-
- **1 Neural crest and periderm-specific requirements of** *Irf6* **during neural tube and
2 craniofacial development.
3 Shannon H. Carroll¹, Sogand Schafer¹, Eileen Dalessandro¹, Thach-Vu Ho², Yang Cl craniofacial development.**

3

4 Shannon H. Carroll¹, Sogan

5 C. Liao^{1,3,4} 4
5
6
7 Shannon H. Carroll¹, Sogand Schafer¹, Eileen Dalessandro¹, Thach-Vu Ho², Yang Chai²
- C. Liao $1,3,4$
-
- Shannon H. Carroll¹, Sogand Schafer¹, Eileen Dalessandro¹, Thach-Vu Ho², Yang Chai², Eric
C. Liao^{1,3,4}
¹Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute,
Children's H 6
7
8
0 $\begin{bmatrix} 7 & 8 \\ 9 & 0 \end{bmatrix}$ ¹Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute,
-
- ¹Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute,

2 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles,

2 ²Center for Craniofacial Mol 8 Children's Hospital of Philadelphia, PA 19104, USA.

² Center for Craniofacial Molecular Biology, University

³ Division of Plastic and Reconstructive Surgery, Dep.

³ Philadelphia, PA 19104, USA. 2
-
- ² Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA

1 ³ Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of

2 Philadelphia, PA 191 3 ³Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of

12 Philadelphia, PA 19104, USA.

⁴Shriners Hospital for Children, Tampa, FL 33607, USA

14
-
- 10 USA.
11 ³Divis
12 Philac
13 ⁴Shrin 12 Philadelphia, PA 19104, USA.
13 ⁴Shriners Hospital for Children,
14 ⁴Shriners Hospital for Children, Tampa, FL 33607, USA ⁴Shriners Hospital for Children, Tampa, FL 33607, USA
14
15
-
- 15

16 **Abstract**
17 *IRF6* is a
18 ability to i
19 ablation i IT IRF6 is a key genetic determinant of syndromic and non-syndromic cleft lip and palate. The
ability to interrogate post-embryonic requirements of *Irf6* has been hindered, as global *Irf6*
ablation in the mouse causes ne ability to interrogate post-embryonic requirements of *Irf6* has been hindered, as global *Irf6*
ablation in the mouse causes neonatal lethality. Prior work analyzing *Irf6* in mouse models
defined its role in the embryoni ablation in the mouse causes neonatal lethality. Prior work analyzing *Irf6* in mouse models
defined its role in the embryonic surface epithelium and periderm where it is required to reg
cell proliferation and differentiat defined its role in the embryonic surface epithelium and periderm where it is required to regulate

21 cell proliferation and differentiation. Several reports have also described *Irf6* gene expression in

22 other cell ty cell proliferation and differentiation. Several reports have also described *Irf6* gene expression in

22 other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in

23 non-epithelial ce other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in

23 non-epithelial cell lineages has been incomplete due to the severity and lethality of the *Irf6*

24 knockout model and the non-epithelial cell lineages has been incomplete due to the severity and lethality of the *Irf6*
knockout model and the paucity of work with a conditional *Irf6* allele. Here we describe the
generation and characterization knockout model and the paucity of work with a conditional *Irf6* allele. Here we describe the
25 generation and characterization of a new *Irf6* floxed mouse model and analysis of *Irf6* ablat
26 periderm and neural crest generation and characterization of a new *Irf6* floxed mouse model and analysis of *Irf6* ablation in

26 periderm and neural crest lineages. This work found that loss of *Irf6* in periderm recapitulates a

27 mild *Irf6* periderm and neural crest lineages. This work found that loss of *Irf6* in periderm recapitulates a
27 mild *Irf6* null phenotype, suggesting that *Irf6*-mediated signaling in periderm plays a crucial role
28 in regulating mild *Irf6* null phenotype, suggesting that *Irf6*-mediated signaling in periderm plays a crucial role
28 in regulating embryonic development. Further, conditional ablation of *Irf6* in neural crest cells
29 resulted in an in regulating embryonic development. Further, conditional ablation of *Irf6* in neural crest cells
resulted in an anterior neural tube defect of variable penetrance. The generation of this
conditional *Irf6* allele allows resulted in an anterior neural tube defect of variable penetrance. The generation of this

20 conditional *Irf6* allele allows for new insights into craniofacial development and new exp

21 into the post-natal role of *Irf* 30 conditional *Irf6* allele allows for new insights into craniofacial development and new exploration
31 into the post-natal role of *Irf6*.
32 Keywords
24 I^{Ff}6 alst polste pourel tube pourel areat *New der Weude Sundre* 31 into the post-natal role of *Irf6*.
32
33 Keywords
34 Irf6, cleft palate, neural tube, r 33
 34
 35
 36 33 Keywords
34 Irf6, cleft p
35
36 34 Irf6, cleft palate, neural tube, neural crest, Van der Woude Syndrome, periderm
35
36

-
- --
36
--

37 **Introduction**
38 *IRF6* was one
39 uncovered fro
40 popliteal ptery *IRF6* was one of the first genetic determinants of syndromic cleft lip and palate malformation,
39 uncovered from genome-wide association studies of Van der Woude syndrome (VWS) and
40 popliteal pterygium syndromic (PPS) 39 uncovered from genome-wide association studies of Van der Woude syndrome (VWS) and
30 popliteal pterygium syndrome (PPS) (Kondo et al., 2002). *IRF6* gene variants are also majo
31 contributors to non-syndromic cleft li popliteal pterygium syndrome (PPS) (Kondo et al., 2002). *IRF6* gene variants are also major
contributors to non-syndromic cleft lip with or without cleft palate (Leslie et al., 2013; Park et a
2007; Rahimov et al., 2008; contributors to non-syndromic cleft lip with or without cleft palate (Leslie et al., 2013; Park et al., 2007; Rahimov et al., 2008; Zucchero et al., 2004). Multiple studies using mouse and zebrafish models have shown that 2007; Rahimov et al., 2008; Zucchero et al., 2004). Multiple studies using mouse and zebrafish

43 models have shown that *Irf6* is expressed in the basal epithelium and periderm during

44 embryonic development with dynam models have shown that *Irf6* is expressed in the basal epithelium and periderm during
embryonic development with dynamic expression in the oral epithelium during palatoge
(Carroll et al., 2020; de la Garza et al., 2013; D embryonic development with dynamic expression in the oral epithelium during palatogenesis

(Carroll et al., 2020; de la Garza et al., 2013; Dougherty et al., 2013; Ferretti et al., 2011;

Ingraham et al., 2006; Iwata et al (Carroll et al., 2020; de la Garza et al., 2013; Dougherty et al., 2013; Ferretti et al., 2011;

Ingraham et al., 2006; Iwata et al., 2013; Knight et al., 2006; Kousa et al., 2017; Richards

al., 2006; Xu et al., 2006). *I* Ingraham et al., 2006; Iwata et al., 2013; Knight et al., 2006; Kousa et al., 2017; Richardson et al., 2006; Xu et al., 2006). *Irf6* is necessary for keratinocyte differentiation (Biggs et al., 2012; Ingraham et al., 2006 al., 2006; Xu et al., 2006). *Irf6* is necessary for keratinocyte differentiation (Biggs et al., 2012;
Ingraham et al., 2006; Restivo et al., 2011; Richardson et al., 2006) and for the development of
the periderm (de la Ga Ingraham et al., 2006; Restivo et al., 2011; Richardson et al., 2006) and for the development of
the periderm (de la Garza et al., 2013; Li et al., 2017; Richardson et al., 2009; Richardson et al.
2014; Sabel et al., 2009) the periderm (de la Garza et al., 2013; Li et al., 2017; Richardson et al., 2009; Richardson et al.,

2014; Sabel et al., 2009). Ablation of *Irf6* in mice resulted in severe epithelial adhesions that

caused "cocooning" o 2014; Sabel et al., 2009). Ablation of *Irf6* in mice resulted in severe epithelial adhesions that
51 caused "cocooning" of the embryo and caused adherence of palatal shelves to the tongue in
52 vertical orientation preclu caused "cocooning" of the embryo and caused adherence of palatal shelves to the tongue in the

state of the secondary palate (Ingraham et al.,

2006; Richardson et al., 2009; Richardson et al., 2014) and fuse (Iwata et al. vertical orientation precluding elevation and fusion of the secondary palate (Ingraham et al.,

2006; Richardson et al., 2009; Richardson et al., 2014) and fuse (Iwata et al., 2013).

While most studies have examined the r 2006; Richardson et al., 2009; Richardson et al., 2014) and fuse (Iwata et al., 2013).
While most studies have examined the requirement of *Irf6* in epithelial differer
several studies have described *Irf6* function in no 54 While most studies have examined the requirement of *Irf6* in epithelial differentiation,
55 several studies have described *Irf6* function in non-epithelial tissue, in either autonomous or
56 non-cell-autonomous fashio several studies have described *Irf6* function in non-epithelial tissue, in either autonomous or
non-cell-autonomous fashion (Goudy et al., 2013; Thompson et al., 2019). *Irf6* is expressed i
cell types not restricted to s non-cell-autonomous fashion (Goudy et al., 2013; Thompson et al., 2019). *Irf6* is expressed in

cell types not restricted to surface epithelium during early development, including the

craniofacial mesenchyme and neuroect s cell types not restricted to surface epithelium during early development, including the

s craniofacial mesenchyme and neuroectoderm (Carroll et al., 2020; Fakhouri et al., 20

et al., 2013; Sabel et al., 2009; Thompson craniofacial mesenchyme and neuroectoderm (Carroll et al., 2020; Fakhouri et al., 2017; Goudy

et al., 2013; Sabel et al., 2009; Thompson et al., 2019). Further, analysis of murine *MCS9.7*

enhancer element activity, whic et al., 2013; Sabel et al., 2009; Thompson et al., 2019). Further, analysis of murine *MCS9.7*

enhancer element activity, which replicates endogenous *Irf6* expression in most tissues, yie

expression in developing somite enhancer element activity, which replicates endogenous *Irf6* expression in most tissues, yielded
61 expression in developing somites, tongue, axial cartilage, and muscle (Fakhouri et al., 2012).
62 We and others have desc expression in developing somites, tongue, axial cartilage, and muscle (Fakhouri et al., 2012).

62 We and others have described that mesenchymal-derived craniofacial tissue, such as muscle

62 We and others have described 62 We and others have described that mesenchymal-derived craniofacial tissue, such as muscle

Solution of the muscle of that mesenchymal-derived craniofacial tissue, such as muscle

That muscle is that the muscle of the mu

and cartilage are dysmorphic in the *Irf6* null mice (Carroll et al., 2020; Chu et al., 2016;

164 Thompson et al., 2019). However, it remains unclear whether there is a cell-autonomour

165 *Irf6* in non-epithelial cell t Frompson et al., 2019). However, it remains unclear whether there is a cell-autonomous role of

formation in these dysmorphologies are associated consequences of the severe epithelial adhesions caused

by a dysfunctional e *Irf6* in non-epithelial cell types, a non-cell-autonomous role caused by loss of epithelial *Irf6*, or if
66 these dysmorphologies are associated consequences of the severe epithelial adhesions caused
67 by a dysfunctiona

these dysmorphologies are associated consequences of the severe epithelial adhesions caused
by a dysfunctional epithelium.
In addition to orofacial and epithelial development, *Irf6* has been found to have a role in
neurul 67 by a dysfunctional epithelium.

68 In addition to orofacial

69 neurulation. *Irf6* is expressed in Tfap2a, a known regulator of n In addition to orofacial and epithelial development, *Irf6* has been found to have a role in
neurulation. *Irf6* is expressed in the neuroectoderm of the neural folds and is co-expressed with
Tfap2a, a known regulator of n neurulation. *Irf6* is expressed in the neuroectoderm of the neural folds and is co-expressed with

Tfap2a, a known regulator of neural tube closure (Kousa et al., 2019). Although neural tube

defects are not apparent in *Tfap2a,* a known regulator of neural tube closure (Kousa et al., 2019). Although neural tube
defects are not apparent in *Irf6* null mice, ablation of other genes in the Irf6 regulatory pathw
i.e. *Tfap2A* and *Grhl3*, le defects are not apparent in *Irf6* null mice, ablation of other genes in the Irf6 regulatory pathway,
i.e. *Tfap2A* and *Grhl3*, leads to rostral and caudal neural tube defects (Schorle et al., 1996; Ting
et al., 2003; Zha i.e. *Tfap2A* and *Grhl3*, leads to rostral and caudal neural tube defects (Schorle et al., 1996; Ting
et al., 2003; Zhang et al., 1996). Utilizing an *Irf6* hypomorph allele and a *Krt4:Irf6* transgenic
mouse to titrate et al., 2003; Zhang et al., 1996). Utilizing an *Irf6* hypomorph allele and a *Krt4:Irf6* transgenic
74 mouse to titrate *Irf6* expression levels, Kousa et al. found homeostasis of *Irf6* to be required to
75 neurulation (

mouse to titrate *Irf6* expression levels, Kousa et al. found homeostasis of *Irf6* to be required for

The ability to interrogate non-epithelial and post-natal functions of *Irf6* has been impaired

by the severe and leth 75 neurulation (Kousa et al., 2019).
76 The ability to interrogate r
77 by the severe and lethal phenoty
78 floxed mouse model has given so The ability to interrogate non-epithelial and post-natal functions of *Irf6* has been impaired
by the severe and lethal phenotype of the *Irf6* null mouse models. A previously generated *Irf6*
floxed mouse model has given by the severe and lethal phenotype of the *Irf6* null mouse models. A previously generated *Irf6*
floxed mouse model has given some insight (Smith et al., 2017). Conditional ablation of *Irf6* ir
oral epithelium via a *Pit* floxed mouse model has given some insight (Smith et al., 2017). Conditional ablation of *Irf6* in
oral epithelium via a *Pitx2*-Cre driver line resulted in tooth development and maturation defects
(Chu et al., 2016). Since oral epithelium via a *Pitx2*-Cre driver line resulted in tooth development and maturation defects

(Chu et al., 2016). Since the previously generated *Irf6* floxed allele was reported to show

variable recombination effic 80 (Chu et al., 2016). Since the previously generated *Irf6* floxed allele was reported to show
81 variable recombination efficiency and we remained unsuccessful in acquiring it (Smith et
82 2017), we generated a new condi variable recombination efficiency and we remained unsuccessful in acquiring it (Smith et al.,

2017), we generated a new conditional *Irf6* floxed mouse allele for this work. This *Irf6*

conditional allele demonstrated co 2017), we generated a new conditional *Irf6* floxed mouse allele for this work. This *Irf6*
conditional allele demonstrated complete recombination efficiency with every ubiquite
tissue-restricted Cre drivers we have tested

conditional allele demonstrated complete recombination efficiency with every ubiquitous and
84 tissue-restricted Cre drivers we have tested.
85 In this study, we describe the generation of a new conditional *Irf6* mouse al tissue-restricted Cre drivers we have tested.
85 In this study, we describe the generat
86 analyze *Wnt1*-Cre2-mediated disruption of *In*
87 the *Krt6ai*-Cre driver line to ablate *Irf6* functic In this study, we describe the generation of a new conditional *Irf6* mouse allele and
analyze *Wnt1*-Cre2-mediated disruption of *Irf6* in the neural crest cells (NCCs). We also uti
the *Krt6ai*-Cre driver line to ablate analyze *Wnt1-*Cre2-mediated disruption of *Irf6* in the neural crest cells (NCCs). We also utilized
87 the *Krt6ai-*Cre driver line to ablate *Irf6* function in periderm. These results demonstrate for the
4 87 the *Krt6ai*-Cre driver line to ablate *Irf6* function in periderm. These results demonstrate for the

- first time a cell-autonomous role for Irf6 in the neural crest as well as corroborate the functional

role of Irf6 in the periderm during orofacial development.

