control (HC) subjects. The model
outperforms several state-of-the-art biclustering methods. Our
method extracts modular neural communities showing significant
(HC/SZ) group differences in distinct brain networks includ-
ing visual, sensorimotor, and subcortical. Moreover, these bi-
clustered connectivity substructures exhibit substantial relations
with various cognitive measures such as attention, working
memory, and visual learning.

Index Terms—Biclustering, Deep Learning, Functional Con-
nectivity, Brain Network Analysis

I. INTRODUCTION

Biclustering has been successful in knowledge discovery
and unveiling the latent manifold of a large dataset, especially
in biological data analysis. However, the clustering quality
is strongly dependent on a meaningful representation of the
data. Biological data e.g., neuroimaging, and genomics often
involve high dimensionality, noise, and missing values, posing
challenges for a model to learn the true illustrations of data
variance that lies on highly non-linear manifolds. Deep neural
network (DNN) has shown impressive performance in learning
cluster-friendly representation and clustering the latent space
[1]. To this end, the DNN-based biclustering model is less
explored, here, we propose a deep biclustering framework
named semantic locality preserving auto decoder (SpaDE)
for unsupervised feature learning and biclustering. Individuals
with neuropsychiatric conditions like schizophrenia are hetero-
geneous with diverse behavioral and neurological variations
[2]. Finding constrained low-level patterns is necessary in
neuropsychiatric conditions to provide insights into underlying
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biological processes and cognitive dysfunctions instrumental
for treatment and interventions [3]. However, these variations
are often present in a comparatively shorter span of the data
dimensions typically across a subset of individuals and fea-
tures. As such, biclustering allows for stratifying both subject
and feature dimensions for effective navigation through those
homogeneous subgroups. Biclustering has been employed to
understand brain functioning [4], temporal modulation [5], and
structural changes [2].

In neuroimaging bicluster (BiC), the patterns are expected
to be more disjoint, and semantically consistent. It gives more
flexibility to interpret the bi-clustered community and examine
the neurological relevance. Carrying similar values might not
manifest the equivalent semantic meaning in biological data
analysis thus SpaDE regulates semantic locality preservation
(SLP) in the biclusters. SLP has been adopted in multiple
research areas including genomics [6], proteomics [7], and
natural languages [8]. SLP maximizes semantic consistency
and aligns latent data points to their intrinsic manifold. So, the
bi-clustered neural attributes are more plausible to be partici-
pating in coherent brain functionalities. Current studies show
neuropsychiatric disorders as a disease of brain connectivity
[9]. So, effective connectivity is one of the areas that is widely
used for better understanding the interactions between brain
regions [10]. Thus, our study aims to explore the influential
communities in the human brain connectivity dynamic and
we apply our proposed method to the static functional network
connectivity (SFNC). SpaDE unveils semantically curated sub-
groups of connections and relates them with diverse cognitive
scores for the potential explanations of cognitive deficits in
schizophrenia. Moreover, the subgrouped connectivity patterns
exhibit significant HC/SZ group differences (Fig. 2).

The highlights of our main contributions are as follows,

o A deep neural network (DNN) for biclustering

« Introduced semantic locality in features subgrouping for

better neuro-interpretability.

e Sparsity regularization for improving representation

learning and with enriched separability.

« Not bounded to discrete data. It can operate on continuous

data representation learning and biclustering.

II. DATA PREPROCESSING AND STATIC FNC (SFNC)

Our dataset is a combination of three studies, COBRE [11],
fBIRN [12], and MPRC [13] consisting of 437 subjects with
275 healthy control (HC) and 162 schizophrenic (SZ) subjects.
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Fig. 1. Our proposed SpaDE model - an encoder-decoder architecture. Here
Ly, Ls, and Ly, represent the reconstruction loss, sparsity, and semantic
locality constraints, respectively. The bottleneck layer (hidden layer) has
k neurons which also illustrate the number of expected biclusters. L, is
computed on the reconstructed output from the decoder and used for pre-
training the model. Ls and L,,; regulate the latent space for sparsity and
semantic locality properties and make the representation more suitable for
biclustering.

