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Abstract

Introduction: The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) 

relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize 

and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient 

tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic 

phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to 

damaging inflammatory symptoms.

Areas Covered: Here, we discuss biological insights into GvL and cGvHD and strategies to 

balance the prevention of GvHD with maintenance of GvL in modern HSCT.

Expert Opinion/Commentary: Relapse remains the leading cause of mortality after HSCT 

with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, 

occurring in up to half of patients and responsible for 15–20% of deaths after HSCT. Intriguingly, 

the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting 

that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The 

ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse 

rates, and quality of life for patients undergoing HSCT.
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1. Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) has the potential to induce 

long-term remission in patients with hematologic malignancies mediated in part through 

graft versus leukemia (GvL) activity of donor immune cells against recipient malignant 

cells [1.] Relapse remains the most substantial challenge in HSCT and the major cause of 

mortality in patients, occurring in up to 40% of cases [2]. The GvL effect can be leveraged 

to re-introduce remission in some patients through strategies such as immunosuppression 

taper or donor lymphocyte infusion (DLI); however, success rates of these strategies are 

highly variable. For example, DLI results in ~ 80% response rate for chronic myelogenous 

leukemia (CML) whereas patients with acute myeloid leukemia (AML) only respond in 

~ 20% of the cases [3]. While such donor alloreactivity is beneficial in maintaining 

remission, excessive alloreactivity of donor lymphocytes can also mediate Graft versus 

Host Disease (GvHD), leading to autoimmune-like inflammation. GvHD is a major cause 

of morbidity and mortality after HSCT, and its chronic form (cGvHD) has been particularly 

difficult to manage, owing to few effective available therapies. In recent years, several new 

therapies have become available for better prevention and treatment of cGvHD. Curiously, 

these treatments appear to act through different biological pathways, underscoring both the 

complex nature of the disease and the limitations of our understanding of its cellular and 

molecular underpinnings. Similarly, the true physiology of GvL remains elusive despite long 

standing clinical demonstration of this phenomenon through the ability of donor lymphocyte 

infusions (DLI) alone to restore remission in patients who have relapsed after HSCT. Indeed, 

it remains unclear whether GvL targets specific leukemia antigens in particular or whether 

this is due to targeting recipient hematopoietic elements in general.

The balance between GvHD and GvL is crucial in determining the clinical outcome of 

HSCT. The presence of GvL is associated with a reduced risk of relapse and improved 

survival, while severe GvHD can cause significant morbidity and mortality [4,5]. However, 

GvHD and GvL are closely linked and may be at least in part driven by similar immune 

cell populations and mechanisms [6-8]. Moreover, immunosuppressive drugs used to prevent 

GvHD may also impair GvL, increasing the risk of relapse [9-11]. Conversely, strategies to 

enhance GvL may increase the risk of GvHD [12,13]. For instance, immune suppression 

taper for relapse after HSCT was sufficient to re-instate remission in one-third of patients, 

and 97% of those who responded had development or progression of acute or chronic 

GvHD [14]. Similarly, a retrospective analysis of prognostic factors for favorable response 

after post-HSCT disease relapse demonstrated that induction of GvHD after relapse was 

associated with improved overall survival, and that this was independent of whether GvHD 

was induced in the presence or absence of adoptive cellular immunotherapy [15].

Multiple studies have demonstrated a relationship between the presence of GvHD and lower 

relapse rates [16-19]. One retrospective study demonstrated a link between the development 

of grade 1–2 acute aGvHD and improved overall survival for adult T cell leukemia 

[20]. A similar trend was found for patients with CMML undergoing HSCT, with an 

association between aGvHD and improved overall survival identified by univariate analysis 

and a stronger association with cGvHD and better overall survival in both univariate and 

multivariable analysis [21]. The link between GvHD and reduced relapse risk appears to be 
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stronger for cGvHD compared to aGvHD, with several studies identifying a beneficial effect 

of the development of cGvHD on protection from later relapse, particularly for patients 

receiving reduced intensity conditioning regimens [22-24]. The mechanism underlying the 

association between cGvHD and reduced relapse risk is not clear. One hypothesis is that 

immune dysregulation caused by cGvHD may lead to the activation and expansion of 

immune effector cells, which may eliminate residual malignant cells [25,26]. Additionally, 

cGvHD may stimulate the production of pro-inflammatory cytokines, such as interleukin-6 

(IL-6) and tumor necrosis factor-alpha (TNF-α), promoting direct anti-tumor effects. 

Preclinical studies have also provided evidence for the GvL effect. In a mouse model of 

AML, allogeneic HSCT was found to be more effective than syngeneic HSCT in eradicating 

the leukemia cells. The effect was again found to be dependent on the donor T cells, 

indicating a role for GvL [27], a finding further underscored by studies in humans [16].

Several factors can affect the balance between GvHD and GvL, including the type and 

intensity of conditioning regimens used before HSCT, the degree of HLA mismatch between 

the donor and recipient, and the nature of the malignant disease. Strategies to improve the 

balance between GvHD and GvL are needed to improve both survival and quality of life 

outcomes for patients after HSCT.

2. Pathogenesis of cGvhd

The initial trigger for cGvHD is thought to be tissue damage caused by conditioning 

therapy or infection, which leads to the release of host antigens that activate donor T 

cells. Donor T cells then migrate to target organs, where they induce inflammation, fibrosis, 

and tissue damage. In addition to T cells, B cells, natural killer cells, and dendritic cells 

have all been implicated in the pathogenesis of cGvHD. Chronic GvHD is characterized 

by the accumulation of extracellular matrix proteins, including collagen, fibronectin, and 

proteoglycans, leading to tissue fibrosis [28-30]. Studies have shown that TGF-β and other 

profibrotic cytokines are upregulated in cGvHD, contributing to the development of fibrosis 

[28, 31-34]. Several mechanisms have been proposed to explain the pathophysiology of 

cGvHD.