90
 Materials and Methods

83
 Concration of a new condit
- role of Irf6 in the periderm during orofacial development.
90
**91 Materials and Methods
92 Generation of a new conditional Irf6 mouse allele**
-

- 91
92
93
04 91 **Materials and Methods
92 Generation of a new co**
93 All procedures were appr
94 University where the initia Generation of a new conditional *Irf6* mouse allele
93 All procedures were approved by IACUCs for Massac
94 University where the initial work was carried out. The
95 introduce loxP sites (Miura et al., 2018) flanking exon All procedures were approved by IACUCs for Massachusetts General Hospital and Harvard

94 University where the initial work was carried out. The *Easi*-CRISPR protocol was utilized to

95 introduce loxP sites (Miura et al. University where the initial work was carried out. The *Easi*-CRISPR protocol was utilized to

95 introduce loxP sites (Miura et al., 2018) flanking exons 3 and 4 of *Irf6*. As these exons conta

96 the DNA binding region introduce loxP sites (Miura et al., 2018) flanking exons 3 and 4 of *Irf6*. As these exons contain
196 the DNA binding region (Kondo et al., 2002), they are predicted to be required for Irf6
197 transcriptional function an the DNA binding region (Kondo et al., 2002), they are predicted to be required for Irf6
197 transcriptional function and have been previously targeted for conditional ablation of Ir
198 et al., 2017). Guide RNAs (gRNA) wer transcriptional function and have been previously targeted for conditional ablation of Irf6 (Smith
et al., 2017). Guide RNAs (gRNA) were designed within the intronic regions flanking exons 3
and 4 using the CRISPR gRNA des et al., 2017). Guide RNAs (gRNA) were designed within the intronic regions flanking exons 3
and 4 using the CRISPR gRNA design tool from Benchling and were ordered from Synthego.
Single-stranded DNA (ssDNA) donor sequences and 4 using the CRISPR gRNA design tool from Benchling and were ordered from Synthego.

00 Single-stranded DNA (ssDNA) donor sequences were designed to contain the loxp sequence

101 flanked by homologous arms and were ord 100 Single-stranded DNA (ssDNA) donor sequences were designed to contain the loxp sequence
101 flanked by homologous arms and were ordered from IDT. Cas9, gRNA and donor ssDNA were
102 injected into mouse zygotes by the Ha 101 flanked by homologous arms and were ordered from IDT. Cas9, gRNA and donor ssDNA were
102 injected into mouse zygotes by the Harvard Genome Modification Facility. Resulting viable pups
103 were genotyped by PCR as well injected into mouse zygotes by the Harvard Genome Modification Facility. Resulting viable pups
103 were genotyped by PCR as well as sequenced to ensure the insertion of the loxP sequences
104 within the same DNA strand. A were genotyped by PCR as well as sequenced to ensure the insertion of the loxP sequences
104 within the same DNA strand. A female mouse was identified with the correct genome
105 modifications, was phenotypically normal, a within the same DNA strand. A female mouse was identified with the correct genome
105 modifications, was phenotypically normal, and was designated F0. Breeding with a wi
106 C57BL/6J mouse generated F1s, which were in-cros modifications, was phenotypically normal, and was designated F0. Breeding with a wildtype

106 C57BL/6J mouse generated F1s, which were in-crossed to generate mice homozygous for the

107 floxed *Irf6* allele (*Irf6*^{f//f)} 106 C57BL/6J mouse generated F1s, which were in-crossed to generate mice homozygous for the

107 floxed *Irf6* allele (*Irf6^{f//fl}*).

108 **Mouse lines**

110 To validate efficient Cro recombination and to confirm recombin floxed *Irf6* allele (*Irf6*^{f/fl}).

107 floxed *Irf6* allele (*Irf6*^{1/11}).
108
109 **Mouse lines**
110 To validate efficient Cre 109
110
111
112 109 **Mouse lines**
110 To validate ef
111 mice were bre
112 (Jackson Lab To validate efficient Cre recombination and to confirm recombination ablates *Irf6* function, *Irf6*fl/fl 111
112
113 111 mice were bred to the Cre deleter lines CMV-Cre (Jackson Labs stock# 006054) and Ella-Cre

112 (Jackson Labs stock# 003724). The resulting pups (viable and non-viable) were phenotyped

113 and genotyped. Wnt1Cre2 and S 112 (Jackson Labs stock# 003724). The resulting pups (viable and non-viable) were phenotyped
113 and genotyped. Wnt1Cre2 and Sox10Cre were obtained from Jackson Labs (stock# 022501
113 and genotyped. Wnt1Cre2 and Sox10Cre 113 and genotyped. *Wnt1*Cre2 and *Sox10*Cre were obtained from Jackson Labs (stock# 022501

- 114 and 025807, respectively). *Krt6ai*-Cre came from Vesa Kaartinen. Crect line came from Russ
115 Carstens but originated from Trevor Williams. For timed pregnancies, E0.5 was determined
116 upon observation of a copulat Carstens but originated from Trevor Williams. For timed pregnancies, E0.5 was determined
116 upon observation of a copulatory plug.
117 **Histology and in situ hybridization**
118 Mise were fixed with 4% fermeldebyde followe
-
-

116 upon observation of a copulatory plug.
117
118 Histology and *in situ* **hybridization**
119 Mice were fixed with 4% formaldehyd
120 Tiesues were embedded in OCT and 117
118
119
120
121 **Histology and** *in situ* **hybridization
119 Mice were fixed with 4% formaldeh
120 Tissues were embedded in OCT are
121 Staining was performed according to** Mice were fixed with 4% formaldehyde followed by cryoprotection in 15 and 30% sucrose.

120 Tissues were embedded in OCT and 10 μ m sections were made. Hematoxylin and Eosin

121 staining was performed according to a sta Tissues were embedded in OCT and 10 μm sections were made. Hematoxylin and Eosin
121 staining was performed according to a standard protocol (Fischer et al., 2008) and slides were
122 imaged with a Leica DM6 upright micro

staining was performed according to a standard protocol (Fischer et al., 2008) and slides were
122 imaged with a Leica DM6 upright microscope and LAS X software.
123 RNAscope probes for mouse *Irf6, Wnt1*, and Sox10 were d imaged with a Leica DM6 upright microscope and LAS X software.

123 RNAscope probes for mouse *Irf6*, *Wnt1*, and *Sox10* were des

124 Advanced Cell Diagnostics. RNAscope *in situ* hybridization was

125 manufacturer's pr RNAscope probes for mouse *Irf6*, *Wnt1*, and *Sox10* were designed and manufactured by
124 Advanced Cell Diagnostics. RNAscope *in situ* hybridization was performed according to the
125 manufacturer's protocol (Advanced C 124 Advanced Cell Diagnostics. RNAscope *in situ* hybridization was performed according to the

125 manufacturer's protocol (Advanced Cell Diagnostics). Slides were imaged using a confocal laser

126 scanning microscope (L manufacturer's protocol (Advanced Cell Diagnostics). Slides were imaged using a confocal laser
126 scanning microscope (Leica SP8) and image processing was performed using ImageJ version
127 2.0 (2018).
128 MicroCT analysi scanning microscope (Leica SP8) and image processing was performed using ImageJ version
127 2.0 (2018).
128 MicroCT analysis and measurements
129 Seepe were performed using a uCT40 benefited accounts (Seepee Medical AC Prü

127 2.0 (2018).
128
129 **MicroCT ar**
130 Scans were 128
129
130
131
131 **MicroCT analysis and measurements**
130 Scans were performed using a µCT40 be
131 Switzerland). Scans were acquired with a
132 potential, 114 mA intensity, and 300 ms 130 Scans were performed using a μ CT40 benchtop scanner (Scanco Medical AG, Brüttisellen,
131 Switzerland). Scans were acquired with a 15 μ m³ isotropic voxel size, 70 kVP peak x-ray tub
132 potential, 114 mA inten

Switzerland). Scans were acquired with a 15 μ m³

Switzerland). Scans were acquired with a 15 μ m³ isotropic voxel size, 70 kVP peak x-ray tube

potential, 114 mA intensity, and 300 ms integration time. Morphometric landmarks were chose

as previously described (Ho e potential, 114 mA intensity, and 300 ms integration time. Morphometric landmarks were chosen
as previously described (Ho et al., 2015) and measurements were made using Avizo software.
134
Results
135 **Results**

- 133 as previously described (Ho et al., 2015) and measurements were made using Avizo software.
134
Results
136 Irf6 is expressed in Wnt1+ neuroectoderm and neural crest cell-derived cranial
137 measurehyme
-
- 134
135
136
137
138

135 **Results
136** *Irf6* **is ex
137 mesencl
138** *Irf6* **null r** 138 *Irf6* null mice exhibit a foreshortened midface as well as malformation of neural crest-derived
139 maxilla (Fakhouri et al., 2017; Richardson et al., 2006; Thompson et al., 2019). *Irf6* gene

Irf6 **is expressed in** *Wnt1***+ neuroectoderm and neural crest cell-derived cranial

mesenchyme
** *Iff6* **null mice exhibit a foreshortened midface as well as malformation of neural crest-

maxilla (Fakhouri et al., 2017; Ri** 137 **mesenchyme**
138 *Irf6* null mice ex
139 maxilla (Fakho 139 maxilla (Fakhouri et al., 2017; Richardson et al., 2006; Thompson et al., 2019). *Irf6* gene 140 dosage has also been found to impact neural tube closure (Kousa et al., 2019). It was

141 previously reported that *Irf6* is expressed in the neuroectoderm and neural folds of mot

142 embryos (Bertol et al., 2022; K 141 previously reported that *Irf6* is expressed in the neuroectoderm and neural folds of mouse

142 embryos (Bertol et al., 2022; Kousa et al., 2019). To examine whether cranial neural crest

143 express *Irf6*, we analyz embryos (Bertol et al., 2022; Kousa et al., 2019). To examine whether cranial neural crest cells

express *Irf6*, we analyzed *Irf6* mRNA expression by RNAscope *in situ* hybridization in mouse

embryos during early cranio express *Irf6*, we analyzed *Irf6* mRNA expression by RNAscope *in situ* hybridization in mouse

144 embryos during early craniofacial development. At E8 and E9, we found *Irf6* mRNA co-

145 expressed with *Wnt1* in the n embryos during early craniofacial development. At E8 and E9, we found *Irf6* mRNA co-
expressed with *Wnt1* in the neuroectoderm. *Irf6* mRNA expression was also found co-
expressed with *Sox10*, demonstrating *Irf6* expre expressed with *Wnt1* in the neuroectoderm. *Irf6* mRNA expression was also found co-
expressed with Sox10, demonstrating *Irf6* expression in migratory neural crest cells (F
Further, *Irf6* mRNA is expressed within the ne expressed with *Sox10*, demonstrating *Irf6* expression in migratory neural crest cells (Fig 1b).
147 Further, *Irf6* mRNA is expressed within the neural crest-derived craniofacial mesenchyme at 148 (Fig 1c) and E13.5 (Fig 147 Further, *Irf6* mRNA is expressed within the neural crest-derived craniofacial mesenchyme at E9 (Fig 1c) and E13.5 (Fig 1d). Based on these detailed gene expression findings, as well as previously reported expression o (Fig 1c) and E13.5 (Fig 1d). Based on these detailed gene expression findings, as well as
149 previously reported expression of *Irf6* in the neuroectoderm (Bertol et al., 2022; Kousa et a
150 2019), we posited that *Irf6* previously reported expression of *Irf6* in the neuroectoderm (Bertol et al., 2022; Kousa et al.,
150 2019), we posited that *Irf6* contributes to craniofacial development beyond its established role
151 the surface epithe 2019), we posited that *Irf6* contributes to craniofacial development beyond its established role in
151 the surface epithelium and periderm.
152 **Generation and validation of an** *Irf6* conditional allele
154 Severe epith

151 the surface epithelium and periderm.
152
**153 Generation and validation of an Irfl
154** Severe epithelial adhesions and perin 152
153
154
155
156 **Generation and validation of an** *Irf6* **conditional allele
154 Severe epithelial adhesions and perinatal lethality in the** *Inf***
155 (Ingraham et al., 2006) and the** *Irf6* **R84C single nucleotid
156 al., 2006) impeded full a** 154 Severe epithelial adhesions and perinatal lethality in the *Irf6* complete knockout embryos
155 (Ingraham et al., 2006) and the *Irf6* R84C single nucleotide substitution mouse (Richardson)
156 al., 2006) impeded full 155 (Ingraham et al., 2006) and the *Irf6* R84C single nucleotide substitution mouse (Richardson et al., 2006) impeded full analysis of *Irf6* function. The previously reported *Irf6* floxed mouse allele
157 was reported t 156 al., 2006) impeded full analysis of *Irf6* function. The previously reported *Irf6* floxed mouse allele
157 was reported to exhibit inconsistent recombination depending on the Cre driver used,
158 confounding analysis was reported to exhibit inconsistent recombination depending on the Cre driver used,
158 confounding analysis of *Irf6* requirement in the multiple tissue types (Smith et al., 2017
159 the complexity of *Irf6* gene express 158 confounding analysis of *Irf6* requirement in the multiple tissue types (Smith et al., 2017). Given
159 the complexity of *Irf6* gene expression in neuroectoderm and neural crest during early
160 embryogenesis, we gene the complexity of *Irf6* gene expression in neuroectoderm and neural crest during early

160 embryogenesis, we generated a new *Irf6* floxed allele to better understand *Irf6* function

161 utilized an CRISPReasi technique 160 embryogenesis, we generated a new *Irf6* floxed allele to better understand *Irf6* function. We utilized an CRISPReasi technique (Miura et al., 2018) to insert loxP sequences flanking exor and 4 of the *Irf6* gene (Fig utilized an CRISPReasi technique (Miura et al., 2018) to insert loxP sequences flanking exon 3

and 4 of the *Irf6* gene (Fig 2a). Insertion of the (22bp) loxP sequence was verified by PCR

genotyping of potential founders and 4 of the *Irf6* gene (Fig 2a). Insertion of the (22bp) loxP sequence was verified by PCR
163 genotyping of potential founders (Fig 2b), followed by Sanger sequencing to confirm loxP
164 insertion without disruption of 163 genotyping of potential founders (Fig 2b), followed by Sanger sequencing to confirm loxP
164 insertion without disruption of exonic sequences.
164 164 insertion without disruption of exonic sequences.

164 insertion without disruption of exonic sequences.