The functional magnetic resonance imaging (fMRI) data is
preprocessed by statistical parametric mapping (SPM12, http:
/Iwww fil.ion.ucl.ac.uk/spm/). The preprocessing steps include
head motion correction and slice-timing correction for timing
differences in slice acquisition. The detailed preprocessing
steps are consistent with these studies [14, 15]. We run spa-
tially constrained group ICA (gICA) from the NeuroMark [16]
pipeline on the fMRI scans. gICA decomposes the imagery
and finalizes 53 intrinsic connectivity networks (ICNs) with
their time courses (TCs) which are grouped into seven brain
domains [15]. The functional connection is usually estimated
using the Pearson correlation between ICNs over time. The
mean across the time course generates a 53 x 53 symmetric
square matrix popularly known as static functional network
connectivity (sFNC) [15].

ITI. SEMANTIC LOCALITY PRESERVING AUTO DECODER
(SPADE)

SpaDE is built on an autoencoder (AE) architecture
equipped with specialized regularizations. It imposes two addi-
tional constraints on the latent space of the AE to make it more
separable and cluster-friendly. After the model converges, we
use a meta-heuristic (discussed next) on the hidden activation
and weight matrix inspired by this study [17] to decide the
bicluster assignments of features and samples. Fig. 1 illustrates
the proposed SpaDE architecture. It incorporates two branches
of neural networks known as an encoder for compression and a
decoder as the mirror image of the encoder for decompression.
Both the encoder and decoder consist of two linear layers
followed by ReLu activation. The idea is to send the data
through the bottleneck where the size of the bottleneck (i.e.,
the number of neurons in the hidden layer) is specified by
the number of expected biclusters (k). The sFNC matrix is
square and symmetric thus, we take the upper diagonal of the
connectivity matrix and vectorize it for training purposes. We
decide the most feasible configuration of the network including
the number of biclusters k using the grid search evaluated on
the reconstruction loss shown in (1). The other constraints we
use on our latent representations are semantic locality (2) and

sparsity constraints (4). Let the data matrix be X : N x M,
N number of samples, and M features. Since our bicluster
construction depends on the learned weight matrix (W) and
hidden activation («) of the neural network, the constraints
are designed to regulate the weight matrix, in general. The
reconstruction loss for pre-training the model is,

n=1m=1

1
Lr = w37 2 2 Xnm—f(Xnm)l? (1)
N M

where f(X,,.,) is the autoencoder’s reconstruction of the
input X,, ,,, and ||.|| is the Euclidean norm. The constraint we
use for preserving the semantic locality in the subgrouping is,

1 k=1

wzggwmmHme 2)

where d;; is the similarity measure between two features 7,
J in the data matrix. The similarity measure (d;;) is defined
as follows, H 2
dij=e 7 3)
Equation (3) is inspired by the Gaussian kernel [31] where
|lz;—a;|| is the distance between z; and z; and 0 € R
is a tuning parameter. We computed the distance using a
special adaptation of earth mover distance (EMD) for one-
dimensional vectors [18] hence suitable for our data (sFNC)
- vectorized and bounded [—1 1]. Notice that for a smaller
value of ||z;—x;|| and o, the heuristic keeps the nearby data
points closer. Then, we impose a sparsity constraint on the
weight matrix to avoid the bias from larger weights eventually
helps better reconstruct the features. We use a revised L1 norm
on the W matrix for the sparsity. However, we also control
for the sparsity in the primary decomposition of neuroimaging
data using group ICA. Therefore, we down-scale the sparsity
penalty in error calculation compared to the standard L1 norm.

L= ||W| 1 4)

The objective function using these constraints is formulated
as,

L0pt = pL, + (1_:u) (5Lpl + ’YLs) (5)

where § and v are non-negative and control the regularization
by different penalty terms. u helps train the model by balanc-
ing the load between feature learning and cluster-oriented loss.
Through learning the reconstruction of the data matrix with
these constraints, the model captures the contribution of each
sample and feature characterized by the entries in the weight
matrix and layer activation [17]. After the training scheme, the
weight |[Wj, ¢| determines the contribution of the f feature
to the k' bicluster, similarly, Z,(CS) decides for s subject.
The meta-heuristic for bicluster’s inclusion criteria is,

« Subject selection: Pick any subject s with |Z ,is)| > a(a €

(0,1))

o Feature selection: Pick any feature f with [W ¢| >

BB € (0,1))
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TABLE I
BICLUSTERING PERFORMANCE COMPARISON. THE HIGHLIGHTED BOTTOM ROW SHOWS THE BEST PERFORMANCES