2.1. Conventional T cells

A wide range of T cell phenotypic and functional subsets may contribute to GvHD 

pathogenesis. For example, antigen stimulated CD8+ T cells from HSCT patients were 

shown to develop into CD4+/CD8+ double positive cells that were sufficient to mediate 

GvHD pathogenesis in mouse xenograft models [35]. Histopathological examination of 

mucocutaneous biopsies from patients with cGvHD have demonstrated infiltration of 

cytotoxic CD8+ T cells [36] as well as CD4+ cells [37], suggesting a role for direct 

cytotoxicity. T cells may also mediate cGvHD pathogenesis indirectly through production 

and secretion of cytokines. Th1 and Th2 cytokines, such as IFN-γ and IL-4, are upregulated 

in cGvHD (Figure 1). Th1 cells are responsible for cell-mediated immunity, while Th2 cells 

mediate humoral immunity. Activated T cells produce interferon-gamma (IFN-γ), tumor 

necrosis factor-alpha (TNF-α), and interleukin-17 (IL-17), which recruit and activate other 

immune cells promoting tissue damage. T cells can also directly damage tissues by killing 
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cells expressing host antigens through cytotoxic mechanisms. CD4 T cells have also been 

implicated in driving GvHD pathogenesis in mice through regulation of alloreactivity by 

nuclear factor erythroid-derived 2-like 2 (NRF2), a transcription factor critical for cellular 

redox [38]. Mice transplanted with CD4+ T cells deficient for NRF2 experienced less GvHD 

compared to wild-type, while Nrf2−/− donor CD8+ T cells maintained cytotoxic capabilities, 

suggesting intact graft versus leukemia (GvL) activity. ATG16L1 is a key autophagy gene, 

a pathway responsible for mediating intracellular degradation, and deficiency of ATG16L1 
is linked to increased intestinal inflammation and development of inflammatory bowel 

disease [39,40]. Models of HSCT in ATG16L1 deficient mice displayed enhanced GvHD 

with increased T cell proliferation due to increased dendritic cell costimulatory molecule 

production [41]. T cell alloreactivity driving GvHD has also been linked to deficiency of the 

short-chain fatty acid receptor GPR109A as well as STAT-3 and ERK1/2 phosphorylation, 

suggesting these as potential targets for mitigating GvHD pathogenesis [42,43].

Noncanonical T cell subsets are being studied for their impact in mediating GvHD. A 

recent study found that more diverse intestinal microbiome after HSCT was associated 

with increased numbers of innate-like mucosal-associated invariant T (MAIT) cells and a 

subpopulation of circulating ɣδ T cells, which in turn was associated with a decrease in the 

incidence of intestinal aGvHD [44].

2.2. Regulatory T cells (tregs)

Tregs are a subset of T cells that play a key role in maintaining immune tolerance and 

preventing autoimmunity. The number and function of Tregs are reduced in the setting of 

cGvHD, leading to the loss of tolerance and activation of autoreactive T cells (Figure 1). 

A decrease in the frequency and absolute number of Tregs has been observed in patients 

with cGvHD compared to those without cGvHD [45]. Lower Treg numbers at 3 months 

after HSCT were also associated with increased risk of cGvHD. In mouse models of 

cGvHD, adoptive transfer of Tregs ameliorates cGvHD [46], a finding further supported 

by small trials in humans [47-49]. Further, administration of low-dose interleukin-2 (IL-2), 

which selectively expands Tregs, has been shown to prevent and treat cGvHD in preclinical 

models.

2.3. B cells

Although cGvHD is thought to be driven primarily by alloreactive T cells, there is evidence 

to support a role for B cells in driving pathogenesis, likely through the production of 

autoantibodies against host antigens, such as collagen and keratinocyte antigens. These 

autoantibodies can promote inflammation and tissue damage in various organs, including 

the skin, liver, and lungs. High levels of the B-cell activating factor (BAFF) have been 

identified in patients with active cGvHD [50-53]. In addition, antibodies directed toward 

Y-chromosome antigens have been observed in male HSCT recipients with grafts from 

female donors, and antibody titer correlates with GvHD disease severity (Figure 1) [54-57]. 

This observation has prompted clinical use of B cell targeting monoclonal antibodies for 

GvHD therapy, though the efficacy of these strategies remains a subject of debate.
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2.4. Microbiome dysbiosis and the inflammasome

Recent studies have shown that the microbiome plays a critical role in modulating the 

immune response and maintaining immune homeostasis. Dysbiosis of the gut microbiome 

has a well-established association with increased risk of acute GvHD (aGvHD) (Figure 

1) [58-61]. More recently, microbiome dysbiosis has been implicated in pathogenesis of 

cGvHD as well. A mouse model of cGvHD demonstrated that microbiota dysbiosis skews 

intestinal T cell ratios toward decreased T reg abundance, promoting cGvHD [62]. One 

study in humans found that patients with higher intestinal abundance of Prevotella prior 

to HSCT or higher abundance of Akkermansia and Streptococcus at Day 100 after HSCT 

had higher incidence of cGvHD [63]. Conversely, increased prevalence of intestinal Blautia, 

a genus of Clostridia, was found to be associated with protection from intestinal GvHD 

[59]. Dysbiosis may skew gut microbiota-derived short chain fatty acids (SCFAs). Lower 

circulating concentrations of butyrate and propionate, two microbe-derived SCFAs, have 

been found in patients at post-HSCT day 100 who developed cGvHD [64].

2.5. The inflammasome

Multiple lines of evidence implicate the inflammasome in GvHD pathogenesis, primarily 

acute [65]. The inflammasome is a protein complex belonging to the innate immune system 

that primarily functions to sense and respond to infectious microbial components leading to 

the production of inflammatory cytokine Interleukin-1b (IL-1b) (Figure 1) [66,67]. Intestinal 

commensal bacteria and damage-associated molecular patterns (DAMPs) have been shown 

to initiate NLRP3 inflammasome activation and IL-1b production after conditioning therapy, 

while blockade of IL-1b signaling mitigates acute GvHD pathogenesis [68,69]. Myeloid 

derived suppressor cells (MDSCs) with anti-inflammatory properties have been shown to 

lose suppressive function (and ability to abrogate GvHD) after exposure to inflammasome-

activating mediators [70]. More recently, ambient oxygen levels in the intestine have been 

shown to lead to dysbiosis, promoting intestinal damage mediated by alloreactive T cells 

in a mechanism dependent upon intestinal HIF-1a and the microbiome [70,71]. In humans, 

specific single nucleotide polymorphism genotypes of the NLRP3 inflammasome have been 

linked to greater proclivity for developing acute or chronic GvHD [72]. These preclinical 

experimental models raise new areas of investigation for translation into clinical therapeutic 

strategies for GvHD diagnosis and treatment.