165 To test whether Cre expression resulted in recombination and loss of function, the
166 confirmed founder mouse was bred to two different deleter strains; CMV-Cre and Ella-Cre
167 found that pups that were homozygous fo 166 confirmed founder mouse was bred to two different deleter strains; *CMV*-Cre and *Ella*-Cre. We
167 found that pups that were homozygous for loxP but negative for Cre were phenotypically norma
168 and healthy. Pups tha 167 found that pups that were homozygous for loxP but negative for Cre were phenotypically normal
168 and healthy. Pups that were homozygous for loxP and positive for *CMV*-Cre or *Ella*-Cre
169 recapitulated the epithelia and healthy. Pups that were homozygous for loxP and positive for *CMV*-Cre or *Ella*-Cre

169 recapitulated the epithelial adhesions, limb abnormalities, and cleft palate displayed by *li*

170 knockout mice (Fig 2c,d). Fu 169 recapitulated the epithelial adhesions, limb abnormalities, and cleft palate displayed by *Irf6* total
170 knockout mice (Fig 2c,d). Further, we found this phenotype to be completely penetrant. Based
171 on these resul knockout mice (Fig 2c,d). Further, we found this phenotype to be completely penetrant. Based
171 on these results, we determined faithful recombination of the *Irf6* floxed allele leading to
172 functional Irf6 ablation.
1 171 on these results, we determined faithful recombination of the *Irf6* floxed allele leading to
172 functional Irf6 ablation.
173 **Ablation of** *Irf6* in the *Wnt1* lineage leads to a cranial defect and increased perinat 172 functional Irf6 ablation.
173
174 **Ablation of** *Irf6* **in the**
175 **lethality**

173
174
175
176
177 **Ablation of** *Irf6* **in the** *Wnt1* **lineage leads to a cranial defect and increased perinatal
175 lethality
176 With recombination of the floxed** *Irf6* **allele validated, we tested the effect of** *Irf6* **ablation in
177 NCC lin** 175 **lethality**
176 With reco
177 NCC line
178 recombin With recombination of the floxed *Irf6* allele validated, we tested the effect of *Irf6* ablation in the
177 NCC lineage. We utilized the *Wnt1*-Cre2 and the Sox10-Cre mouse lines to drive the
178 recombination of the flox 177 NCC lineage. We utilized the *Wnt1*-Cre2 and the *Sox10*-Cre mouse lines to drive the
178 recombination of the floxed genome sequence. *Wnt*1 is expressed in the neural folds
179 migratory NCCs (Lewis et al., 2013; Sch 178 recombination of the floxed genome sequence. *Wnt*1 is expressed in the neural folds and pre-
179 migratory NCCs (Lewis et al., 2013; Schock et al., 2017) whereas *Sox10* is expressed in
180 migratory NCCs (Matsuoka et migratory NCCs (Lewis et al., 2013; Schock et al., 2017) whereas *Sox10* is expressed in
180 migratory NCCs (Matsuoka et al., 2005). Analysis of *Sox10*-Cre *Irf6* cKO pups revealed n
181 phenotypic effect of *Irf6* ablati migratory NCCs (Matsuoka et al., 2005). Analysis of *Sox10*-Cre *Irf6* cKO pups revealed no
181 phenotypic effect of *Irf6* ablation in migratory and post-migratory NCCs (data not shown). T
182 finding suggests that althou 181 phenotypic effect of *Irf6* ablation in migratory and post-migratory NCCs (data not shown). This
182 finding suggests that although *Irf6* mRNA can be found in NCC-derived mesenchymal tissue, it
183 expression is not n finding suggests that although *Irf6* mRNA can be found in NCC-derived mesenchymal tissue, its

183 expression is not necessary for craniofacial development. In contrast to Sox10-Cre driven

184 ablation, analysis of *Wnt1* expression is not necessary for craniofacial development. In contrast to *Sox10*-Cre driven
184 ablation, analysis of *Wnt1*-Cre2 *Irf6* cKO pups revealed a range of phenotype severity with
185 some pups phenotypically nor ablation, analysis of *Wnt1*-Cre2 *Irf6* cKO pups revealed a range of phenotype severity with
185 some pups phenotypically normal and viable. We also observed P0 pups that were largely
186 normal but exhibited skin lesions 185 some pups phenotypically normal and viable. We also observed P0 pups that were largely
186 normal but exhibited skin lesions overlying the nasal and frontal bones (Fig 3a). These skin
187 lesions resolved but led to de 186 normal but exhibited skin lesions overlying the nasal and frontal bones (Fig 3a). These skin
187 lesions resolved but led to delayed fur growth (Fig 3b). To detect whether *Wnt1*-Cre2 cKO o
188 resulted in differences 187 lesions resolved but led to delayed fur growth (Fig 3b). To detect whether *Wnt1*-Cre2 cKO of *Irf6*
188 resulted in differences in pup survival, litter size at P0 was recorded and compared to genotype
189 ratios at 3 188 resulted in differences in pup survival, litter size at P0 was recorded and compared to genotype
189 ratios at 3 weeks of age. Based on total pup numbers and expected ratio (based on parent
190 genotypes), we expected 189 ratios at 3 weeks of age. Based on total pup numbers and expected ratio (based on parent
190 genotypes), we expected approximately 6 *Wnt1*-Cre2 *Irf6* cKO at weaning. Instead, 1 *Irf6* cl 190 genotypes), we expected approximately 6 *Wnt1*-Cre2 *Irf6* cKO at weaning. Instead, 1 *Irf6* cKO

191 pup was identified at 3 weeks of age, suggesting perinatal lethality between birth and weaning.

192 The numbers of wild-type and heterozygous pups were as expected. We did not find the

193 lethality of the *Wnt1*-Cre 192 The numbers of wild-type and heterozygous pups were as expected. We did not find the
193 lethality of the *Wnt1*-Cre2 *Irf6* cKO pups to be due to cleft palate, as histological examina
194 P0 dead or moribund pups show 193 lethality of the *Wnt1*-Cre2 *Irf6* cKO pups to be due to cleft palate, as histological examination of
194 P0 dead or moribund pups showed palatogenesis to be normal (Fig. 3c).
195 To examine whether the underlying cal 194 P0 dead or moribund pups showed palatogenesis to be normal (Fig. 3c).

195 To examine whether the underlying calvarial development was aff

196 Cre2 *Irf6* cKO before parturition, we performed histology on coronal sect 195 To examine whether the underlying calvarial development was affected in the *Wnt1*-
196 Cre2 *Irf6* cKO before parturition, we performed histology on coronal sections taken through
197 nasal-frontal bone junction of *W* 196 Cre2 *Irf6* cKO before parturition, we performed histology on coronal sections taken through the
197 nasal-frontal bone junction of *Wnt1*-Cre2 *Irf6* cKO E16 pups and littermate controls. We found
198 that control mic nasal-frontal bone junction of *Wnt1*-Cre2 *Irf6* cKO E16 pups and littermate controls. We found
that control mice had bone tissue at the midline, forming a suture between right and left calvari
In contrast, the *Wnt1*-Cre that control mice had bone tissue at the midline, forming a suture between right and left calvaria.

199 In contrast, the *Wnt1*-Cre2⁺;Irf6^{ft/ft} cKO mice exhibited a large gap devoid of bone tissue that

199 spanned th In contrast, the *Wnt1*-Cre2⁺;Irf6^{fl/fl} In contrast, the *Wnt1*-Cre2⁺;Irf6^{n/n} cKO mice exhibited a large gap devoid of bone tissue that
200 spanned the midline (Fig 3d). These findings of a midline cranial defect and partial lethality in
201 *Wnt1*-Cre2 *Irf* 200 spanned the midline (Fig 3d). These findings of a midline cranial defect and partial lethality in

201 Wnt1-Cre2 Irf6 cKO mice suggest that Irf6 expression in the pre-migratory NCCs is functional

202 required for cran *Wnt1*-Cre2 *Irf6* cKO mice suggest that *Irf6* expression in the pre-migratory NCCs is functionally

202 required for craniofacial development.

203 **Wnt1-Cre2** *Irf6* **cKO mice exhibited incomplete frontal and parietal bon**

202 required for craniofacial development.
203
204 *Wnt1-Cre2 Irf6 cKO mice exhibited i*
205 The variable severity of the cra 203
204
205
206
207 **Wnt1-Cre2** *Irf6* **cKO mice exhibited incomplete frontal and parietal bone development

205 The variable severity of the cranial defect in** *Wnt1***-Cre** *Irf6* **cKO mice spurred us to

206 examine the cranial bone development** The variable severity of the cranial defect in *Wnt1*-Cre *Irf6* cKO mice spurred us to
206 examine the cranial bone development of the mice more precisely with microCT analysis.
207 Cre cKO pups and sex-matched littermate examine the cranial bone development of the mice more precisely with microCT analysis. *Wnt1*
207 Cre cKO pups and sex-matched littermate controls were collected at 10 days of age for microCT
208 scanning. For controls, we 207 Cre cKO pups and sex-matched littermate controls were collected at 10 days of age for microCT

208 scanning. For controls, we analyzed both *Wnt1*-Cre negative, *Irf6*^{*liff*} and *Wnt1*-Cre positive,

209 *Irf6^{wtfi}* scanning. For controls, we analyzed both *Wnt1*-Cre negative, *Inf6^{fI/fl}* and *Wnt1*-Cre positive, scanning. For controls, we analyzed both *Wnt1*-Cre negative, *Irf6*^{I/I1} and *Wnt1*-Cre positive,
209 *Irf6*^{W/fl} pups to account for potential differences caused by the *Wnt1*-Cre transgene. *Wnt1*-
210 Cre⁺;*Irf6* *Irf6^{wt/fl}* pups to account for potential differences caused by the *Wnt1*-Cre transgene. Wnt1-209 *Irf6^{wtm}* pups to account for potential differences caused by the *Wnt1*-Cre transgene. *Wnt1*-210 Cre⁺;*Irf6^{ft/ft}* pups exhibited decreased mineralization of the frontal and parietal bones at the midline, althou Cre*⁺ ;Irf6fl/fl* 210 Cre⁺;*Irf6^{ft/11}* pups exhibited decreased mineralization of the frontal and parietal bones at the
211 midline, although the degree of this defect was variable between individuals (Fig 4a). Thes
212 observations ar midline, although the degree of this defect was variable between individuals (Fig 4a). These
212 observations are similar to previously published microCT analysis of the *Irf6* null mouse
213 (Thompson et al., 2019). To qu observations are similar to previously published microCT analysis of the *Irf6* null mouse

213 (Thompson et al., 2019). To quantify potential changes in cranial development in the cK

214 we performed a series of measurem 213 (Thompson et al., 2019). To quantify potential changes in cranial development in the cKO mice,
214 we performed a series of measurements based on established anatomical landmarks in cKO
215 versus sex-matched littermat we performed a series of measurements based on established anatomical landmarks in cKO
215 versus sex-matched littermate *Wnt1*-Cre negative controls (Fig 4a). Overall, we did not detect
216 significant differences in leng 215 versus sex-matched littermate *Wnt1*-Cre negative controls (Fig 4a). Overall, we did not detect
216 significant differences in length or width measurements of the frontal, maxillary, or nasal bones
²¹⁶ significant di 216 significant differences in length or width measurements of the frontal, maxillary, or nasal bones,

243 and it was noted that the *Krt6ai*-Cre⁺;*Irf6*^{fl/fl} genotype was not found at 3 weeks of age. As *Irf6*
and it was noted that the *Krt6ai*-Cre⁺;*Irf6*^{fl/fl} genotype was not found at 3 weeks of age. As *Irf6*
and it

244 global null mice die shortly after birth, we observed neonates at P0 and found that a few lacked

245 a milk spot and appeared to be failing to thrive. Pups were collected and genotyping determined

246 these unhealth 245 a milk spot and appeared to be failing to thrive. Pups were collected and genotyping determined

246 these unhealthy pups to be *Krt6ai*-Cre⁺;*Irf6*^{*I/II*} whereas healthy pups were negative for Cre or

247 were *I* these unhealthy pups to be *Krt6ai*-Cre⁺;*Irf6*f^{I/fl} 246 these unhealthy pups to be *Krt6ai*-Cre⁺; *Irf6*^{*tm*} whereas healthy pups were negative for Cre or
247 were *Irf6*^{*wtfl*}. Closer examination of P0 neonates revealed shiny skin as has been previously
248 noted fo were *Irf6*wt/fl. were *Irf6*^{wtri}. Closer examination of P0 neonates revealed shiny skin as has been previously

248 noted for KO (Ingraham et al., 2006). *Krt6ai-*Cre⁺;*Irf6*^{t/fl} pups also exhibited pterygium of the

250 null mouse noted for KO (Ingraham et al., 2006). *Krt6ai-*Cre⁺;*Irf6*f^{//fl} noted for KO (Ingraham et al., 2006). *Krt6ai-*Cre⁺;*Irf6*f^{*in*} pups also exhibited pterygium of the
fore and hind limbs consistent with a milder form of the cocooning observed in the global *Irf6*
null mouse (Ingraha fore and hind limbs consistent with a milder form of the cocooning observed in the global *Irf6*
250 null mouse (Ingraham et al., 2006) (Fig. 6A,B). *Krt6ai*:Cre⁺; *Irf6*^{f/ff} neonates exhibited simple
251 syndactyly di null mouse (Ingraham et al., 2006) (Fig. 6A,B). *Krt6ai*:Cre⁺;*Irf6^{f\/fl}*

250 null mouse (Ingraham et al., 2006) (Fig. 6A,B). *Krt6ai*:Cre⁺;*Irf6*^{1/11} neonates exhibited simple
251 syndactyly digits of the fore and hind limbs (Fig. 6B).
252 The lack of a milk spot in the *Krt6ai*-Cre⁺;*Ir* 251 syndactyly digits of the fore and hind limbs (Fig. 6B).
252 The lack of a milk spot in the *Krt6ai*-Cre⁺; *Irf6^{t/fl}* neona
253 possible palate defects and oral adhesions as occur v
254 examination revealed that *K* The lack of a milk spot in the *Krt6ai*-Cre⁺;*Irf6*f^{//fl} 252 The lack of a milk spot in the *Krt6ai*-Cre⁺;*Irf6t^{i/n}* neonates suggested impaired feeding and
253 possible palate defects and oral adhesions as occur with global *Irf6* ablation. Histological
254 examination rev possible palate defects and oral adhesions as occur with global *Irf6* ablation. Histological
254 examination revealed that *Krt6ai*-Cre⁺; *Irf6*^{1/f1} mice present with lateral adhesions of the ton
255 the oral cavity a examination revealed that *Krt6ai*-Cre⁺;*Irf6*^{f/fl} 254 examination revealed that *Krt6ai*-Cre⁺;*Irf6*^{1/m} mice present with lateral adhesions of the tongue to
255 the oral cavity and a cleft of the secondary palate of variable penetrance (Fig. 6C). In some
256 *Krt6ai* the oral cavity and a cleft of the secondary palate of variable penetrance (Fig. 6C). In some
256 *Krt6ai*-Cre⁺;*Irf6*^{f//f} individuals we found sublingual fluid accumulation that we presume
257 be caused by the oral ad *Krt6ai*-Cre+ ;*Irf6*fl/fl 256 *Krt6ai*-Cre⁺;*Irf6*^{ti/it} individuals we found sublingual fluid accumulation that we presume to
257 be caused by the oral adhesions. No differences were observed in the lip or primary palate.
258 To compare *Krt6a* be caused by the oral adhesions. No differences were observed in the lip or primary palate.