Method k=5 k=4 k=10
MSR APCC FCO MSR APCC FCO MSR APCC FCO
k-Means 0.68140.05 0.27740.04  0.31940.05 0.7454+0.06  0.2674+0.03  0.3314-0.05 0.721+0.04  0.312+0.03  0.3014-0.06
N-BiC 0.531+0.05  0.381+0.05  0.387+0.06 | 0.6374+0.06 0.33640.03  0.36240.03 | 0.660+£0.06  0.338+0.04  0.389+0.04
AD 0.4124+0.04  0.440+0.02  0.465+0.04 | 0.44040.02 0.4154+0.03 0.49140.02 | 0.462+0.05 0.402+0.03  0.493+0.03
FABIA 0.420+0.04  0.365+0.05  0.412+0.07 | 0.42440.05 0.3814+0.04 0.37040.05 | 0.431£0.06 0.351£0.04  0.468+0.03
GAEBic 0.460+0.03  0.375+0.02  0.446+0.02 | 0.5014+0.04 0.35740.03  0.3684+0.02 | 0.553+0.08 0.336+£0.05  0.457+0.04
GraphMAE 0.32040.04  0.47640.05 0.601£0.06 | 0.4024+0.07  0.45040.05  0.49340.04 | 0.393+0.06 0.47640.05  0.48740.05
Ablation 1 0.3714+0.02  0.48540.06  0.493+0.07 | 0.4354+0.07 0.45940.08 0.4714+0.07 | 0.379+0.06  0.48640.05  0.45340.07
Ablation 2 0.34540.04  0.4954+0.04 0.610£0.06 | 0.401+0.03  0.4874+0.06  0.5214£0.05 | 0.374+0.06 0.4714+0.05  0.54240.04
SpaDE 0.3054+0.03  0.5264+0.05 0.610+0.01 | 0.381+0.03  0.5114+0.02  0.552+0.03 | 0.370+0.05  0.5024+0.01 0.578+0.03
Model Training The auto-encoder model is pre-trained bicluster b as follows,

using the reconstruction error described in (1) till achieving a 1

moderate performance on recovering the input sequence. Then, Cintra(b) = m Z Z sFNCi; (6)

we impose the clustering constraints on the latent space. For ) i€b jeb

ﬁne-t}mmg, we use the semantlcf locality and sparsity ‘pe.naltoles Cinter(b) = — Z Z sFNCj; (7)

described in (2) and (4) respectively. The overall optimization |b] ich igb

objective is defined in (5) and minimized using Adam opti-
mizer with a learning rate of 10~%. In training, we start with a
large value for y that regulates the representation learning with
reconstruction loss. Then, we reduce u to enable the cluster-
oriented influences on the latent space. The framework is built
in Pytorch and trained for 450 epochs.

IV. RESULTS

We use several biclustering methods to compare SpaDE
performance on three extensively researched datasets MPRC,
fBIRN, and COBRE. We select two empirical biclustering
methods FABIA [19] and N-BiC [2]. Then, we incorporate
more concurrent deep learning models Auto Decoder (AD)
[17], GAEBIiC [20], and GraphMAE [21]. The functional
connectivity is also modeled by using a graph neural network
(GNN). For a more comprehensive comparison, we included
GraphMAE and GAEBic. Moreover, we add two ablation stud-
ies to check the efficacy of the proposed constraints. Ablation
1 is without SLP and ablation 2 represents SpaDE without
sparsity loss. We run the models for 100 repetitive iterations
and present the (mean =+ standard deviation) performance
across the runs.

Performance Metrics We don’t have any ground truth
partition for the combined dataset. So, we introduce a metric
based on functional connectedness [22] to measure coherence
in the bi-clustered community.

Functional Coherence (FCQO) FCO compares the strength
of the connectivity among the attributes within a bicluster and
the interactions with the other parts of the system. In brain
dynamics, it’s a measure of the interaction among a subset of
brain networks and their communication with the rest of the
brain. Given the sFNC matrices, to evaluate a partitioning B,
we can measure the inter and intra connectedness (C) of a

where b’ is the set of connections made by the community b
with the rest of the system. We formulate functional coherence
(FCO) for a biclustering run B as in the equation (8).