3. Strategies for prevention of cGvhd

After decades of research attempting to optimize GvHD prophylaxis regimens, very few 

strategies have been successful in reducing rates of acute or chronic GvHD. For aGvHD, 

a recent randomized phase II trial of addition of abatacept to the standard combination of 

calcineurin inhibitor (CNI) and methotrexate (MTX) demonstrated marked abrogation of 

grade III-IV aGvHD for recipients of fully HLA-matched HSCT compared to CNI/MTX 

plus placebo [73]. This promising result recently led to FDA approval of abatacept for 

aGvHD prophylaxis. Only two strategies have proven to be successful in reducing cGvHD: 

in vivo or ex vivo T cell depletion and, more recently, post-transplant cyclophosphamide 

(PTCy).
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3.1. T-cell depletion

T cell depletion (TCD) is a strategy used to prevent cGvHD by removing or suppressing T 

cells that play a crucial role in the development of GvHD. This approach can be achieved 

through several in vivo serologic methods, such as alemtuzumab or anti-thymocyte/anti-T 

lymphocyte globulin (ATG/ATLG), often derived from rabbit or horse sera. Alemtuzumab is 

a monoclonal antibody against CD52, which is present on mature lymphocytes, and has been 

implemented as an in vivo method of T cell depletion. Trials using alemtuzumab as part of 

the GvHD prophylaxis regimen during HSCT have demonstrated reduced acute and chronic 

GvHD, acceptable immune reconstitution, and overall similar survival and relapse rates to 

conventional GvHD prophylaxis regimens [74-76]. Several randomized trials have evaluated 

ATG/ATLG in combination with standard GvHD prophylaxis (CNI/MTX) versus CNI/MTX 

alone (or plus placebo) in both the matched related and matched unrelated donor settings 

and have demonstrated significant reductions in chronic GvHD without negatively impacting 

relapse rates, although in one of these studies overall survival was lower in the ATLG arm 

[77-83]. Importantly, lower doses of ATG/ATLG appear to be sufficient for protection from 

cGvHD, and some studies have found that patients receiving higher doses, while protected 

from cGvHD, have higher incidence of infections and may have impaired GvL activity 

[84-86].

Another approach to T cell depletion for cGvHD prevention is the use of ex vivo T 

cell depletion of the graft prior to HSCT. An early method of ex vivo TCD leveraged 

the ability of soybean lectin to induce differential agglutination of immune cells within 

the bone marrow product, allowing physical separation and removal of T cells and 

enabling HSCT from a haploidentical donor [87]. Another method of physical separation 

utilized counterflow centrifugation to separate lymphocytes by size and density [88]. With 

development of monoclonal antibodies, immunologic techniques were implemented to 

deplete T cells, for example, with OKT3 antibody [89], antibodies to CD6 [90,91], or 

cocktails of antibodies targeting T cells [92,93], all of which showed promise in small single 

center studies. Early studies have pointed to an increased risk of graft failure, infection, 

and most notably relapse in recipients of TCD for GvHD prophylaxis [94,95]. Subsequent 

studies have shown a clear increase in relapse risk associated with TCD for patients with 

CML [96,97]; however, the impact of TCD on relapse for AML is not well established 

[98]. An alternative ‘TCD’ strategy is to enrich for hematopoietic stem cells through CD34+ 

selection rather than T cell depletion per se. [99] This phase III prospective multicenter 

randomized trial compared CD34-selected peripheral blood stem cell HSCT (PBSCT) versus 

bone marrow HSCT (BMT) with PTCy alone for GvHD prophylaxis versus BMT with 

CNI/MTX as a control (conventional treatment) arm. Patients receiving CD34-selected 

PBSCT had a lower incidence of cGvHD but worse overall survival and treatment-related 

mortality with a higher incidence of death due to infections compared to the other arms, 

abrogating the benefit of reduced cGvHD [100]. More recently, specific depletion of naïve 

T cells has been employed in an effort to engineer the graft to preserve maximum GvL 

(presumably through administration of memory T cells) while reducing GvHD [101]. Grade 

III-IV acute GvHD was 7% while cGvHD was virtually nonexistent.
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3.2. Ptcy

PTCy is a GvHD prophylaxis strategy wherein high-dose cyclophosphamide is administered 

in the days following HSCT. Initially employed as an approach to facilitate HLA 

haploidentical HSCT without excessive GvHD, the mechanism of action of PTCy may 

involve selective depletion of alloreactive T cells, while preserving regulatory T cells 

[102,103]. PTCy has markedly expanded the available HSCT donor pool by enabling 

haploidentical and HLA-mismatched transplants with acceptable rates of GvHD [104-109].

PTCy-based GvHD prophylaxis regimens have now been evaluated in several prospective 

randomized studies in the HLA-matched related and unrelated settings. The HOVON-96 

trial demonstrated marked improvement in incidence of extensive cGvHD and in GvHD-

free relapse-free survival (GRFS) in patients receiving PTCy with cyclosporine A (CsA) 

[110]. The BMT CTN 1203 trial studied a total of 273 patients who were randomized to 

receive either PTCy/tacrolimus/MMF), tacrolimus/methotrexate/bortezomib, or tacrolimus/

methotrexate/maraviroc as GvHD prophylaxis after HSCT [111]. The primary composite 

outcome GvHD-free relapse-free survival (GRFS) pinpointed the PTCy/tacrolimus/MMF 

arm as having the most promising outcomes for subsequent direct comparison to tacrolimus/

methotrexate and in larger phase III study. That subsequent study, BMT CTN 1703, has 

recently been reported [112]. Four hundred and thirty-one adult patients undergoing HSCT 

from a matched related or unrelated donor were evaluated. At one year, GRFS was 52.7% 

in the PTCy/tacrolimus/MMF group compared to 34.9% in the tacrolimus/methotrexate 

group with no differences in relapse rates or overall survival. Notably, BMT CTN 1301 

showed that PTCy alone was insufficient for cGvHD reduction [100]. Rather, addition of 

CNI or a similar immunosuppressant appears to be necessary in combination with PTCy to 

achieve effective GvHD prophylaxis. These results will likely set a new standard of PTCy/

tacrolimus/MMF for GvHD prophylaxis in the HLA-matched HSCT setting.