258 To compare *Krt6ai* periderm-specific *Irf6* ablation findings to pan-epithelial ablation, we

259 utilized the *Crect* drive To compare *Krt6ai* periderm-specific *Irf6* ablation findings to pan-epithelial ablation, we

259 utilized the *Crect* driver line. The *Crect* mouse has been previously utilized to conditionally

260 ablate gene expressi utilized the *Crect* driver line. The *Crect* mouse has been previously utilized to conditionally

260 ablate gene expression in the ectoderm, including the oral and cranial epithelium (Reid et a

261 2011; Schock et al., ablate gene expression in the ectoderm, including the oral and cranial epithelium (Reid et al.,

261 2011; Schock et al., 2017). Crect⁺; Irfo^{f/If1} embryos were examined at approximately E17 and

262 were found to recap 2011; Schock et al., 2017). *Crect*⁺ ;*Irf6*fl/fl 261 2011; Schock et al., 2017). *Crect⁺*;*Irf6*^{t/m} embryos were examined at approximately E17 and
262 were found to recapitulate the *Irf6* knockout phenotype with abnormal skin, foreshortened lir
263 and deficient de were found to recapitulate the *Irf6* knockout phenotype with abnormal skin, foreshortened limbs,

263 and deficient development of the maxilla and mandible (Fig. S1). Histology of these mice

264 showed adhesion of the to and deficient development of the maxilla and mandible (Fig. S1). Histology of these mice
264 showed adhesion of the tongue to the palate, similar to *Irf6* global null mice (Fig. S1). This
265 finding suggests that *Crect* 264 showed adhesion of the tongue to the palate, similar to *Irf6* global null mice (Fig. S1). This
265 finding suggests that *Crect* expression largely overlaps with the expression of endogenous
266 gene expression, leadi 265 finding suggests that *Crect* expression largely overlaps with the expression of endogenous *Irf6*
266 gene expression, leading to complete *Irf6* ablation in the *Crect*⁺; *Irf6*^{1/f1} cKO mouse.
267 gene expression, leading to complete *Irf6* ablation in the *Crect*⁺;*Irf6*^{f//fl} gene expression, leading to complete *Irf6* ablation in the *Crect⁺;Irf6tm* cKO mouse.
267
Sides of the distribution of the creck⁺,Irf6tm cKO mouse.

268 **Discussion**
269 Mutari
270 of cleft lip, clip
271 *Irf6*R84C mu 269 Mutations in *IRF6* underlie VWS and PPS, which are characterized by varying degrees
270 of cleft lip, cleft palate, lip pits, skin folds, syndactyly, and oral adhesions (REF). *Irf6* null and th
271 *Irf6*R84C mutant 270 of cleft lip, cleft palate, lip pits, skin folds, syndactyly, and oral adhesions (REF). *Irf6* null and the
271 *Irf6*R84C mutant mouse models recapitulate aspects of these syndromes with severe oral
272 adhesions, sur *Irf6*R84C mutant mouse models recapitulate aspects of these syndromes with severe oral

272 adhesions, surface epithelium adhesions, and dysfunctional keratinocytes which cause ne

273 lethality (Ingraham et al., 2006; Ko adhesions, surface epithelium adhesions, and dysfunctional keratinocytes which cause neonatal

273 lethality (Ingraham et al., 2006; Kondo et al., 2002). *IRF6* is also associated with non-syndromic

274 cleft lip and pala lethality (Ingraham et al., 2006; Kondo et al., 2002). *IRF6* is also associated with non-syndromic

274 cleft lip and palate (Leslie et al., 2016), and yet the severe adhesions of the tongue within the

275 oral cavity in cleft lip and palate (Leslie et al., 2016), and yet the severe adhesions of the tongue within the
275 oral cavity in the *Irf6* null and *Irf6R84C* mutant mouse models complicate a direct comparison
276 the human condition oral cavity in the *Irf6* null and *Irf6R84C* mutant mouse models complicate a direct comparison to

276 the human condition. This study generated a new *Irf6* conditional knockout mouse model and

277 demonstrated reliabl the human condition. This study generated a new *Irf6* conditional knockout mouse model and
277 demonstrated reliable recombination of the conditional allele when tested with various Cre driv
278 lines. This new conditiona demonstrated reliable recombination of the conditional allele when tested with various Cre driver

278 lines. This new conditional Irf6 allele facilitated the investigation of tissue-specific roles of *Irf6*.

279 *IRF6*, lines. This new conditional Irf6 allele facilitated the investigation of tissue-specific roles of *Irf6*.

279 *IRF6, TFAP2A*, and *GRHL3* share a genetic regulatory pathway and ablation of each of

280 these genes in mice *IRF6, TFAP2A*, and *GRHL3* share a genetic regulatory pathway and ablation of each of
280 these genes in mice causes similar cleft, skin, and limb defects (Ingraham et al., 2006; Kousa e
281 al., 2019; Richardson et al., these genes in mice causes similar cleft, skin, and limb defects (Ingraham et al., 2006; Kousa et al., 2019; Richardson et al., 2006; Schorle et al., 1996; Siewert et al., 2023; Smith et al., 2017; Ting et al., 2003; Zhang 281 al., 2019; Richardson et al., 2006; Schorle et al., 1996; Siewert et al., 2023; Smith et al., 2017;
282 Ting et al., 2003; Zhang et al., 1996). As such, it is intriguing that Tfap2a and Grhl3 are
283 associated with ne 282 Ting et al., 2003; Zhang et al., 1996). As such, it is intriguing that Tfap2a and Grhl3 are
283 associated with neural tube defects, whereas defects are not observed in the Irf6 ablate
284 (Schorle et al., 1996; Ting e associated with neural tube defects, whereas defects are not observed in the Irf6 ablated mice

284 (Schorle et al., 1996; Ting et al., 2003; Zhang et al., 1996). To investigate this phenomenon

285 Kousa et al., developed 284 (Schorle et al., 1996; Ting et al., 2003; Zhang et al., 1996). To investigate this phenomenon
285 Kousa et al., developed an *Irf6* loss-of-function and gain-of-function allelic series in mice and
286 found rostral neu Kousa et al., developed an *Irf6* loss-of-function and gain-of-function allelic series in mice and
286 found rostral neural tube defects associated with *Irf6* overexpression and caudal defects
287 associated with *Irf6* l found rostral neural tube defects associated with *Irf6* overexpression and caudal defects

287 associated with *Irf6* loss of function (Kousa et al., 2019). We hypothesized that the sever

288 epithelial adhesions resulti associated with *Irf6* loss of function (Kousa et al., 2019). We hypothesized that the severe

288 epithelial adhesions resulting from periderm dysfunction in the *Irf6* null mouse may mask n

289 tube defects and we there epithelial adhesions resulting from periderm dysfunction in the *Irf6* null mouse may mask neural

289 tube defects and we therefore generated a conditional KO where *Irf6* would be ablated in *Wnt1*

290 expressing neuroe tube defects and we therefore generated a conditional KO where *Irf6* would be ablated in *Wnt1*
290 expressing neuroectoderm and neural crest cells, including those in the neural folds. We found
291 a rostromedial defect expressing neuroectoderm and neural crest cells, including those in the neural folds. We found

291 a rostromedial defect in these mice of varying severity that affected the skin and calvarial bone.

292 Further, we found 291 a rostromedial defect in these mice of varying severity that affected the skin and calvarial bone.
292 Further, we found changes to neural fold morphology and *Wht1* expression patterns in these
293 embryos. Together,

292 Further, we found changes to neural fold morphology and *Wnt1* expression patterns in these
293 embryos. Together, these data corroborate a role for *Irf6* in the patterning and morphogenesis
293 293 embryos. Together, these data corroborate a role for *Irf6* in the patterning and morphogenesis

294 of the rostral neural tube in mice. Differences in phenotype and severity between our results and
295 Kousa et al. may be attributed to spatial and temporal differences in the respective
296 overexpression and knockout 295 Kousa et al. may be attributed to spatial and temporal differences in the respective
296 overexpression and knockout drivers that were utilized (*Krt14* versus *Wnt1*). Furthe
297 neural tube phenotypes may become app overexpression and knockout drivers that were utilized (*Krt14* versus *Wnt1*). Further, additional

297 neural tube phenotypes may become apparent in the *Wnt1*-Cre *Irf6* cKO upon combinatorial

298 *Irf6* is widely expr

neural tube phenotypes may become apparent in the *Wnt1*-Cre *Irf6* cKO upon combinatorial
298 genetic disruption of *Tfap2a* or *Grhl3*.
299 *Irf6* is widely expressed in the pan-epithelium and its specific role in variou genetic disruption of *Tfap2a* or *Grhl3*.

299 *Irf6* is widely expressed in the populations (i.e. basal epithelium vers

301 phenotype have had limited direct inve *Irf6* is widely expressed in the pan-epithelium and its specific role in various epithelial

200 populations (i.e. basal epithelium versus periderm) and those contributions to the mutant

201 perceptibelium by utilizing t 300 populations (i.e. basal epithelium versus periderm) and those contributions to the mutant
301 phenotype have had limited direct investigation. Kousa et al. previously investigated the r
302 *Irf6* in the basal epithel 301 phenotype have had limited direct investigation. Kousa et al. previously investigated the role of
302 *Irf6* in the basal epithelium by utilizing the *Krt14* promoter to express *Irf6* in the basal epithelium
303 on an *Irf6* in the basal epithelium by utilizing the *Krt14* promoter to express *Irf6* in the basal epithelium

on an *Irf6* global null background. It was found that *Irf6* expression in the basal epithelium

partially rescue 303 on an *Irf6* global null background. It was found that *Irf6* expression in the basal epithelium
304 partially rescued some aspects of the *Irf6* null phenotype, namely the skin adhesions of the
305 and appendicular sk 304 partially rescued some aspects of the *Irf6* null phenotype, namely the skin adhesions of the axial
305 and appendicular skeleton but did not rescue the cleft palate (Kousa et al., 2017). Utilizing our
306 *Irf6* floxe and appendicular skeleton but did not rescue the cleft palate (Kousa et al., 2017). Utilizing our
306 *Irf6* floxed mouse and the *Krt6ai*-Cre driver, we found that ablation of *Irf6* in the periderm largel
307 phenocopied *Irf6* floxed mouse and the *Krt6ai*-Cre driver, we found that ablation of *Irf6* in the periderm largely

307 phenocopied the *Krt14:Irf6^{tg}* rescue. Limb defects were similar in that the limbs were not

308 adhered to t phenocopied the *Krt14:Irf6^{tg}* rescue. Limb defects were similar in that the limbs were not phenocopied the *Krt14:Irf6^g* rescue. Limb defects were similar in that the limbs were not
308 adhered to the body yet syndactyly of the digits were observed. Whereas Kousa et al. re
309 oral adhesions slightly less seve 308 adhered to the body yet syndactyly of the digits were observed. Whereas Kousa et al. reported
309 oral adhesions slightly less severe than the global KO and cleft palate, the periderm-specific *Infl*
310 KO mice had re oral adhesions slightly less severe than the global KO and cleft palate, the periderm-specific *Irf6*
310 KO mice had relatively mild oral adhesion and cleft of the palate was incompletely penetrant.
311 Therefore, our dat 310 KO mice had relatively mild oral adhesion and cleft of the palate was incompletely penetrant.
311 Therefore, our data coincide with previous findings, and differences in phenotype and severity
312 are likely due to dif

311 Therefore, our data coincide with previous findings, and differences in phenotype and severity
312 are likely due to differences in cell specificity and timing of expression.
313 Irf6 has a key role in the regulation o are likely due to differences in cell specificity and timing of expression.
313 Irf6 has a key role in the regulation of epithelial proliferation and
314 al., 2008; Biggs et al., 2012; Girousi et al., 2021; Oberbeck et al. Irf6 has a key role in the regulation of epithelial proliferation and differentiation (Bailey et al., 2008; Biggs et al., 2012; Girousi et al., 2021; Oberbeck et al., 2019). As such, *IRF6* is implicated in epidermal wound al., 2008; Biggs et al., 2012; Girousi et al., 2021; Oberbeck et al., 2019). As such, *IRF6* is
315 implicated in epidermal wound healing and children with VWS have an increased risk of w
316 complications following surgic implicated in epidermal wound healing and children with VWS have an increased risk of wound
316 complications following surgical repair of orofacial clefts (Hixon et al., 2017; Jones et al., 2010;
317 Rhea et al., 2020). F 316 complications following surgical repair of orofacial clefts (Hixon et al., 2017; Jones et al., 2010;
317 Rhea et al., 2020). Further, loss of Irf6 expression is associated with epidermal malignancy
318 (Botti et al., 2 317 Rhea et al., 2020). Further, loss of Irf6 expression is associated with epidermal malignancy
318 (Botti et al., 2011; Darido et al., 2016; Parisi et al., 2022; Yan et al., 2023). Investigation into
319 these roles of I 318 (Botti et al., 2011; Darido et al., 2016; Parisi et al., 2022; Yan et al., 2023). Investigation into
319 these roles of Irf6 have, until now, depended on human patient-derived cells, genetically
419 these roles of Irf6 319 these roles of Irf6 have, until now, depended on human patient-derived cells, genetically

-
-
- 331 **Acknowledgments**
332 CRISPR design cons
333 by The Genome Mod
334 MicroCT scanning w CRISPR design consultation, zygote microinjection, and embryo implantation were performed
333 by The Genome Modification Facility and Harvard University.
334 MicroCT scanning was performed by the Center for Musculoskeletal by The Genome Modification Facility and Harvard University.
334 MicroCT scanning was performed by the Center for Musculos
335 Biomechanical Testing Core (NIH P30 AR070542).
336 MicroCT scanning was performed by the Center for Musculoskeletal Research Imaging and
335 Biomechanical Testing Core (NIH P30 AR070542).
336 **Funding sources**
337 Funding sources
-
-

- 335 Biomechanical Testing Core (NIH P30 AR070542).
336
This work was supported by R01DE027983 to ECL,
338 This work was supported by R01DE027983 to ECL, 336
337
338
339 **Funding sources**
 338 This work was suppl
 339 of Philadelphia, and 338 This work was supported by R01DE027983 to ECL, research support from Children's Hospital
339 of Philadelphia, and research grants from the Shriners Hospitals for Children.
339 of Philadelphia, and research grants from
- 339 of Philadelphia, and research grants from the Shriners Hospitals for Children.

