Table 3.
fMRI | EEG | |||||||
---|---|---|---|---|---|---|---|---|
bvFTD vs CN | AD vs CN | bvFTD vs CN (δ) | AD vs CN (θ) | |||||
AUC | 0.904 | (0.017) | 0.900 | (0.014) | 0.955 | (0.021) | 0.867 | (0.024) |
Precision | 0.922 | (0.017) | 0.892 | (0.014) | 0.931 | (0.022) | 0.793 | (0.025) |
Specificity | 0.655 | (0.042) | 0.761 | (0.069) | 0.818 | (0.064) | 0.683 | (0.049) |
Sensitivity | 0.944 | (0.016) | 0.894 | (0.014) | 0.957 | (0.023) | 0.816 | (0.033) |
Accuracy | 0.890 | (0.017) | 0.853 | (0.016) | 0.918 | (0.024) | 0.762 | (0.027) |
F1-score | 0.933 | (0.012) | 0.893 | (0.010) | 0.944 | (0.017) | 0.804 | (0.023) |
Data is presented as mean (standard deviation) out of 300 iterations of the classifier.