4. Strategies for treatment of cGvhd

4.1. Corticosteroids

Corticosteroids have long been employed for the treatment of both acute and cGvHD 

and remain first-line therapy [113,114]. While reasonably effective, long-term use is 

associated with significant adverse effects including infections, osteoporosis, and diabetes. 

Furthermore, up to half of patients ultimately become steroid resistant (SR-GvHD), and 

therapy options for SR-GvHD are limited [115-117]. Therefore, there is a need for 

alternative therapies that can reduce the dependence on corticosteroids.

4.2. Early experimental approaches

A number of therapies with initially promising results after smaller studies later failed to 

show benefit in larger randomized trials.

4.2.1. CNI—Corticosteroids combined with the CNI cyclosporin A (CsA) initially 

appeared to be effective for cGvHD treatment, but a randomized trial of 142 patients 

demonstrated no benefit with CsA addition [118,119].
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4.2.2. Azathioprine—A small study suggested a benefit of addition of azathioprine to 

corticosteroids in preventing in cGvHD progression [120]; however, a subsequent large 

randomized trial could not replicate this finding [121].

4.2.3. Extracorporeal photopheresis (ECP)—ECP is a photodynamic therapy 

involving apheresis of lymphocytes followed by treatment with 8-methoxypsoralen and 

ultraviolet A (UVA), inducing a cytotoxic effect upon T cells [120,122]. Several small 

retrospective and prospective studies demonstrated responses of cGvHD to ECP, with 

some responses in the steroid-refractory setting (Table 1) [123-129]. Despite a paucity of 

randomized controlled evidence demonstrating a benefit for ECP, it is commonly employed, 

as it is considered safe and leads to improvement in quality-of-life measures for select 

patients with cGvHD.

4.2.4. Mycophenolate mofetil (MMF)—Some reports suggested that MMF could 

effectively mitigate symptoms in some patients with cGVHD (Table 1). In the upfront 

setting, however, MMF when added to steroids afforded no benefit and indeed there was a 

suggestion it may be detrimental compared to steroids alone [130-132].

4.2.5. Thalidomide—Thalidomide was recognized to have immunosuppressive effects in 

lepromatous leprosy [133], thus prompting interest in application to cGvHD. A prospective 

study of patients with refractory or high-risk cGvHD demonstrated responses in over half of 

patients [134]. Nevertheless, a subsequent randomized prospective trial failed to demonstrate 

response [135].

4.2.6. Sirolimus—Sirolimus (rapamycin), a mammalian target of rapamycin (mTOR) 

inhibitor is effective in combination with tacrolimus ± methotrexate for GvHD prevention 

during HSCT [136-138] and has antifibrotic properties in animal models [139]. A phase 

II/III randomized multicenter trial (BMT CTN 0801) aimed to evaluate the efficacy of 

sirolimus/prednisone versus sirolimus/CNI/prednisone for the treatment of cGvHD [140]. 

The study closed early due to a lack of statistical difference in the initial 138 evaluable 

patients.

4.2.7. Monoclonal antibodies—Several small studies suggested potential benefit of 

rituximab, a monoclonal antibody targeting B cells via CD20 [141-145]. Two small phase 

II studies of rituximab for steroid refractory cGvHD showed a 70-80% response rate (Table 

1) [146,147]. Belimumab, a monoclonal antibody that targets BAFF, has been shown to 

reduce autoantibody production and improve skin symptoms in patients with cGvHD [148]. 

These promising results warrant further investigation; however, B cell depletion increases 

infectious risk in these already high-risk patients and should be used with caution [149].

4.3. Current landscape of approved therapies

4.3.1. Ibrutinib—Ibrutinib is an oral inhibitor of Bruton tyrosine kinase (BTK) (B 

cells) and IL-2-inducible T cell kinase (ITK) (Table 1, Figure 2) that has demonstrated 

efficacy in treating a variety of hematologic malignancies, including chronic lymphocytic 

leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström macroglobulinemia 
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(WM) [150,151]. More recently, ibrutinib has been evaluated as a potential therapy 

for cGvHD. Preclinical data suggested that BTK and ITK both play key roles in the 

development and maintenance of chronic inflammation, a hallmark of cGvHD. BTK/ITK 

inhibition with ibrutinib was shown to reduce inflammation and fibrosis in animal models of 

cGvHD [152]. Based on these promising preclinical results, several clinical trials of ibrutinib 

for the treatment of cGvHD were initiated.

Study PCYC-1129-CA was a multicenter, open-label, single-arm phase Ib/II study 

conducted to evaluate the efficacy and safety of ibrutinib in the treatment of cGvHD. 

The study enrolled 42 patients with cGvHD who had received at least one prior therapy. 

ORR was 67% at week 24, with 17% complete response (CR) and 50% partial response 

(PR). The median PFS was 12.7 months. Based on this study, ibrutinib was the first agent 

to gain FDA approval for next-line therapy for SR-GvHD [153,154]. Longer term follow-

up demonstrated sustained response at 48 weeks in half of responding patients [155*]. 

Subsequent real-world experience with ibrutinib has been disappointing, with a single-center 

retrospective analysis demonstrating a 2-year failure-free survival rate (FFS) of 9% and 

median FFS of 4.5 months with no reduction in corticosteroid use with addition of ibrutinib 

[156].

4.3.2. Ruxolitinib—Ruxolitinib is a Janus kinase (JAK) 1/2 inhibitor that has been 

evaluated as a treatment for chronic graft-versus-host disease (cGvHD) in several clinical 

trials. JAKs play a key role in the pathophysiology of cGvHD by mediating the production 

of inflammatory cytokines and growth factors. Ruxolitinib has been shown to inhibit JAK-

mediated signaling and reduce the production of pro-inflammatory cytokines and growth 

factors (Table 1, Figure 2). A preclinical model of ruxolitinib in a murine model of 

pulmonary cGvHD demonstrated reduced collagen deposition and improved pulmonary 

function testing [157].

A multicenter retrospective study evaluated outcomes after ruxolitinib treatment in patients 

with heavily pretreated steroid refractory cGvHD [158,159], Subsequently, a phase III 

randomized controlled trial of ruxolitinib for cGvHD trial (REACH3) enrolled 329 patients 

with steroid-refractory cGvHD [160**]. Patients were randomized to receive ruxolitinib at 

a dose of 10 mg twice daily or best available therapy (BAT). The study met its primary 

endpoint, with an overall response rate (CR + PR) of 49.7% in the ruxolitinib group 

compared to 25.6% in the BAT group (p < 0.001). The complete response rate was 7% 

in the ruxolitinib group compared to 0% in the BAT group. Treatment with ruxolitinib 

was associated with longer median failure free survival compared to BAT (>18.6 months 

versus 5.7 months, p < 0.001). The study concluded that ruxolitinib was effective in treating 

steroid-refractory cGvHD and represented a new standard of care for this patient population 

and led to both FDA approval and widespread adoption.