340 **Figures Legends**
341 **Fig. 1.** *Inf6* is expre
343 **neural tube during** 341
342
343
344
345 **Fig. 1.** *Irf6* is expressed with neural crest cell markers *Wnt1* and *Sox10* in neural folds and
neural tube during early embryogenesis. *In situ* hybridization of *Irf6* (yellow), *Wnt1* (red), an
Sox10 (white) RNA t 343 neural tube during early embryogenesis. *In situ* hybridization of *Irf6* (yellow), *Wnt1* (red), and
344 Sox10 (white) RNA transcripts. **A.** Coronal section of E8 mouse embryo (dorsal to top) showi
345 the neural fold Sox10 (white) RNA transcripts. **A.** Coronal section of E8 mouse embryo (dorsal to top) showing
345 the neural fold. *In situ* hybridization shows RNA expression domains of *Irf6*, *Wnt1*, and *Sox10*,
346 where *Irf6* and the neural fold. *In situ* hybridization shows RNA expression domains of *Irf6*, *Wnt1*, and *Sox10*,
346 where *Irf6* and *Wnt1* transcripts are found in the same regions of the neural tube, highlighted by
347 yellow arro where *Irf6* and *Wnt1* transcripts are found in the same regions of the neural tube, highlighted by
347 yellow arrow. Box indicates area of higher magnification to the right. **B.** Sagittal section of E9
348 mouse embryo (yellow arrow. Box indicates area of higher magnification to the right. **B.** Sagittal section of E9 mouse embryo (cranial to left). Box indicates a magnified portion of the neural tube. *Irf6* is expressed in the neuroectod mouse embryo (cranial to left). Box indicates a magnified portion of the neural tube. *Irf6* is
349 expressed in the neuroectoderm and overlaps with *Wnt1* and *Sox10* expression (yellow and
350 **C.** Sagittal section of E9 expressed in the neuroectoderm and overlaps with *Wnt1* and *Sox10* expression (yellow arrows).
350 **C.** Sagittal section of E9 mouse embryo (cranial to left). Box indicates a magnified portion of
351 frontonasal prominenc **C.** Sagittal section of E9 mouse embryo (cranial to left). Box indicates a magnified portion of frontonasal prominence (FNP). *Irf6* is expressed in the FNP mesenchyme, along with the migratory NCC marker Sox10. **D.** Coro 351 frontonasal prominence (FNP). *Irf6* is expressed in the FNP mesenchyme, along with the
352 migratory NCC marker Sox10. **D.** Coronal section of E13.5 embryo (dorsal to top). Box inc
353 higher magnification of palate s migratory NCC marker *Sox10*. **D.** Coronal section of E13.5 embryo (dorsal to top). Box indicates
353 higher magnification of palate shelf epithelium and mesenchyme. *Irf6* is highly expressed in the
354 basal epithelium a higher magnification of palate shelf epithelium and mesenchyme. *Irf6* is highly expressed in the
354 basal epithelium and periderm and the palate mesenchyme (yellow arrow). Blue is dapi. Scale:
355 100 uM.
356 **Fig. 3.** C basal epithelium and periderm and the palate mesenchyme (yellow arrow). Blue is dapi. Scale:
355 100 uM.
356 **Fig.2.** Generation and validation of a conditional *Irf6* null mouse model. A. Schematic of gene
357 **Fig.2.** Ge

355 100 uM.
356
357 **Fig.2.** Ge
358 targeting 356
357
358
359
360 **Fig.2.** Generation and validation of a conditional *Irf6* null mouse model. **A.** Schematic of gene

1358 targeting strategy. Introns flanking *Irf6* exons 3 and 4 were targeted for CRISPR-Cas9-directed

1359 homologous re targeting strategy. Introns flanking *Irf6* exons 3 and 4 were targeted for CRISPR-Cas9-directed
359 homologous recombination with each donor ssDNA containing loxP sequences (green
360 triangles). Insertion of loxP sites i 359 homologous recombination with each donor ssDNA containing loxP sequences (green
360 triangles). Insertion of loxP sites into *Irf6* was confirmed by PCR. **B**. and Sanger sequences
361 Cre-mediated recombination was va triangles). Insertion of loxP sites into *Irf6* was confirmed by PCR. **B**. and Sanger sequencing. **C.**
361 Cre-mediated recombination was validated using the ubiquitous Cre expressing lines *CMV*-Cre
362 and *Ella*-Cre. *C* Cre-mediated recombination was validated using the ubiquitous Cre expressing lines *CMV*-Cre

362 and *Ella*-Cre. *CMV*-Cre⁺;*Irf6*^{M/fl} and *Ella*-Cre⁺; *Irf6*^{M/fl} mice phenocopied the *Irf6* global KO while

363 C and *EIIa*-Cre. *CMV*-Cre⁺ ;*Irf6*fl/fl and *EIIa*-Cre⁺ ; *Irf6*fl/fl and *Ella*-Cre. *CMV*-Cre⁺;*Irf6*^{I/m} and *Ella*-Cre⁺; *Irf6*^{I/m} mice phenocopied the *Irf6* global KO while
363 Cre⁻;*Irf6*^{I/ff} and Cre⁺;*Irf6*^{wt/wt} littermates were normal. **D.** Hematoxylin and Eosin stain Cre*- ;Irf6*fl/fl and Cre+ ;*Irf6*wt/wt Solationary Cre⁻; *Irf6*^{WM} intermates were normal. **D.** Hematoxylin and Eosin staining of
364 coronal sections of E15 CMV-Cre or *Ella*-Cre knockout embryos and littermate controls. T
365 row is a relatively anterior s 364 coronal sections of E15 *CMV*-Cre or *Ella*-Cre knockout embryos and littermate controls. Top
365 row is a relatively anterior section while the bottom row is relatively posterior. *CMV*-Cre and 365 row is a relatively anterior section while the bottom row is relatively posterior. *CMV*-Cre and

EIIa-Cre *Irf6* KO embryos phenocopy the dysmorphic alveolar bone and the cleft palate with oral
367 adhesions of the total *Irf6* knockout mouse (arrows).
368 **Fig. 3.** Wnt1-Cre-dependent *Irf6* ablation causes cranial

adhesions of the total *Irf6* knockout mouse (arrows).
368 **Fig. 3.** *Wnt1*-Cre-dependent *Irf6* ablation causes crancy
370 Iittermate control and *Wnt1*-Cre, *Irf6* cKO pups at P0. 368
369
370
371
372 **Fig. 3.** *Wnt1*-Cre-dependent *Irf6* ablation causes cranial defects. **A.** Representative images of
370 littermate control and *Wnt1*-Cre, *Irf6* cKO pups at P0. At parturition, *Wnt1*-Cre⁺; *Irf6*^{ft/ft} cKO mice
371 d littermate control and *Wnt1*-Cre, Irf6 cKO pups at P0. At parturition, *Wnt1*-Cre⁺;Irf6^{fl/fl} 370 littermate control and *Wnt1*-Cre, *Irf6* cKO pups at P0. At parturition, *Wnt1*-Cre⁺;*Irf6*^{I/m} cKO mice
371 display midline lesions of varying penetrance (arrow). **B.** Representative images of littermate
372 cont display midline lesions of varying penetrance (arrow). **B.** Representative images of littermate

control and *Wnt1*-Cre⁺;*Irf6^{f/fl}* cKO pups at P6. As the mouse neonate develops, these frontal

lesions resolve but rema control and *Wnt1*-Cre⁺; Irf6^{fl/fl} 372 control and *Wnt1*-Cre⁺;*Irf6*^{1/11} cKO pups at P6. As the mouse neonate develops, these frontal
373 lesions resolve but remain evident with deficient or delayed fur growth (arrow). **C.** Hematoxyl
374 and eosin sta It is a lesions resolve but remain evident with deficient or delayed fur growth (arrow). **C.** Hematoxylin

374 and eosin staining of coronal sections through the palate of E16 *Wnt1*-Cre⁺; *Irf6*^{f/ff} cKO and

375 litte and eosin staining of coronal sections through the palate of E16 *Wnt1*-Cre⁺;*Irf6*^{fl/fl} and eosin staining of coronal sections through the palate of E16 Wnt1-Cre⁺;Irf6^{I/II} cKO and
375 littermate control embryos shows normal development (arrow). **D.** Hematoxylin and eosin
376 staining of coronal sections Instructure 375 littermate control embryos shows normal development (arrow). **D.** Hematoxylin and eosin
376 staining of coronal sections through the nasal and frontal bones of *Wnt1*-Cre⁺;*Irf6*^{f/fl} cKO a
377 littermat staining of coronal sections through the nasal and frontal bones of *Wnt1*-Cre⁺;*Irf6*^{fl/fl} 376 staining of coronal sections through the nasal and frontal bones of $Wnt1$ -Cre⁺; Irf6^{I/II} cKO and
377 littermate control. Sections move anterior to posterior from left to right. Bone tissue is indicate
378 with arr littermate control. Sections move anterior to posterior from left to right. Bone tissue is indicated
378 with arrows. *Wnt1*-Cre⁺;*Irf6^{ft/fl}* cKO mice have a lack of cranial bone development and suture
379 formation at with arrows. *Wnt1*-Cre⁺;*Irf6*^{fl/fl} with arrows. *Wnt1*-Cre⁺;*Irf6*^{t/n}cKO mice have a lack of cranial bone development and suture
379 formation at the midline (bone tissue indicated by arrows). Scale: 100 µM.
380 **Fig. 4.** Cranial bone development is imp

379 formation at the midline (bone tissue indicated by arrows). Scale: 100 μ M.
380 **Fig. 4.** Cranial bone development is impaired in *Wnt1*-Cre *Irf6* cKO mice. A microCT reconstructions of P10 *Wnt1*-Cre⁺; *Irf6*^{f/} 380
381
382
383
384 **Fig. 4.** Cranial bone development is impaired in *Wnt1*-Cre *Irf6* cKO mice. **A.** Representative microCT reconstructions of P10 *Wnt1*-Cre⁺;*Irf6*^{f//fl} cKO mice and littermate sex-matched contr *Wnt1*-Cre⁺;*Irf6*^{f/} microCT reconstructions of P10 *Wnt1*-Cre⁺ ;*Irf6*fl/fl microCT reconstructions of P10 *Wnt1*-Cre⁺;*Irf6*^{tim} cKO mice and littermate sex-matched controls.
383 *Wnt1*-Cre⁺;*Irf6*^{ft/fl} cKO mice have decreased formation or mineralization of the cranial bones at
384 the mid Wnt1-Cre⁺; Irf6^{fl/fl} 383 *Wnt1*-Cre⁺;*Irf6*^{t/m} cKO mice have decreased formation or mineralization of the cranial bones at
384 the midline with variable penetrance (arrows). Scale: 1 mm. **B.** MicroCT reconstructions were
385 utilized for the midline with variable penetrance (arrows). Scale: 1 mm. **B.** MicroCT reconstructions were
385 utilized for cranial bone measurements. The space between the left and right frontal bones of
386 Wnt1-Cre⁺; Irf6^{ft/ff} c 385 utilized for cranial bone measurements. The space between the left and right frontal bones of
386 Wnt1-Cre⁺; Irf6^{ft/ff} cKO mice was significantly wider than controls (L1-R1, *p<0.05) and the front
387 bones tended Wnt1-Cre⁺; Irf6^{fl/fl} 386 *Wnt1*-Cre⁺;*Irf6*^{1/11} cKO mice was significantly wider than controls (L1-R1, *p<0.05) and the frontal
387 bones tended to have decreased total length (length 1-2). Maxilla of *Wnt1*-Cre⁺;*Irf6*^{1/11} cKO mice
3 bones tended to have decreased total length (length 1-2). Maxilla of *Wnt1*-Cre⁺;*Irf6*^{f/fl} bones tended to have decreased total length (length 1-2). Maxilla of *Wnt1*-Cre⁺;*Irf6*^{t/m} cKO mice
tended to be smaller (lower length and width measurements) and the frontal bone of *Wnt1*-
Cre⁺;*Irf6*^{f/m} cKO mice 1388 tended to be smaller (lower length and width measurements) and the frontal bone of *Wnt1*-

239 Cre⁺;*Irf6*^{fl/fl}cKO mice tended to be shorter, however, these differences were not significantly

230 different. N=4. Cre⁺ ;*Irf6*fl/fl 389 Cre⁺;*Irf6*^{f/m} cKO mice tended to be shorter, however, these differences were not significantly
390 different. N=4.
391 390 different. N=4.

Fig. 5. *Irf6* ablation in the neuroectoderm and neural crest changes *Wnt1* expression domains
within the neural folds. **A.** RNAscope *in situ* hybridization of transverse sections of *Wnt1*-
Cre⁺;*Irf6*^{f//fl} cKO an within the neural folds. **A.** RNAscope *in situ* hybridization of transverse sections of *Wnt1*-
394 Cre⁺;*Irf6^{f/fl}* cKO and littermate control E8 embryos. Rows represent 2 individuals of each
395 genotype. Whereas *Wn* Cre⁺ ;*Irf6*fl/fl Sequency of the Cre⁺; Irf6^{fm} cKO and littermate control E8 embryos. Rows represent 2 individuals of each
395 genotype. Whereas *Wnt1* expression (red) is localized to the caudal-dorsal neural folds in
396 control embry genotype. Whereas *Wnt1* expression (red) is localized to the caudal-dorsal neural folds in the
396 control embryos, *Wnt1* expression in *Wnt1*-Cre⁺;*Irf6*^{ft/ft} cKO embryos is displaced laterally
397 (arrows). Blue is control embryos, *Wnt1* expression in *Wnt1*-Cre⁺ ;*Irf6*fl/fl control embryos, *Wnt1* expression in *Wnt1*-Cre⁺;*Irf6*^{t//1} cKO embryos is displaced laterally
397 (arrows). Blue is dapi. Scale: 100 µM
398 **Fig. 6.** Periderm-specific ablation of *Irf6* results in a comparable but m 397 (arrows). Blue is dapi. Scale: 100 µM
398 **Fig. 6.** Periderm-specific ablation of *Ir*
400 KO phenotype. *Krt6ai*-Cre⁺; *Irf6*^{fI/f1} and l 398
399
400
401
402 **Fig. 6.** Periderm-specific ablation of *Irf6* results in a comparable but mild form of the global *Irf6*
400 KO phenotype. *Krt6ai*-Cre⁺;*Irf6*^{f//f|} and littermate control neonates were collected at P1. **A.** Later
401 KO phenotype. *Krt6ai*-Cre⁺ ;*Irf6*fl/fl 400 KO phenotype. *Krt6ai*-Cre⁺;*Irf6^{ft/ft}* and littermate control neonates were collected at P1. **A.** Lateral
401 and caudal representation of neonates comparing control *Krt6ai*-Cre⁻;*Irf6^{ft/ft}* with *Krt6ai*-
4 and caudal representation of neonates comparing control *Krt6ai*-Cre- ;*Irf6*fl/fl and caudal representation of neonates comparing control *Krt6ai*-Cre⁻;*Irf6*^{1/11} with *Krt6ai*-Cre⁺;*Irf6*^{1/11} cKO. **B.** *Krt6ai*-Cre⁻;*Irf6*^{1/11} exhibit normal skin and digits; however *Krt6ai*-Cre⁺ reveal Cre⁺ ;*Irf6*fl/fl cKO. **B.** *Krt6ai*-Cre- ;*Irf6*fl/fl exhibit normal skin and digits; however *Krt6ai*-Cre⁺ ;*Irf6*fl/fl 403
404
405
406 reveal abnormal skin and fused digits phenotype. Scale: 500 μM. **C.** Hematoxylin and Eosin
404 staining of coronal sections through vomeronasal and primary palate of neonates. *Krt6ai*-Cre
405 ;*Irf6^{ft/ft}* mice show nor staining of coronal sections through vomeronasal and primary palate of neonates. *Krt6ai*-Cre- 405
406
407
408 ;*Irf6*fl/fl mice show normal septum and palate. *Krt6ai*-Cre⁺ ;*Irf6*fl/fl 105 ; *Irf6*^{1/11} mice show normal septum and palate. *Krt6ai*-Cre⁺; *Irf6*^{1/11} mice reveal abnormal septum and
106 adhesions of the tongue.
107 **Fig. S1.** Crect-driven *Irf6* ablation recapitulates the global *Irf6* 406 adhesions of the tongue.
407
Fig. S1. Crect-driven Irf6
409 images of littermate contr 407
408
409
410
411 Fig. S1. *Crect*-driven *Irf6* ablation recapitulates the global *Irf6* KO phenotype. **A.** Representative