- ﬁ S (ContraB)—Cinter(8) (®)
veB 191 2

We also adapt two frequently used evaluation metrics mean
square residue (MSR) [23] and average Pearson correlation
coefficients (APCC) [24] for performance comparison. Table
I shows the performance comparison between our model a
baseline (k-means) and state-of-the-art biclustering methods.
We run our experiments for three different k& values that
represent the number of biclusters. We obtain the best
performance for k = 5. Our proposed framework outperforms
various comparing methods by a margin in the performance
metrics we included (Table I). The ablation experiments show
slight degradation in performance which validate the efficacy
of the constraints governing the biclustering process.

FCO(B)

Biclusters Analysis. Figure 2 visualizes the sSFENC connec-
tions for the identified biclusters. These localized patterns in-
crease the chance of conducting uniform neuronal activity such
as motor, visual, and auditory responses. It implies semantic
localization through functional coherence among the connec-
tions in a bi-clustered subgroup. In bicluster 2, visual and sen-
sorimotor connections are supportive of motor learning, and
their impairment is acknowledged in schizophrenia [25]. Also,
the auditory and subcortical connections in bicluster 1 might
be contributing to the behavioral changes in schizophrenia
[26]. Bicluster (BiCs) 1, 2, 4, and 5 show significant connec-
tivity differences mostly among visual (VS), subcortical (SC),
and sensorimotor (SM). Neuroimaging research has identified
these domains to be associated with schizophrenia dysfunction
and social impairments [25]. Reduced connectivity strength
(BiC 2) and opposite connectivity (BiC 5) between SM and
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Fig. 2. Static functional network connectivity (SFNC) patterns in the biclusters. The top row represents the sSENC matrices computed by averaging the HC
subjects within a bicluster. The middle row for SZ and bottom HC-SZ difference. Each cell in these matrices represents the average connectivity strength for
a given connection across the subject group included in a bicluster. The color bar represents the strength of the connection.

VS are conceivably responsible for the obstruction in social
cognition and mentalization [27, 25]. The biclusters also depict
significant group differences between schizophrenia (SZ) and
the healthy control (HC) cohort. The connections in BiC 4 and
5 show reverse directionality in HC and SZ groups. It indicates
the relevant cognition driven by these connected communities
is divergent which may justify the cognitive differences be-
tween the subject groups. However, group differences in BiC
1, 2, and 3 are induced by the connectivity strength. In general,
the SZ neural components are weakly connected compared to
HC.

Association with Cognitive Scores. Figure 3 shows the
association of bi-clustered sFNC patterns with multiple cog-
nitive tasks. The design of cognitive tests and acquisition
of cognitive scores for the datasets are described in this
study [28]. The studies used CMINDS [29] and MCCB [30]
batteries to measure the cognitive scores. Additionally, we
conduct standard data harmonization procedures to ensure
consistency in scores across datasets. Our analysis reveals that
BiC 1 exhibits notably higher correlations with all cognitive
measures, underscoring the importance of interactions between
SC and VS systems in task performance. This trend extends to
BiC 5, which demonstrates connections between sensorimotor
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Fig. 3. Correlation of bi-clustered sFNC patterns with distinct cognitive
variables
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to auditory (AD) and VS systems, particularly relevant for
auditory processing. Conversely, VS-SM connectivity in BiC
2 displays a strong negative correlation with problem-solving
performance. That characterizes the relatedness of inverse
directional flow for specific cognitive tasks. In summary, the
results show sensorimotor and visual domains play crucial
roles in a variety of motor and visual processing tasks [27].

V. CONCLUSIONS

In this paper, we proposed a deep biclustering model for
delving into smaller but meaningful nuances of neuroimaging
data. The method aims to utilize the contextual knowledge in
the data matrix for clustering and minimize overlap among
the partitions. It reveals semantically cohesive and modular
communities in the brain’s functional connectivity. The ex-
periments demonstrate their association with cognitive perfor-
mance and how the connectivity patterns differ in patients
and healthy controls. The performance analysis shows that
our method provides a better subgrouping of samples with
a significant improvement in biclusters’ quality. Also, this
framework is extendable to multi-modal data and multi-omics
clusters which might provide inter-modality biclusters for
exploring homogeneity across multiple physiological sources.
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