4.3.3. Belumosidil—Belumosudil is a small molecule inhibitor of Rho-associated 

coiled-coil containing protein kinase 2 (ROCK2), which is involved in regulating fibrosis 

and Th17/T regulatory cell differentiation via downregulation of IL321 and IL-17 via STAT3 

(Table 1, Figure 2) [161]. ROCK2 plays an important role in the activation and migration of 

T cells, which are central to the pathogenesis of chronic graft-versus-host disease (cGvHD). 
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Preclinical models demonstrated reduced pulmonary and skin fibrosis with belumodudil 

treatment, suggesting a role for modulation of ROCK2 in the treatment of cGvHD [162].

The safety and efficacy of belumosudil in the treatment of cGvHD was evaluated in a phase 

IIa open label dose-finding study [163]. Patients were treated with one of the three different 

dose levels of belumosudil: 200 mg once daily, 200 mg twice daily, or 400 mg once daily, 

leading to overall response rates of 65%, 69%, and 62%, respectively. Median duration 

of response was 35 weeks with improvements in quality of life and corticosteroid dose 

reductions also observed for responding patients. Overall belumosudil was well-tolerated 

with no unexpected adverse events, no increased infectious risk, and low rates of cytopenias.

The subsequent ROCKstar trial confirmed efficacy with response rates ~ 75%. This study 

confirmed belumosudil as a promising therapy for cGvHD and contributed to the recent 

FDA approval of this drug for cGvHD after two or more lines of prior systemic therapy 

[164,165**].

4.4. Promising agents under active study

4.4.1. Axatilimab—Axatilimab is a novel humanized monoclonal antibody directed 

against colony-stimulating factor 1 receptor (CSF-1 R) that is currently under study for 

the treatment of cGvHD. Colony stimulating factor 1 (CSF-1) directs differentiation and 

proliferation of pro-fibrotic macrophages, promoting tissue remodeling, a key component 

of the pathogenesis of cGvHD (Figure 2) [166]. Preclinical studies in mice demonstrated 

that development of cGvHD-like pathology in the skin was dependent upon macrophage 

infiltration driven by CSF-1/CSF-1 R. On this basis, axatilimab was developed to recognize 

and bind the ligand-binding domain on CSF-1 R to block binding of CSF-1, leading to 

inhibition of monocyte activation.

To test this in humans, a phase I/II study evaluated the safety and tolerability of axatilimab 

in 40 patients with recurrent cGvHD [167,168**]. Overall response at cycle 7 day 1 was 

50% in the phase II cohort (11 of 22 patients). A second randomized multicenter phase II 

trial testing three different dose levels of axatilimab in patients with recurrent or refractory 

cGvHD after at least 2 lines of prior systemic therapy is currently underway (AGAVE-201) 

(Table 1) [169].

4.4.2. Abatacept—Abatacept is a first-in-class recombinant soluble fusion protein 

selective modulator of T cell costimulation composed of the Fc region of immunoglobulin 

IgG1 fused to the CTLA-4 extracellular domain. It functions by binding to the B7 domain 

on antigen presenting cells, preventing effective delivery of costimulation during antigen 

presentation to T cells and attenuating T cell stimulation (Figure 2) [170]. Based on 

its success in treating rheumatologic diseases [171] and promising preclinical studies 

showing amelioration of cGvHD pathology in mice [172], abatacept was trialed for 

prevention and treatment of GvHD in humans. Abatacept recently gained FDA approval 

for prevention of acute GvHD after the GvHD-1 trial, a randomized placebo-controlled 

study, demonstrated improved rate of acute GvHD without a negative impact on relapse or 

infectious complications [73]. A phase I trial to evaluate safety, efficacy, and immunologic 

modulation in patients with steroid refractory cGvHD treated with abatacept at escalating 
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doses demonstrated a 44% partial response rate (Table 1) [173]. Abatacept treatment 

was associated with increased PD-1 expression on circulating CD4+ and CD8+ T cells 

from responders, suggesting that abatacept promotes T cell exhaustion, thereby mitigating 

cGvHD. Recently, a phase II study evaluating efficacy of abatacept in the treatment of 

steroid refractory cGvHD has been published, confirming phase I results [174]. Overall, 

these studies suggest that abatacept may be an effective and well-tolerated treatment option 

for patients with cGvHD who are refractory to steroids.

4.4.3. Low dose IL-2—Interleukin-2 (IL-2) is a key cytokine that regulates T cell 

homeostasis, activation, and differentiation [175]. Regulatory T cells (Tregs) are particularly 

dependent upon IL-2 signaling from activated T cells for maintaining their suppressor 

function [176-178]. This dependence has been exploited for therapy in autoimmune 

disorders by treatment with low-dose IL-2 in an effort to restore Treg fitness and function, 

thereby modulating inflammation [179]. Since cGvHD is associated with a loss of tolerance 

and impaired Treg function [45,180,181], IL-2 was hypothesized to mitigate cGvHD in 

humans, through immunomodulation of Treg survival and function [182]. A phase I 

dose-escalation study demonstrated the tolerability of IL-2 in patients with active steroid 

refractory cGvHD, with half of patients having a response (Table 1) [183]. Patients had 

increased numbers of CD4+ T reg cells as well as an increased ratio of Treg to conventional 

CD4+ T cells (Tcon). Correlative analysis showed increased Treg proliferation, thymic 

export, and enhanced resistance to apoptosis with minimal changes in Tcon cells, suggesting 

a mechanism by which IL-2 promotes immune tolerance [184].