409 images of littermate control and *Crect^t*-*Irf6^{ft/ff}* cKO pups at approximately E17. *Crect^t*-*Irf6^{ft/ff*} images of littermate control and *Crect⁺-Irf6^{f//fl}c*KO pups at approximately E17. *Crect⁺-Irf6^{fI/fi}* images of littermate control and *Crect^t*-*Irf6¹⁰⁷¹* cKO pups at approximately E17. *Crect^t*-*Irf6¹⁰⁷¹* pups
exhibit "cocooning" taught skin, abnormal and shortened limbs, and an umbilical hernia that has
been des

410 exhibit "cocooning" taught skin, abnormal and shortened limbs, and an umbilical hernia that has
411 been described for the *Irf6* global KO. **B.** Hematoxylin and eosin staining of coronal sections of
412 approximately 411 been described for the *Irf6* global KO. **B.** Hematoxylin and eosin staining of coronal sections of approximately E17 *Crect⁺*-*Irf6^{f//f|}* pup and littermate control. *Crect⁺*-*Irf6^{f//f|}* cKO pups exhibit seve

approximately E17 *Crect*⁺ -*Irf6fl/fl* pup and littermate control. *Crect*⁺ -*Irf6fl/fl* approximately E17 Crect⁺-Irf6^{t//1} pup and littermate control. Crect⁺-Irf6^{t//1} cKO pups exhibit severe

oral adhesions and cleft palate similar to the global Irf6 KO mouse. Scale: 100 µM.

414

413 oral adhesions and cleft palate similar to the global *Irf6* KO mouse. Scale: 100 µM.

-
- 415 **References**
416 Bailey, C.M.,
417 Interferon re
418 a cell cycle-c
419 Bertol, J.W.,
420 Goering, J.P. Bailey, C.M., Abbott, D.E., Margaryan, N.V., Khalkhali-Ellis, Z., and Hendrix, M.J. (2008).

417 Interferon regulatory factor 6 promotes cell cycle arrest and is regulated by the proteasome in

418 a cell cycle-dependent m and a cell cycle-dependent manner. Molecular and cellular biology 28, 2235-2243.

419 Bertol, J.W., Johnston, S., Ahmed, R., Xie, V.K., Hubka, K.M., Cruz, L., Nitschke, L., Stetsiv, M.,

420 Goering, J.P., Nistor, P., et a
-
-
-
- Bertol, J.W., Johnston, S., Ahmed, R., Xie, V.K., Hubka, K.M., Cruz, L., Nitschke,
420 Goering, J.P., Nistor, P., *et al.* (2022). TWIST1 interacts with beta/delta-catenin
421 tube development and regulates fate transition 420 Goering, J.P., Nistor, P., et al. (2022). TWIST1 interacts with beta/delta-catenins during neura
421 tube development and regulates fate transition in cranial neural crest cells. Development 149
422 Biggs, L.C., Rhea, 421 tube development and regulates fate transition in cranial neural crest cells. Development 149.
422 Biggs, L.C., Rhea, L., Schutte, B.C., and Dunnwald, M. (2012). Interferon regulatory factor 6 is
423 necessary, but not 422 Biggs, L.C., Rhea, L., Schutte, B.C., and Dunnwald, M. (2012). Interferon regulatory factor 6 is
423 Biggs, L.C., Rhea, L., Schutte, B.C., and Dunnwald, M. (2012). Interferon regulatory factor 6 is
424 dermatology 132, mecessary, but not sufficient, for keratinocyte differentiation. The Journal of investigative

424 dermatology 132, 50-58.

425 Botti, E., Spallone, G., Moretti, F., Marinari, B., Pinetti, V., Galanti, S., De Meo, P.D., De
-
- dermatology 132, 50-58.

425 Botti, E., Spallone, G., Moretti, F., Marinari, B., Pinetti, V., Galanti, S., De Meo, P.D., De Nic

426 F., Ganci, F., Castrignano, T., et al. (2011). Developmental factor IRF6 exhibits tumor s 425 dermatology 132, 30-58.
425 Botti, E., Spallone, G., Mo
426 F., Ganci, F., Castrignano,
427 activity in squamous cell
428 United States of America
429 Carroll, S.H., Macias Trevi

-
-
- F., Ganci, F., Castrignano, T., *et al.* (2011). Developmental factor IRF6 exhibits tumor suppressortivity in squamous cell carcinomas. Proceedings of the National Academy of Sciences of the United States of America 108, 1 427 activity in squamous cell carcinomas. Proceedings of the National Academy of Sciences of the
428 United States of America 108, 13710-13715.
429 Carroll, S.H., Macias Trevino, C., Li, E.B., Kawasaki, K., Myers, N., Hall 428 United States of America 108, 13710-13715.
429 Carroll, S.H., Macias Trevino, C., Li, E.B., Kawasaki, K., Myers, N., Hallett, S.A., Alhazmi, N.,
430 Cotney, J., Carstens, R.P., and Liao, E.C. (2020). An Irf6-Esrp1/2 re 429 Carroll, S.H., Macias Trevino, C., Li, E.B., Kawa
430 Cotney, J., Carstens, R.P., and Liao, E.C. (2020
431 morphogenesis in vertebrates. Development
432 Chu, E.Y., Tamasas, B., Fong, H., Foster, B.L., 1
433 B.C.. Somer
-
- Cotney, J., Carstens, R.P., and Liao, E.C. (2020). An Irf6-Esrp1/2 regulatory axis controls mit
431 morphogenesis in vertebrates. Development 147.
432 Chu, E.Y., Tamasas, B., Fong, H., Foster, B.L., LaCourse, M.R., Tran, A 431 morphogenesis in vertebrates. Development 147.
432 Chu, E.Y., Tamasas, B., Fong, H., Foster, B.L., LaCourse, M.R., Tran, A.B., Martin, J.F., Schutte,
433 B.C., Somerman, M.J., and Cox, T.C. (2016). Full Spectrum of Pos 432 Chu, E.Y., Tamasas, B., Fong, H., Foster, B.L., LaCou
433 B.C., Somerman, M.J., and Cox, T.C. (2016). Full Sp
434 Novel Irf6 Cleft Lip Model. Journal of dental resear
435 Darido, C., Georgy, S.R., and Jane, S.M. (2016) Chu, E.Y., Tamasas, B., Fong, H., Foster, B.L., LaCourse, M.R., Tran, A.B., Martin, J.F., Schutte,

B.C., Somerman, M.J., and Cox, T.C. (2016). Full Spectrum of Postnatal Tooth Phenotypes in a

Novel Irf6 Cleft Lip Model.
- Darido, C., Georgy, S.R., and Jane, S.M. (2016). The role of barrier genes in epidermal

malignancy. Oncogene 35, 5705-5712.

de la Garza, G., Schleiffarth, J.R., Dunnwald, M., Mankad, A., Weirather, J.L., Bonde, G., Butc

- 437 de la Garza, G., Schleiffarth, J.R., Dunnwald, M., Mankad, A., Weirather, J.L., Bonde, G., Butcher, 438
438 S., Mansour, T.A., Kousa, Y.A., Fukazawa, C.F., *et al.* (2013). Interferon regulatory factor 6
- 438 S., Mansour, T.A., Kousa, Y.A., Fukazawa, C.F., *et al*. (2013). Interferon regulatory factor 6
439 promotes differentiation of the periderm by activating expression of Grainyhead-like 3. Tl
440 Journal of investigativ 437 de la Garza, G., Schleiffarth, J.R., Dunny
438 S., Mansour, T.A., Kousa, Y.A., Fukazaw
439 promotes differentiation of the perider
440 Journal of investigative dermatology 13
441 Dougherty. M., Kamel, G., Grimaldi, M.
-
-
- 438 S., Mansour, T.A., Kousa, Y.A., Fukazawa, C.F., *et al.* (2013). Interferon regulatory factor 6
439 promotes differentiation of the periderm by activating expression of Grainyhead-like 3. The
440 Journal of investigati 438 S., Mansour, T.A., Rousa, T.A., Fukazawa, C.H., et al. (2015). Interferon regalatory factor 6
439 promotes differentiation of the periderm by activating expression of Grainyhead-like 3. Th
440 Journal of investigative Journal of investigative dermatology 133, 68-77.

441 Dougherty, M., Kamel, G., Grimaldi, M., Gfrerer, L., Shubinets, V., Ethier, R., Hickey, G., Corn

442 R.A., and Liao, E.C. (2013). Distinct requirements for wnt9a and i 440 Journal of investigative dermatology 133, 68-77.
441 Dougherty, M., Kamel, G., Grimaldi, M., Gfrerer,
442 R.A., and Liao, E.C. (2013). Distinct requirements
444 Fakhouri, W.D., Metwalli, K., Naji, A., Bakhiet, S.,
445 R.A., and Liao, E.C. (2013). Distinct requirements for wnt9a and irf6 in extension and integration
443 mechanisms during zebrafish palate morphogenesis. Development 140, 76-81.
444 Fakhouri, W.D., Metwalli, K., Naji, A., B
-
- mechanisms during zebrafish palate morphogenesis. Development 140, 76-81.
144 Fakhouri, W.D., Metwalli, K., Naji, A., Bakhiet, S., Quispe-Salcedo, A., Nitschke, L., Kousa, Y.A.,
145 and Schutte, B.C. (2017). Intercellular
-
- 443 mechanisms during zebrafish palate morphogenesis. Development 140, 76-81.
444 Fakhouri, W.D., Metwalli, K., Naji, A., Bakhiet, S., Quispe-Salcedo, A., Nitschke, I
445 Craniofacial Development. Scientific reports 7, 712 and Schutte, B.C. (2017). Intercellular Genetic Interaction Between Irf6 and Twist1 during
446 Craniofacial Development. Scientific reports 7, 7129.
447 Fakhouri, W.D., Rhea, L., Du, T., Sweezer, E., Morrison, H., Fitzpatr 446 Craniofacial Development. Scientific reports 7, 7129.
447 Fakhouri, W.D., Rhea, L., Du, T., Sweezer, E., Morrison, H., Fitzpatrick, D., Yang, B., Dunnw.
448 M., and Schutte, B.C. (2012). MCS9.7 enhancer activity is hig 446 Cramoracial Development. Scientific reports 7, 7125.
447 Fakhouri, W.D., Rhea, L., Du, T., Sweezer, E., Morrisor
448 M., and Schutte, B.C. (2012). MCS9.7 enhancer activit 1448 M., and Schutte, B.C. (2012). MCS9.7 enhancer activity is highly, but not completely, associate
M., and Schutte, B.C. (2012). MCS9.7 enhancer activity is highly, but not completely, associate 448 M., and Schutte, B.C. (2012). McClearly, and Schutter activity is highly, but not completely, associated to

with expression of Irf6 and p63. Developmental dynamics : an official publication of the

450 American Association of Anatomists 241, 340-349.

451 Ferretti, E., Li, B., Zewdu, R., Wells, V., Hebert, J.M., Karner, C., Ande 449

-
- 450 American Association of Anatomists 241, 340-343.
451 Ferretti, E., Li, B., Zewdu, R., Wells, V., Hebert, J.M.
452 Dixon, J., Dixon, M.J., *et al.* (2011). A conserved Pb.
454 Fischer, A.H., Jacobson, K.A., Rose, J., an Dixon, J., Dixon, M.J., *et al.* (2011). A conserved Pbx-Wnt-p63-Irf6 regulatory module controls

453 face morphogenesis by promoting epithelial apoptosis. Developmental cell 21, 627-641.

454 Fischer, A.H., Jacobson, K.A. 452 Dixon, 3., Dixon, M.S., et al. (2011). A conserved TDX-WIR pos into regulatory module controls
453 face morphogenesis by promoting epithelial apoptosis. Developmental cell 21, 627-641.
454 Fischer, A.H., Jacobson, K.A.
- 453 Face morphogenesis by promoting epithelial apoptosis. Developmental cell 21, 627-641.
454 Fischer, A.H., Jacobson, K.A., Rose, J., and Zeller, R. (2008). Hematoxylin and eosin staining
455 Eissue and cell sections. CSH tissue and cell sections. CSH protocols 2008, pdb prot4986.
456 Girousi, E., Muerner, L., Parisi, L., Rihs, S., von Gunten, S., Katsaros, C., and Degen, M. (2021).
457 Lack of IRF6 Disrupts Human Epithelial Homeostasis by 455 tissue and centsections. Correprotocols 2000, pub prot4986.
456 Girousi, E., Muerner, L., Parisi, L., Rihs, S., von Gunten, S., Ka
457 Lack of IRF6 Disrupts Human Epithelial Homeostasis by Alter
458 Pattern, and Differ 1467 Lack of IRF6 Disrupts Human Epithelial Homeostasis by Altering Colony Morphology, Migratio

458 Pattern, and Differentiation Potential of Keratinocytes. Frontiers in cell and developmental

459 biology 9, 718066.