5. Biological insights into GvL

GvHD and GvL have long been thought to be two sides of the coin in transplant 

immunology, inextricably linked to one another. Indeed, the seminal work by Horowitz and 

colleagues recognizing the GvL effect of HSCT tied this phenomenon to the development 

of cGvHD [16]. However, randomized trials in the modern era showing improved GvHD 

prophylaxis, including BMT CTN 1703 (PTCy), have not resulted in increased relapse 

risk even despite substantial improvement in cGvHD. Thus, modern biological insights 

suggest that GvL and GvHD, while closely related, may be separable. Therefore, therapies 

to enhance GvL without increasing cGvHD present an attractive option for improving 

outcomes. The molecular underpinnings driving the GvL effect after HSCT have garnered 

much attention with many potential cell subsets and mechanisms implicated. Yet, successful 

translation of these findings to clinical application of influencing GvL remains elusive.

5.1. T cells

T cells have long been hypothesized as the primary driver of the GvL effect, a notion 

supported by the success of donor lymphocyte infusions (DLI) [185-193] and tapering of 

immune suppression [14] in reinducing remissions for patients with relapsed disease or 

dropping donor chimerism. Multiple potential T cell subsets and putative mechanisms of 

effective GvL have been proposed. Since T cell therapies for CML demonstrate the most 

clinically effective GvL response, several studies have utilized this disease setting as a model 

to understand T cell mechanisms underlying this effect. One study in mice with retrovirally 

Maurer and Soiffer Page 11

Expert Rev Hematol. Author manuscript; available in PMC 2024 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transduced bcr-abl fusion cDNA demonstrated both CD4 and CD8 T cell-mediated GvL 

in a Fas/FasL-independent mechanism [194]. A more recent study identified the expansion 

of precursor exhausted T cells defined response following DLI [195,196]. Intriguingly, this 

study suggested that the expanding cells thought to be mediating GvL response to DLI 

originated from the bone marrow microenvironment, rather than from the DLI product itself, 

suggesting a T helper function of DLI in CML as opposed to direct cytotoxicity, a notion 

that has received support from mouse models of GvL [197,198].

Whether GvL is mediated through antigen-specific or antigen-independent T cell activity 

remains an open question. Classes of potential antigens include leukemia-associated 

antigens (LAAs), leukemia neoantigens, and minor histocompatibility antigens (mHags) 

[199]. Multiple potential LAAs have been identified with evidence supporting the idea that 

these LAAs are capable of inducing T cell activation and cytotoxicity. One of the best 

described potential LAAs is Wilms’ tumor 1 (WT1), a common tumor marker expressed by 

some CD34+ leukemia cells [200], and multiple studies have demonstrated WT1-specific 

T cell cytotoxicity capable of eliminating leukemia cells utilizing vaccination strategies, 

bispecific antibodies, and adoptive cellular transfer [201-213]. Other antigens that have 

been studies as potential LAAs for inducing T cell cytotoxicity include Cancer-testis 

antigen (CTA) Preferentially-expressed Antigen in Melanoma (PRAME), Survivin, and CTA 

New York Esophageal Squamous Cell Carcinoma −1 (NY-ESO-1) [214-217]. Efforts to 

better characterize and engineer LAA-specific T cells with the hope of improving antigen 

specificity of adoptive cellular therapy while limiting toxicities including GvHD [218-224].

Minor histocompatibility antigens provide an attractive alternative to LAAs for harnessing 

donor T cell alloreactivity [225,226]. While LAAs may not be present on all leukemia 

cells, nearly all donor-recipient pairs will have some mHag mismatch due to genetic 

polymorphism, although relative immunogenicity of different mhAgs varies [227-229]. 

Given the large number of potential mHags, several high throughput efforts to identify 

mHags with putative GvL activity, as well as to identify those that may increase risk for 

GvHD [230-235]. Candidate mHags and mHag-reactive T cells have shown potential for 

memory generation and reactivity in support of a role in effective GvL in both animal 

models and humans [236-242]. In particular, Y chromosome genes have shown promise 

in inducing T cell reactivity in sex-mismatched transplantation, particularly given the 

relationship between Y-antigen alloantibodies and development of GvHD [236-240,243].

In addition to LAAs and mHags, viral antigens may also prime anti-leukemic T cell activity; 

however, the extent of cross reactivity is unclear [244-246]. Some studies have demonstrated 

successful reprogramming of virus-specific T cells toward mHags by transfer of TCR, 

leading to dual specificity of these T cells to both virus and mHag [245]. A phase I study of 

these reprogrammed cells in 5 patients with AML showed that cells can be safely infused but 

feasibility and efficacy was limited [247].

Vaccination strategies have been attempted to capitalize upon T cell alloreactivity in the 

absence of known leukemia antigens. One such strategy, GVAX, utilized vaccination with 

irradiated, adenovirus transduced autologous myeloblasts early after HSCT in an attempt 

to induce leukemia-specific donor alloreactivity; however, this study did not show an 
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improvement in survival for patients with myelodysplastic syndrome (MDS) or AML 

[248]. Another recent vaccination strategy involved creation of ‘hybridomas’ derived from 

fusion of patient AML cells with autologous dendritic cells (DC), aimed at improving 

antigen presentation in the context of DC co-stimulation to prime antigen-specific donor 

T cell alloreactivity [249]. Though the study was small, the response rates were highly 

encouraging, and analysis of patient T cells demonstrated post-vaccination tumor-specific 

activity, durable at least six months following vaccination.

Aside from the identification and targeting of specific antigens for enhancing GvL, the 

success of T cell exhaustion reversal in solid tumors using immune checkpoint blockade 

(ICB) in recent years has sparked interest in the application of these therapies to enhance 

GvL. Indeed, models of GvL support this notion, given that mHAg-specific T cells 

become progressively more exhausted, with expression of TOX and inhibitory receptors 

and decreased expression of interferon (IFN)-ɣ, upon chronic mHag exposure, with reversal 

of exhaustion seen after PD-1 blockade [250]. Studies in mice supported the notion 

that PD-L1 blockade effectively reverses exhaustion of alloreactive CD8 T cells and 

restores effective GvL [251]. A phase I study in humans demonstrated success of CTLA-4 

blockade with ipilimumab in reducing disease burden in patients with post-HSCT relapsed 

myeloid malignancy [252]. Characterization of biopsy specimens in responders revealed 

enhanced infiltration of CD8 cytotoxic T cells, suggesting reversal of T cell exhaustion 

and reinvigoration of effective CD8 T cell-mediated GvL [253]. In further support for the 

role of T cell exhaustion, high expression of TIGIT on CD4 T cells has been associated 

with higher risk of AML relapse [254]. Mouse models of AML and myeloma have shown 

effective generation of GvL after depletion of exhausted CD8 T cells, further underscoring 

the key role of T cell exhaustion in GvL [255]. Nevertheless, the role of T cell exhaustion 

in mediating a balance between GvL and GvHD requires further investigation, as case 

reports of ICB in patients with AML have resulted in severe GvHD and other inflammatory 

cascades such as secondary hemophagocytic syndrome (sHLH) [12,256].

5.2. Inflammatory cytokines and interleukins

Cascades of inflammatory cytokines produced by T cells can stimulate cytokine and 

interleukin production from myeloid and other lymphoid cells, which under certain 

circumstances can lead to GvHD, but if correctly tuned may enhance GvL. An early effort 

to identify soluble effector molecules with separable GvHD and GvL activity demonstrated 

that human interleukin (IL)-11 could selectively inhibit GvHD mediated by CD4 T cells 

but did not inhibit GvL activity in CD4 or CD8 T cells [257]. Similarly, injection of 

IL-12 has been shown in mice to prevent GvHD without impairing GvL activity [258-260]. 

Subsequent work demonstrated that IL-12 production by plasmacytoid dendritic cells in 

bone marrow grafts mediated effective GvL activity [261]. IL-18 has also been shown to 

ameliorate GvHD while preserving GvL [262,263].

The SORMAIN study demonstrated improvement in outcomes for patients with AML 

with internal tandem duplication mutations in the FMS-like tyrosine kinase 3 gene (FLT3-

ITD) treated with the tyrosine kinase inhibitor sorafenib [264]. Correlative studies have 

subsequently demonstrated an increase in production of IL-15 in patients responding to 
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sorafenib treatment, raising a possible mechanism of response and a potential avenue for 

therapeutic exploitation in other AML treatment settings [265]. Indeed, other studies have 

implicated IL-15 as a possible stimulator of GvL activity for AML due to its ability to 

activate T and NK cells through the IL-2/15RRβγc receptor [265]. A phase I first-in-human 

study of recombinant IL-15 for patients with relapsed leukemia/lymphoma after HSCT, 

which showed activation and proliferation of NK and CD8+ T cells after treatment [266].

Interferon (IFN)-ɣ is a key inflammatory cytokine secreted by both T cells and innate 

immune cells with implications in both GvL activity and GvHD pathogenesis after HSCT 

[267,268]. AML cells exposed to IFN-ɣ are sensitized to direct T cell cytotoxicity [269]. 

Further, mature dendritic cells derived from AML blasts are able to stimulate T and NK 

cells to promote IFN-ɣ and cytotoxicity [270]. Type I interferons are also important for 

sensitizing leukemia cells to T cell cytotoxicity and for promoting T cell cytotoxic function 

[271]. Intriguingly, a phase I trial leveraging IFN-ɣ treatment to augment GvL responses of 

DLI has recently been reported [272]. IFN-ɣ was injected subcutaneously into four patients 

with relapsed MDS/AML, followed by administration of DLI. Three patients subsequently 

achieved remission, suggesting IFN-ɣ therapy as a promising adjunct for promoting T cell 

alloreactivity with subsequent DLI.

5.3. NK cells

NK cells are innate lymphoid cells imbued with natural cytotoxicity [273]. NK cells are 

prevented from killing healthy autologous cells by inhibitory signals mediated through the 

ligation of the nonclassical MHC class I molecular human leukocyte antigen (HLA)-E and 

an NK-cell heterodimer consisting of CD94-NKG2A [274-276]. NK cells exert their effector 

function through ligand recognition by molecules such as killer-cell immunoglobulin-like 

receptors (KIR) which recognize HLA molecules on target cells (e.g. virally infected 

cells or tumor cells) [277]. Analogous to MHC mismatch leading to T cell alloreactivity, 

mismatches in KIR epitopes are a well-established mechanism of NK cell alloreactivity, 

leading to NK cell mediated killing of mismatched cells [278-283]. KIR-mismatched HSCT 

has been evaluated for potential for enhanced NK cell-mediated alloreactivity. One study 

of 60 patients, 20 of whom harbored donor-recipient KIR mismatch, demonstrated that 

donor NK cells were capable of direct cytotoxicity against recipient leukemia cells [284]. 

Multiple subsequent studies have supported the notion that KIR mismatch reduces relapse 

risk after HSCT and is associated with enhanced NK cell expansion, possibly promoting 

more effective GvL [285-291]; however, a recent large retrospective registry study found 

no link between KIR mismatch and protection from relapse [292]. Nevertheless, there is 

considerable interest in leveraging NK cell/KIR biology to develop novel NK-cell-based 

therapies for hematologic malignancies [293,294].

In addition to KIR mismatch-mediated NK alloreactivity, other subsets of NK cells with 

specific anti-tumor activity have recently been identified and are under active investigation 

as novel therapeutics. Initial efforts at specific transfer of allogeneic NK cells have been 

limited by inadequate persistence and GvL activity [295,296]. However, activation of 

memory-like NK cells with a cytokine cocktail of IL-12, IL-15, and IL-18 (CIML-NK cells) 

was demonstrated in mice to have improved persistence and activity against AML blasts 
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[297-300]. A phase I trial using these CIML-NK cells in patients with relapsed myeloid 

malignancy after haploidentical HSCT demonstrated expansion, activation, and long-term 

persistence of these cells [301]. Preclinical studies have recently leveraged these CIML-NK 

cells along with a chimeric antigen receptor (CAR) targeting nucleophosphmin-1 (NPM1) 

[302]. Further studies are needed to advance our understanding of NK cell GvL biology.