460 Frame Purpts Human Epithelial of Keratinocytes. Frontiers in cell and developmental

459 Pattern, and Differentiation Potential of Keratinocytes. Frontiers in cell and developmental

460 Goudy, S., Angel, P., Jacobs, B., H
- 459 biology 9, 718066.
460 Goudy, S., Angel, P., Jacobs, B., Hill, C., Mainini, V., Smith, A.L., Kousa, Y.A., Caprioli, R., Prinocyt
461 L.S., Baldwin, S., *et al.* (2013). Cell-autonomous and non-cell-autonomous roles for
-
-
- 459 biology 9, 718066.
460 Goudy, S., Angel, P
461 L.S., Baldwin, S., *et*
463 Hixon, K., Rhea, L.,
464 Regulatory Factor 6 L.S., Baldwin, S., *et al.* (2013). Cell-autonomous and non-cell-autonomous roles for IRF6 during
462 development of the tongue. PloS one *8*, e56270.
463 Hixon, K., Rhea, L., Standley, J., Canady, F.J., Canady, J.W., and 462 development of the tongue. PloS one 8, e56270.
463 Hixon, K., Rhea, L., Standley, J., Canady, F.J., Canady, J.W., and Dunnwald, M. (2017). Interferon
464 Regulatory Factor 6 Controls Proliferation of Keratinocytes From 463 Hixon, K., Rhea, L., Standley, J., Canady, F.J., Cana
464 Regulatory Factor 6 Controls Proliferation of Kera
465 Syndrome. The Cleft palate-craniofacial journal :
466 Palate-Craniofacial Association 54, 281-286.
467 Ho Regulatory Factor 6 Controls Proliferation of Keratinocytes From Children With Van der Woude
465 Syndrome. The Cleft palate-craniofacial journal : official publication of the American Cleft
466 Palate-Craniofacial Associat
- Syndrome. The Cleft palate-craniofacial journal : official publication of the American Cleft
466 Palate-Craniofacial Association 54, 281-286.
467 Ho, T.V., Iwata, J., Ho, H.A., Grimes, W.C., Park, S., Sanchez-Lara, P.A., a Syndrome. The Cleft palate-craniofacial journal : official publication of the American Cleft

466 Palate-Craniofacial Association 54, 281-286.

467 Ho, T.V., Iwata, J., Ho, H.A., Grimes, W.C., Park, S., Sanchez-Lara, P.A., 467 Ho, T.V., Iwata, J., Ho, H.A., Grimes, W.C., Pa
468 Ho, T.V., Iwata, J., Ho, H.A., Grimes, W.C., Pa
469 Honderstein of comprehensive 3D microCT ar
470 Hograham, C.R., Kinoshita, A., Kondo, S., Yang
471 M., Goudy, S.L., Integration of comprehensive 3D microCT and signaling analysis reveals differential regula

469 mechanisms of craniofacial bone development. Developmental biology 400, 180-190.

170 Ingraham, C.R., Kinoshita, A., Kondo, S.
-
- mechanisms of craniofacial bone development. Developmental biology 400, 180-190.

170 Ingraham, C.R., Kinoshita, A., Kondo, S., Yang, B., Sajan, S., Trout, K.J., Malik, M.I., Dunnwald,

171 M., Goudy, S.L., Lovett, M., *et* Inechanisms of craniofacial bone development. Developmental biology 400, 180-190.
470 Ingraham, C.R., Kinoshita, A., Kondo, S., Yang, B., Sajan, S., Trout, K.J., Malik, M.I., Dun
471 M., Goudy, S.L., Lovett, M., et al. (20
- 471 M., Goudy, S.L., Lovett, M., *et al.* (2006). Abnormal skin, limb and craniofacial morphogenesis
472 mice deficient for interferon regulatory factor 6 (Irf6). Nature genetics 38, 1335-1340.
473 Iwata, J., Suzuki, A., P 471 M., Goudy, S.L., Lovett, M., et al. (2000). Abnormal skin, limb and cramoracial morphogenesis in
472 mice deficient for interferon regulatory factor 6 (Irf6). Nature genetics 38, 1335-1340.
473 Iwata, J., Suzuki, A., P Imce deficient for interferon regulatory factor 6 (Irro). Nature genetics 38, 1333-1340.

473 Iwata, J., Suzuki, A., Pelikan, R.C., Ho, T.V., Sanchez-Lara, P.A., Urata, M., Dixon, M.J., a

474 Y. (2013). Smad4-Irf6 genetic 1944 V. (2013). Smad4-Irf6 genetic interaction and TGFbeta-mediated IRF6 signaling cascade are

1975 Crucial for palatal fusion in mice. Development 140, 1220-1230.

1976 Jones, J.L., Canady, J.W., Brookes, J.T., Wehby, G.
- 475 crucial for palatal fusion in mice. Development 140, 1220-1230.
476 Jones, J.L., Canady, J.W., Brookes, J.T., Wehby, G.L., L'Heureux, J., Schutte, B.C., Murray, J.C
477 and Dunnwald, M. (2010). Wound complications afte 475 crucial for palatal fusion in fince. Development 140, 1220 1230.
476 Jones, J.L., Canady, J.W., Brookes, J.T., Wehby, G.L., L'Heureux, J
477 and Dunnwald, M. (2010). Wound complications after cleft repa
478 Woude syndr 476 Jones, J.L., Canady, J.W., Brookes, J.T., Wehby, G.L., L'Heureux, J., Schutte, B.C., Murray, J.C.,
477 and Dunnwald, M. (2010). Wound complications after cleft repair in children with Van der
478 Woude syndrome. The Jo
-
- Woude syndrome. The Journal of craniofacial surgery 21, 1350-1353.
479 Knight, A.S., Schutte, B.C., Jiang, R., and Dixon, M.J. (2006). Developmental expression anal
480 of the mouse and chick orthologues of IRF6: the gene 478 Woude syndrome. The Journal of cramoratic surgery 21, 1350-1353.
479 Knight, A.S., Schutte, B.C., Jiang, R., and Dixon, M.J. (2006). Developm
480 of the mouse and chick orthologues of IRF6: the gene mutated in Van
481
-
- 479 Knight, A.S., Schutte, B.C., Jiang, R., and Dixon, M.J. (2006). Developmental expression analys
480 of the mouse and chick orthologues of IRF6: the gene mutated in Van der Woude syndrome.
481 Developmental dynamics : a 180 Developmental dynamics : an official publication of the American Association of Anatomists

235, 1441-1447.

235, 1441-1447. 481 Developmental dynamics : an official publication of the American Association of Anatomists
482 235, 1441-1447.
- 482 235, 1441-1447.

483

Kondo, S., Schutte, B.C., Richardson, R.J., Bjork, B.C., Knight, A.S., Watanabe, Y., Howard, E., de

484 Lima, R.L., Daack-Hirsch, S., Sander, A., et al. (2002). Mutations in IRF6 cause Van der Woude

485 and popliteal pte 264 Lima, R.L., Daack-Hirsch, S., Sander, A., et al. (2002). Mutations in IRFo cause van der Woude

485 and popliteal pterygium syndromes. Nature genetics 32, 285-289.

486 Kousa, Y.A., Roushangar, R., Patel, N., Walter, A 486 Kousa, Y.A., Roushangar, R., Patel, N., Walter, A., Marangoni, P., Kr
487 Schutte, B.C. (2017). IRF6 and SPRY4 Signaling Interact in Periderm
488 dental research 96, 1306-1313.
489 Kousa, Y.A., Zhu, H., Fakhouri, W.D.,

487 Schutte, B.C. (2017). IRF6 and SPRY4 Signaling Interact in Periderm Development. Journal of
488 dental research 96, 1306-1313.
489 Kousa, Y.A., Zhu, H., Fakhouri, W.D., Lei, Y., Kinoshita, A., Roushangar, R.R., Patel, dental research 96, 1306-1313.
489 Kousa, Y.A., Zhu, H., Fakhouri, W.D., Lei, Y., Kinoshita, A., Roushangar, R.R., Patel, N.K., Agop
491 N.J., Yang, W., Leslie, E.J., *et al*. (2019). The TFAP2A-IRF6-GRHL3 genetic pathway 489 dental research 50, 1300-1313.
489 Kousa, Y.A., Zhu, H., Fakhouri, W.
490 A.J., Yang, W., Leslie, E.J., *et al.* (
491 heurulation. Human molecular _{
492 Leslie, E.J., Koboldt, D.C., Kang, 4
493 A.E., Deleviannis, F.

490 A.J., Yang, W., Leslie, E.J., *et al.* (2019). The TFAP2A-IRF6-GRHL3 genetic pathway is conserved in
491 neurulation. Human molecular genetics 28, 1726-1737.
492 Leslie, E.J., Koboldt, D.C., Kang, C.J., Ma, L., Hecht, 490 A.J., Yang, W., Leslie, E.J., et al. (2015). The TTAT 2A-IRFO SKINLS genetic pathway is conserved in
191 neurulation. Human molecular genetics 28, 1726-1737.
192 Leslie, E.J., Koboldt, D.C., Kang, C.J., Ma, L., Hecht, 492 Leslie, E.J., Koboldt, D.C., Kang, C.J., Ma, L., Hecht, J.T., V
493 A.E., Deleyiannis, F.W., Fulton, R.S., *et al.* (2016). IRF6 m
494 orofacial clefting: analysis of 1521 families. Clinical gene
495 Leslie, E.J., Manc Leslie, E.J., Koboldt, D.C., Kang, C.J., Ma, L., Hecht, J.T., Wehby, G.L., Christensen, K., Czeizel,

493 A.E., Deleyiannis, F.W., Fulton, R.S., *et al.* (2016). IRF6 mutation screening in non-syndromic

494 orofacial clef 493 A.E., Deleyiannis, F.W., Fulton, R.S., et al. (2010). INTO mutation selecting in non-syndromic
494 orofacial clefting: analysis of 1521 families. Clinical genetics 90, 28-34.
495 Leslie, E.J., Mancuso, J.L., Schutte, B

494 Cronacial clerting: analysis of 1521 families. Clinical genetics 50, 28-34.
495 Leslie, E.J., Mancuso, J.L., Schutte, B.C., Cooper, M.E., Durda, K.M., L'He
496 T.M., Marazita, M.L., and Murray, J.C. (2013). Search for

495 Leslie, E.J., Mancuso, J.L., Schutte, B.C., Cooper, M.E., Durda, K.M., L'Heureux, J., Zucchero,
496 T.M., Marazita, M.L., and Murray, J.C. (2013). Search for genetic modifiers of IRF6 and
497 genotype-phenotype correla genotype-phenotype correlations in Van der Woude and popliteal pterygium syndrom
498 American journal of medical genetics Part A 161A, 2535-2544.
499 Lewis, A.E., Vasudevan, H.N., O'Neill, A.K., Soriano, P., and Bush, J.O. 498 American journal of medical genetics Part A 161A, 2535-2544.
499 Lewis, A.E., Vasudevan, H.N., O'Neill, A.K., Soriano, P., and Bush, J.O. (2013). The widely us
501 Developmental biology 379, 229-234.
502 Li. E.B.. Truo 499 Lewis, A.E., Vasudevan, H.N., O'Neill, A.K., Soriano, P., and Busl
199 Lewis, A.E., Vasudevan, H.N., O'Neill, A.K., Soriano, P., and Busl
190 Wnt1-Cre transgene causes developmental phenotypes by ect
1901 Developmental

499 Lewis, A.E., Vasudevan, H.N., O'Neill, A.K., Soriano, P., and Bush, J.O. (2013). The widely used
500 Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling
501 Developmental biology 3 501 Developmental biology 379, 229-234.
502 Li, E.B., Truong, D., Hallett, S.A., Mukherjee, K., Schutte, B.C., and Liao, E.C. (2017). Rapid
503 functional analysis of computationally complex rare human IRF6 gene variants u 502 Li, E.B., Truong, D., Hallett, S.A., Mukh
503 Li, E.B., Truong, D., Hallett, S.A., Mukh
503 Lunctional analysis of computationally
505 Matsuoka, T., Ahlberg, P.E., Kessaris, N
505 Matsuoka, T., Ahlberg, P.E., Kessaris,

503 functional analysis of computationally complex rare human IRF6 gene variants using a no
504 zebrafish model. PLoS genetics 13, e1007009.
505 Matsuoka, T., Ahlberg, P.E., Kessaris, N., Iannarelli, P., Dennehy, U., Richa 504 functional analysis of computational perspective ration in a gene variant analysis of the predictional space
505 functional materials of computations of computational and show that the meck and shoulder. Nature
503 fun 504 Ecoransi model. PLos genetics 15, e1007005.
505 Matsuoka, T., Ahlberg, P.E., Kessaris, N., lanna
506 McMahon, A.P., and Koentges, G. (2005). Neu
503 Miura, H., Quadros, R.M., Gurumurthy, C.B., al
509 knock-in and condi

506 McMahon, A.P., and Koentges, G. (2005). Neural crest origins of the neck and shoulder
507 436, 347-355.
508 Miura, H., Quadros, R.M., Gurumurthy, C.B., and Ohtsuka, M. (2018). Easi-CRISPR for c
509 knock-in and conditi 507 *436,* 347-355.
507 *436,* 347-355.
508 Miura, H., Quadros, R.M., Gurumurthy, C.B., and Ohtsuka, M. (2018). Easi-CRISPR for creating
509 knock-in and conditional knockout mouse models using long ssDNA donors. Nature pr 507 436, 347-535.
508 Miura, H., Qua
509 knock-in and c
510 13, 195-215.
511 Oberbeck, N., 512 Warming. S.. L 1980 Minney My Andreaty, Ming Jandman My, 2023, Ming Jonesland, My (2022), Carl Thermite in Framig

509 Knock-in and conditional knockout mouse models using long ssDNA donors. Nature protocols

510 13, 195-215.

511 Oberbe

510 *13, 195-215.*
510 *13, 195-215.*
511 Oberbeck, N., Pham, V.C., Webster, J.D., Reja, R., Huang, C.S., Zhang, Y., Roose-Girma, M.,
512 Warming, S., Li, Q., Birnberg, A., *et al.* (2019). The RIPK4-IRF6 signalling axis s 510 13, 135-213.

511 Oberbeck, N.

512 Warming, S.,

513 epidermal dif

514 Parisi, L., Mo_'

515 downregulati Warming, S., Li, Q., Birnberg, A., et al. (2019). The RIPK4-IRF6 signalling axis safeguards
513 epidermal differentiation and barrier function. Nature 574, 249-253.
514 Parisi, L., Mockenhaupt, C., Rihs, S., Mansour, F., K

512 Warming, S., Li, Q., Birnberg, A., et al. (2015). The RIFR4-IRF6 signaling axis safeguards
513 epidermal differentiation and barrier function. Nature 574, 249-253.
514 Parisi, L., Mockenhaupt, C., Rihs, S., Mansour, F 513 epidermal differentiation and barrier function. Nature 574, 245-253.
514 Parisi, L., Mockenhaupt, C., Rihs, S., Mansour, F., Katsaros, C., and De
515 downregulation of the cleft lip/palate-associated genes IRF6 and GRF

515 Parisi, L., Mortenhaupt, C., Mortenhaupt, C., Mortenhaupt, C., Mortenhaupt, C., Andreas U., C., C., Morten
516 Prontiers in oncology 12, 1023072.
516 Prontiers in oncology 12, 1023072.

516 Frontiers in oncology 12, 1023072. 516 Frontiers in oncology 12, 1023072.

-
-
-
-
-
- P.K., Chong, S.S., Yeow, V., Jee, S.H., *et al.* (2007). Association between IRF6 and nonsyndron
519 cleft lip with or without cleft palate in four populations. Genetics in medicine : official journa
520 the American Colle 519 Consighter The With or without cleft palate in four populations. Genetics in medicine : official journal of
520 the American College of Medical Genetics 9, 219-227.
521 Rahimov, F., Marazita, M.L., Visel, A., Cooper, M 520 the American College of Medical Genetics 9, 219-227.
521 Rahimov, F., Marazita, M.L., Visel, A., Cooper, M.E., Hitchler, M.J., Rubini, M., Domann, F.E.,
522 Govil, M., Christensen, K., Bille, C., *et al.* (2008). Disru
-
- 520 the American Conege of Medical Genetics 9, 219-227.
521 Rahimov, F., Marazita, M.L., Visel, A., Cooper, M.E., Hif
522 Govil, M., Christensen, K., Bille, C., *et al.* (2008). Disrup
1876 IRF6 enhancer is associated with Govil, M., Christensen, K., Bille, C., *et al*. (2008). Disruption of an AP-2alpha binding site in ar
523 HRF6 enhancer is associated with cleft lip. Nature genetics 40, 1341-1347.
624 Reid, B.S., Yang, H., Melvin, V.S., T 522 Govil, M., Christensen, K., Bille, C., et al. (2000). Disruption of an Ar-Zalpha binding site in an
523 IRF6 enhancer is associated with cleft lip. Nature genetics 40, 1341-1347.
524 Reid, B.S., Yang, H., Melvin, V.S., Reid, B.S., Yang, H., Melvin, V.S., Taketo, M.M., and Williams, T. (2011). Ec
525 Reid, B.S., Yang, H., Melvin, V.S., Taketo, M.M., and Williams, T. (2011). Ec
525 catenin signaling shapes the mouse face. Developmental bio
-
-
- 524 Reid, B.S., Yang, H., Melvin, V.S., Taketo, M.M., and Williams, T. (2011). Ectodermal Wnt/beta-525 Catenin signaling shapes the mouse face. Developmental biology 349, 201 209.
526 Restivo, G., Nguyen, B.C., Dziunycz, P., Ristorcelli, E., Ryan, R.J., Ozuysal, O.Y., Di
527 Radtke, F., Dixon, M.J., Hofbauer, G.F., et a Eta Restivo, G., Nguyen, B.C., Dziunycz, P., Ristorcelli, E., Ryan, R.J., Ozuysal, O.Y., Di Piazza, M.,

527 Radtke, F., Dixon, M.J., Hofbauer, G.F., *et al*. (2011). IRF6 is a mediator of Notch pro-

differentiation and t Madtke, F., Dixon, M.J., Horbader, G.H., et al. (2011). INFO IS a mediator of Notch pro-
528 differentiation and tumour suppressive function in keratinocytes. The EMBO journal
530 Rhea, L., Canady, F.J., Le, M., Reeb, T.,
-
-
- 529 differentiation and tumour suppressive function in Keratinocytes. The EMBO journal 30, 4371
530 Rhea, L., Canady, F.J., Le, M., Reeb, T., Canady, J.W., Kacmarynski, D.S.F., Avvari, R., Biggs, L.C.,
531 and Dunnwald, M. 530 Rhea,
531 and Di
532 vivo. E
533 Anato
534 Richar
-
- and Dunnwald, M. (2020). Interferon regulatory factor 6 is required for proper wound healing i

532 vivo. Developmental dynamics : an official publication of the American Association of

533 Anatomists 249, 509-522.

534 R 532 vivo. Developmental dynamics : an official publication of the American Association of
533 Anatomists 249, 509-522.
534 Richardson, R.J., Dixon, J., Jiang, R., and Dixon, M.J. (2009). Integration of IRF6 and Jagged2
535 533 Anatomists 249, 509-522.
533 Anatomists 249, 509-522.
534 Richardson, R.J., Dixon, J., Jiang, R., and Dixon, M.J. (2009). Integration of IRF6 and Jag
535 signalling is essential for controlling palatal adhesion and fus 533 Anatomists 249, 509-522.
534 Richardson, R.J., Dixon, J.,
535 signalling is essential for competent of the sense of the sense of the sense of the Sandan Content Sandan
537 Richardson, R.J., Dixon, J., 538 P., Whitmarsh signalling is essential for controlling palatal adhesion and fusion competence. Human moled
536 genetics 18, 2632-2642.
537 Richardson, R.J., Dixon, J., Malhotra, S., Hardman, M.J., Knowles, L., Boot-Handford, R.P., Sh
538
-
- 536 genetics 18, 2632-2642.
537 Richardson, R.J., Dixon, J., Malhotra, S., Hardman, M.J., Knowles, L., Boot-Handford, R.P., Shore,
538 P., Whitmarsh, A., and Dixon, M.J. (2006). Irf6 is a key determinant of the keratinocyt
-
- 536 genetics 18, 2052-2042.
537 Richardson, R.J., Dixon, J
538 P., Whitmarsh, A., and D
539 proliferation-differentiat
540 Richardson, R.J., Hammc
541 Berry. A., Hanley, N., Hea 1993 B., Whitmarsh, A., and Dixon, M.J. (2006). Irf6 is a key determinant of the keratinocyte

1993 B., Whitmarsh, A., and Dixon, M.J. (2006). Irf6 is a key determinant of the keratinocyte

1993 B. P., Whitmarsh, A., and D 539 proliferation-differentiation switch. Nature genetics 38, 1329-1334.
540 Richardson, R.J., Hammond, N.L., Coulombe, P.A., Saloranta, C., Nousiainen, H.O., Salor
541 Berry, A., Hanley, N., Headon, D., Karikoski, R., *et* 1939 Promeration-differentiation-switch. Nature genetics 38, 1329-1334.
1940 Richardson, R.J., Hammond, N.L., Coulombe, P.A., Saloranta, C., Nou
1941 Berry, A., Hanley, N., Headon, D., Karikoski, R., *et al.* (2014). Perid Faan Bichardson, R.J., Hammond, N.L., Coulombe, P.A., Saloranta, C., Nousiainen, H.O., Salonen, R.,

541 Berry, A., Hanley, N., Headon, D., Karikoski, R., et al. (2014). Periderm prevents pathological

542 epithelial adhes
- 542 Berry, A., Hanley, N., Headon, D., Karikoski, K., Et al. (2014). Terderm prevents pathological
542 Berthelial adhesions during embryogenesis. The Journal of clinical investigation 124, 3891-39
543 Sabel, J.L., d'Alenco
- 543 Sabel, J.L., d'Alencon, C., O'Brien, E.K., Van Otterloo, E., Lutz, K., Cuykendall, T.N., Schutte, B.C.,
544 Houston, D.W., and Cornell, R.A. (2009). Maternal Interferon Regulatory Factor 6 is required for
545 the diffe
-
-
-
- 543 Sabel, J.L., d'Alencon, C., O'Brien, E.K., Van Otterloo, E., Lutz, K., Cuykendall, T.N., Schutte, B.C.,
544 Houston, D.W., and Cornell, R.A. (2009). Maternal Interferon Regulatory Factor 6 is required for
545 the diffe 545 the differentiation of primary superficial epithelia in Danio and Xenopus embryos.
546 Developmental biology 325, 249-262.
547 Saroya, G., Hu, J., Hu, M., Panaretos, C., Mann, J., Kim, S., Bush, J.O., and Kaartinen, V. 546 Developmental biology 325, 249-262.
547 Saroya, G., Hu, J., Hu, M., Panaretos, C., Mann, J., Kim, S., Bush, J.O., and Kaartinen
548 Periderm Fate during Palatogenesis: TGF-beta and Periderm Dedifferentiation. Jou
550 S 547 Saroya, G., Hu, J., Hu, M., Panaretos, C
548 Periderm Fate during Palatogenesis: T
549 research 102, 459-466.
550 Schock, E.N., Struve, J.N., Chang, C.F.,
551 and Brugmann, S.A. (2017). A tissue-sr Saroya, G., Hu, J., Hu, M., Panaretos, C., Mann, J., Kim, S., Bush, J.O., and Kaartinen, V. (2023).
548 Periderm Fate during Palatogenesis: TGF-beta and Periderm Dedifferentiation. Journal of dental
549 search *102*, 459-4
- 549 research *102,* 459-466.
550 Schock, E.N., Struve, J.N., Chang, C.F., Williams, T.J., Snedeker, J., Attia, A.C., Stottmann, R.W.,
551 and Brugmann, S.A. (2017). A tissue-specific role for intraflagellar transport genes 549 research 102, 459-406.
550 Schock, E.N., Struve, J.N
551 and Brugmann, S.A. (20
552 craniofacial developme 551 and Brugmann, S.A. (2017). A tissue-specific role for intraflagellar transport genes during
552 craniofacial development. PloS one 12, e0174206.
2 552 craniofacial development. PloS one 12 , e0174206.
- 552 craniofacial development. PloS one 12, e0174206.

AP-2 essential for cranial closure and craniofacial development. Nature 381, 235-238.
555 Siewert, A., Reiz, B., Krug, C., Heggemann, J., Mangold, E., Dickten, H., and Ludwig, K.U. (2023
556 Analysis of candidate genes for 554 AT-2 essential for cranial closure and craniofacial development. Nature 381, 235-238.
555 Siewert, A., Reiz, B., Krug, C., Heggemann, J., Mangold, E., Dickten, H., and Ludwig, K.U.
556 Analysis of candidate genes for c Sim Siewert, A., Reiz, B., Krug, C., Heggemann, J., Mangold, E., Dickten, H., and Ludwig, K.U. (2023).

556 Analysis of candidate genes for cleft lip +/- cleft palate using murine single-cell expression data.

557 Frontier

-
- 560 Thompson, J., Mendoza, F., Tan, E., Bertol, J.W., Gaggar, A.S., Jun, G., Biguetti, C., and Fakhouri,
561 W.D. (2019). A cleft lip and palate gene. Irf6. is involved in osteoblast differentiation of
- 561 W.D. (2019). A cleft lip and palate gene, Irf6, is involved in osteoblast differentiation of
562 Craniofacial bone. Developmental dynamics : an official publication of the American Ass
- and characterization of a conditional allele of Interferon Regulatory Factor 6. Genesis 55.
560 Thompson, J., Mendoza, F., Tan, E., Bertol, J.W., Gaggar, A.S., Jun, G., Biguetti, C., and Fakhour
561 W.D. (2019). A cleft li 559 and characterization of a conditional allele of interferon Regulatory Factor 6. Genesis 55.
560 Thompson, J., Mendoza, F., Tan, E., Bertol, J.W., Gaggar, A.S., Jun, G., Biguetti, C., and Fak
561 W.D. (2019). A cleft li M.D. (2019). A cleft lip and palate gene, Irf6, is involved in osteoblast differentiation of

s61 W.D. (2019). A cleft lip and palate gene, Irf6, is involved in osteoblast differentiation of

craniofacial bone. Development 562 craniofacial bone. Developmental dynamics : an official publication of the American Ass
563 of Anatomists 248, 221-232.
564 Ting, S.B., Wilanowski, T., Auden, A., Hall, M., Voss, A.K., Thomas, T., Parekh, V., Cunnin
56 of Anatomists 248, 221-232.
563 of Anatomists 248, 221-232.
564 Ting, S.B., Wilanowski, T., Auden, A., Hall, M., Voss, A.K., Thomas, T., Parekh, V., Cunningham,
565 J.M., and Jane, S.M. (2003). Inositol- and folate-resista
-
-
-
- 563 of Anatomists 248, 221-232.
564 Ting, S.B., Wilanowski, T., Au
565 J.M., and Jane, S.M. (2003). I
566 epithelial-specific factor Grhl
567 Xu, X., Han, J., Ito, Y., Bringas
568 requirement for Tgfbr2 in the J.M., and Jane, S.M. (2003). Inositol- and folate-resistant neural tube defects in mice lacking the pithelial-specific factor Grhl-3. Nat Med 9, 1513-1519.
567 Xu, X., Han, J., Ito, Y., Bringas, P., Jr., Urata, M.M., and C 1956 1991)
1956 Sepithelial-specific factor Grhl-3. Nat Med 9, 1513-1519.
1967 Xu, X., Han, J., Ito, Y., Bringas, P., Jr., Urata, M.M., and Chai, Y. (2006). Cell autonomous
1968 Separate resistant of Teght 2 in the disappe Soon reprine hard specific factor Griff 5. Mat Med 5, 1515-1515.
567 Xu, X., Han, J., Ito, Y., Bringas, P., Jr., Urata, M.M., and C
568 requirement for Tgfbr2 in the disappearance of medial of
569 Developmental biology 297
- Xu, X., Han, J., Ito, Y., Bringas, P., Jr., Urata, M.M., and Chai, Y. (2006). Cell autonomous

568 requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.

569 Developmental biology 297 570 Yan, Y., Gauthier, M.A., Malik, A., Fotiadou, I., Ostrovski, M., Dervovic, D., Ghadban, L., Tsai, R.,
571 Gish, G., Loganathan, S.K., *et al*. (2023). The NOTCH-RIPK4-IRF6-ELOVL4 Axis Suppresses
572 Squamous Cell Carci 569 Developmentar biology 297, 238-248.
570 Yan, Y., Gauthier, M.A., Malik, A., Fotia
571 Gish, G., Loganathan, S.K., *et al*. (2023
573 Zhang, J., Hagopian-Donaldson, S., Ser
573 Zhang, J., Hagopian-Donaldson, S., Ser
574
- 571 Gish, G., Loganathan, S.K., *et al.* (2023). The NOTCH-RIPK4-IRF6-ELOVL4 Axis Suppresses
572 Squamous Cell Carcinoma. Cancers (Basel) 15.
573 Zhang, J., Hagopian-Donaldson, S., Serbedzija, G., Elsemore, J., Plehn-Dujow 571 Gish, G., Euganathan, S.K., et al. (2023). The NoTCH-RIPH INT C ELOVET Axis Suppresses
572 Squamous Cell Carcinoma. Cancers (Basel) 15.
573 Zhang, J., Hagopian-Donaldson, S., Serbedzija, G., Elsemore, J., Plehn-Dujowic 572 Squamous Cen Caremoma. Cancers (Basel) 15.
573 Zhang, J., Hagopian-Donaldson, S., Serbedzija,
574 A.P., Flavell, R.A., and Williams, T. (1996). Neur
1575 Zucchero, T.M., Cooper, M.E., Maher, B.S., Daa
577 Caprau. D., C A.P., Flavell, R.A., and Williams, T. (1996). Neural tube, skeletal and body wall defects in mice

lacking transcription factor AP-2. Nature 381, 238-241.

Zucchero, T.M., Cooper, M.E., Maher, B.S., Daack-Hirsch, S., Nepom 575 lacking transcription factor AP-2. Nature 381, 238-241.
576 Zucchero, T.M., Cooper, M.E., Maher, B.S., Daack-Hirsch, S., Nepomuceno, B., Ribeiro, L.,
577 Caprau, D., Christensen, K., Suzuki, Y., Machida, J., *et al.* (
-
-
- 575 Flacking transcription factor AT-2. Nature 381, 238-241.
576 Zucchero, T.M., Cooper, M.E., Maher, B.S., Daack-Hirscl
577 Caprau, D., Christensen, K., Suzuki, Y., Machida, J., *et al.*
578 (IRF6) gene variants and 577 Caprau, D., Christensen, K., Suzuki, Y., Machida, J., *et al.* (2004). Interferon regulatory fact
578 (IRF6) gene variants and the risk of isolated cleft lip or palate. The New England journal of
679 medicine 351, 769-577 Caprau, D., Christensen, K., Suzuki, T., Machida, J., et al. (2004). Interferon regulatory factor of
578 (IRF6) gene variants and the risk of isolated cleft lip or palate. The New England journal of
580
580 579 (IRFF) generations and the risk of isolated clearly or palate the risk of isolated contact line or $\frac{1}{2}$ and $\frac{1}{2}$ medicine 351, 769-780.
- 579 medicine 351, 769-780.
580
-

Wnt1