5.4. Additional potential mediators of GvL

Preclinical and animal studies have identified other potential modulators of GvL. For 

example, non-coding RNAs that control gene expression have been shown to fine-tune 

cellular responses including cytotoxicity and to regulate T cell responses after HSCT 

[303]. Multiple potential metabolic targets for modulating T cell alloreactivity have been 

posited, including the inhibition of HMG-CoA reductase, which protects from GvHD 

while preserving GvL in mice [304]. Similarly, high levels of lactic acid inhibit T cell 

proliferation, while treatment with sodium bicarbonate to reduce lactic acid-induced low 

intracellular pH enhances T cell reactivity in both mice and human cells [305]. Vasoactive 

intestinal peptide (VIP) is a neuropeptide with a role in regulation of inhibitory pathways 

in immune cells including T and NK cells. Agonism of VIP signaling induces T cell 

proliferation and reduces regulatory IL-10 expression, leading to enhanced GvL activity 

in animal models, suggesting a novel pathway for tuning T cell activity [306]. Autophagy 

induction in donor T cells can promote GvHD, while inhibition of autophagy leads to 

increased cytokine production and cytotoxicity through reduced degradation of intracellular 

cytotoxic enzymes leading to improved GvL activity [307]. Various transcription factors and 

epigenetic modifiers have also been implicated in tuning T cell function. The transcription 

factor promyelocytic leukemia zinc finger (PLZF) attenuates effector function in alloreactive 

T cells, thereby reducing GvHD but preserving GvL effects [308]. The polycomb repressive 

complex 2 (PRC2) has been shown to drive immune escape pathways in AML through 

repression of MHC II expression in leukemia cells, while inhibition of PRC2 preserves 

MHC II expression promoting GvL activity by CD4 T cells [309]. Similarly, inhibition of 

mouse-double-minute-2 (MDM2) in patient derived AML xenograft models induces both 

MHC I and II expression in AML cells, leading to improved apoptosis through TRAILR1/2 

[310].

6. Conclusions and future outlook

GvHD and GvL are complex immunological phenomena unique to patients after allogeneic 

HSCT. Understanding the specific mechanisms driving GvHD and GvL are critical for 

the development of effective therapies targeting these pathways. While the field has made 

substantial progress in recent years toward understanding the biology of cGvHD and 

developing novel strategies for prevention and treatment, little progress has been made 

toward leveraging GvL for improvement in relapse. Early evidence suggested close linkage 

of GvL with cGvHD, and indeed, for CML this appears to be true since TCD abrogates GvL 

and increases relapse risk. However, in the modern era, CML is an infrequent indication 

for HSCT, and in other diseases such as MDS and AML, currently the most frequent 

indication for HSCT, GvL and cGvHD appear to be separable. Recent developments 

in strategies for reducing (e.g. PTCy) and treating (e.g. ruxolitinib) cGvHD have not 

Maurer and Soiffer Page 15

Expert Rev Hematol. Author manuscript; available in PMC 2024 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



led to higher rates of relapse. Some retrospective studies have raised the possibility of 

increased relapse risk using PTCy, though this has not borne out in randomized trials 

[110,112,311,312]. Thus, future experimental approaches for augmenting GvL are likely 

to be obtainable without exacerbating cGvHD, though these are yet undefined. The 

mechanisms contributing to effective GvL are likely multifactorial; indeed, the multitude 

of published literature establishing potential mediators of GvL in vitro and in animal 

models underscores the challenge of uniting transplant immunobiology into a cohesive and 

comprehensive understanding of GvL activity. Thus, there is ample opportunity for progress 

in understanding and promoting this phenomenon toward improved treatments to enhance 

outcomes.

7. Expert opinion

Chronic graft versus host disease (GvHD) has historically been an understudied 

complication of allogeneic hematopoietic stem cell transplantation (HSCT), with other 

challenges including relapse, infection, and treatment of acute GvHD taking precedence 

due to their impact on morbidity and mortality in the early years after HSCT. Furthermore, 

clinical manifestations of cGvHD are protean and often a diagnosis of exclusion, rendering 

rigorous study of the pathophysiology difficult. The advent of improved therapies for 

hematologic malignancies has led to longer-term survival for a greater number of patients 

after HSCT. Further, expanded access to HSCT through greater availability of alternative 

donors including HLA-mismatched and haploidentical donors not only increases the 

cumulative incidence of cGvHD but also increases the individual risk in these patients 

of developing cGvHD because of greater HLA-disparity. Other recent changes in standard 

practice of HSCT, including a shift toward using peripheral blood stem cells (PBSCs) 

rather than bone marrow grafts, have also resulted in greater incidence of cGvHD. While 

historically options for prevention and treatment of cGvHD have been limited, recent years 

have seen renewed interest in discovery of underlying mechanisms of cGvHD as well as 

several new therapies gaining approval for treatment, particularly in the steroid-refractory 

setting, including recent FDA approvals for ibrutinib, ruxolitinib, and belumosudil. 

Curiously, these treatments act through different biological pathways, underscoring both 

the multifactorial nature of the disease as well as the fact that current knowledge about the 

molecular underpinnings of this process remains in its infancy.

GvL, on the other hand, is an immunological phenomenon favorable after HSCT 

wherein donor immune cells recognize and eliminate residual malignant cells from the 

recipient, preventing recurrence and maintaining remission. For decades, whether GvHD 

are inherently intertwined has been a subject of debate. However, recent strategies for 

better cGvHD prevention (e.g. PTCy) and several new approved medication for cGvHD 

treatment (ruxolitinib, belumosudil, ibruitinib) have not led to increased rates of relapse, 

indicating the ability to separate these immunologic phenomena. Thus, while they are 

clearly closely related, the opportunity exists to separate cGvHD and GvL and thereby 

enhance the latter without inflaming the former. A mechanistic definition of GvL is lacking 

despite long standing clinical demonstration of this phenomenon. Improved basic biological 

understanding of both these immunological sequelae of HSCT are needed for development 

of better clinical strategies to promote GvL and reduce GvHD.
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Article highlights

• Nearly half of patients may relapse with their original disease and is the major 

cause of mortality after HSCT. Chronic graft versus host disease (cGvHD) is 

a leading contributor to morbidity in long-term survivors after HSCT

• GvL and cGvHD are closely-related immunologic phenomena after HSCT 

both likely dependent upon activity of alloreactive donor immune cell subsets, 

though the precise mechanisms driving both are likely multifactorial and 

poorly defined

• Although there have been recent advances in strategies for prevention and 

treatment of cGvHD, there is an urgent need for improved understanding of 

GvL
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Figure 1. 
Depiction of example cell types and factors leading to increased likelihood of cGvhd (top) 

which mediate inflammation through a variety of mechanisms including pro-inflammatory 

cytokine production, autoantibody production, and development of fibrosis (bottom).
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Figure 2. 
Summary of the mechanisms of action of three currently FDA approved treatments for 

cGvhd (ibrutinib, ruxolitinib, belumosudil) as well as three experimental agents currently 

under investigation (IL-2, axatilimab, abatacept).
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