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Abstract

Mycobacterium tuberculosis infects two billion people across the globe, and results in 8–9

million new tuberculosis (TB) cases and 1–1.5 million deaths each year. Most patients have

no known genetic basis that predisposes them to disease. Here, we investigate the complex

genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Out-

bred mouse population. When infected with M. tuberculosis, one-third develop early onset,

rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining

develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping

using immune and inflammatory mediators; and clinical, microbiological, and granuloma

correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three

known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared

loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting

these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis.

To narrow the list of candidate genes, we used a machine learning strategy that integrated

gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice

with gene interaction networks to generate scores representing functional relationships. The

scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes:

Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318.

Although all candidates have roles in infection, inflammation, cell migration, extracellular

matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms

(SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have dele-

terious effects on protein functions. We performed methodological and candidate validations
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to (i) assess biological relevance of predicted allele effects by showing that Diversity Out-

bred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter

survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in

inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene.

Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice

can identify new (and known) QTLs and functionally relevant gene candidates that may be

major regulators of complex host-pathogens interactions contributing to granuloma necrosis

and acute inflammation in pulmonary TB.

Author summary

We investigated the genetic basis of susceptibility to Mycobacterium tuberculosis using

Diversity Outbred mice, a mouse population suited for studying complex genotype-phe-

notype relationships. We found five new genetic loci and three known loci. Three loci

associated with multiple correlated disease traits likely contain genes that are major regu-

lators of host inflammatory responses which favor M. tuberculosis growth. Further, these

three loci contain four gene candidates with single nucleotide polymorphisms that are

predicted to have deleterious effects upon protein functions.

Introduction

The number of humans who develop active pulmonary tuberculosis (TB) is minor compared

to those who eliminate or control Mycobacterium tuberculosis (5–10% vs 90–95%), yet morbid-

ity and mortality from TB remain high. COVID-19 mortality temporarily surpassed global TB

mortality, but TB has remained in the top two leading causes of death due to an infectious dis-

ease for decades, killing more people than HIV/AIDS and malaria. Pulmonary TB is the most

common and most contagious form of TB, with mortality rates >40% if untreated and higher

if caused by antibiotic resistant M. tuberculosis [1–8]. Human responses to M. tuberculosis
range from fulminant pulmonary TB that develops within weeks to lifelong control or com-

plete clearance of bacilli [9–11]. Further, a body of evidence shows an interesting paradox:

Immune competence is necessary to restrict M. tuberculosis growth [12], but is not sufficient

to prevent disease [13].

The variable responses to M. tuberculosis and lack of single gene defects in most patients

indicate a complex genetic basis for pulmonary TB, and this has been investigated by linkage

association mapping, genome wide association studies, and other methods, recently reviewed

[14–17]. Reviews identify knowledge gaps attributable to using laboratory mouse strains that

do not replicate key disease traits of human pulmonary TB, e.g., granuloma necrosis [18–23].

To address these gaps, we and others investigate genetic contribution, molecular pathogenesis,

and vaccine efficacy in the Diversity Outbred mouse population, panels of Collaborative Cross

inbred mice and their progeny, some of which do develop human-like pulmonary TB [24–29].

These mice are valuable resources to model complex genotype-phenotype associations; tools

to dissect the genetic basis of disease; and a means to assess effects of candidate genetic poly-

morphisms in vivo.

The Diversity Outbred mouse population originated by breeding eight inbred founder

strains together, resulting in a reproducible experimental population with balanced allele fre-

quencies of one-eighth across the genome [30]. This is important for genetic mapping studies
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because low allele frequencies in natural populations can diminish power and increase false

positive associations [31]. Further, Diversity Outbred mice carry over 40 million variants [32],

some of which alter regulatory elements, splice sites, and protein-coding sequences. This

defined genetic architecture allows rigorous investigation of genotype-phenotype association

in context of M. tuberculosis infection. Here, we selected phenotypes of pulmonary TB (i.e.,

quantified traits) for biological relevance, many of which are shared by humans, non-human

primates, and Diversity Outbred mice [33]. Traits were selected to span clinical, granuloma,

microbiological, and immune/inflammatory mediators that are known to positively correlate

with disease, or are investigated as diagnostic biomarkers, or have been shown to activate or

negatively regulate immune/inflammatory responses to M. tuberculosis. Briefly, the clinical

trait of disease was weight loss. The granuloma trait was necrosis. The microbiological trait

was M. tuberculosis lung burden. Chemokine correlates of disease were CXCL1, CXCL2,

CXCL5 [24,34]. TH1 proinflammatory cytokines and acquired immune mediators were tumor

necrosis factor (TNF) [35], interferon-gamma (IFN-gamma) [36], and interleukin (IL)-12

[37]. Biomarker candidates were S100A8, matrix metalloproteinase (MMP)8, and vascular

endothelial growth factor (VEGF) [34] and the immune regulatory cytokine was IL-10 [38].

To find genetic loci associated with pulmonary TB traits, we used quantitative trait locus

(QTL) mapping. Next we ranked candidate genes within the Diversity Outbred tuberculosis
susceptibility (Dots) loci that were associated with correlated, colocalized traits by using a

machine learning algorithm [39,40] to find genes functionally related to the mapped traits and

the fit models scored each candidate [41]. All candidates contain a variety of SNPs as anno-

tated in Mouse Variation Registry (MVAR). Seven of the eleven candidates contain missense

SNPs in protein coding regions, and of those, the SNPs in four candidates (S100a8, Itgb5,

Fstl1, and Zfp318) are predicted to have deleterious consequences on protein functions. Pub-

lished in vitro and in vivo studies show roles for three candidates (Itgb5, Fstl1, S100a8) in bac-

terial lung infections including M. tuberculosis [34,42–47], although questions remain. To our

knowledge, the other eight candidates have no published roles in M. tuberculosis infection but

have been shown in other systems to contribute to cell stress responses, signaling pathways,

adhesion and migration; extracellular matrix synthesis, tissue remodeling and angiogenesis;

immune cell metabolism; macrophage inflammatory responses; and viral hepatitis [48–60].

Overall, ten candidate genes have roles in innate immune responses suggesting that genetically

controlled responses of epithelial and endothelial cells, neutrophils, and monocytes, macro-

phages to M. tuberculosis bacilli are the primary drivers of susceptibility to M. tuberculosis and

to disease progression in pulmonary TB. Only one candidate (Zfp318) has a direct role in

acquired, antigen-specific immunity.

Methods

Ethics statement

Tufts University’s Institutional Animal Care and Use Committee (IACUC) approved this

work under protocols G2012-53; G2015-33; G2018-33; and G2020-121. Tufts University’s

Institutional Biosafety Committee (IBC) approved this work under registrations: GRIA04;

GRIA10; GRIA17, and 2020-G61.

Mice

Female Diversity Outbred mice from generations 15 16, 21, 22, 34, 35, 37 and 42 and the

inbred founder strains: A/J, C57BL/6J, 129S1/SvlmJ), NOD/LtJ, NZO/HILtJ, CAST/EiJ, PWK/

PhJ, and WSB/EiJ mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and

group housed (n = 5–7 mice per cage) on Innovive (San Diego, CA) or Allentown Inc
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(Allentown, NJ) ventilated, HEPA-filtered racks in the New England Regional Biosafety Labo-

ratory (Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA) or at

The Ohio State University, Columbus, OH. The light cycle was 12 hours of light; 12 hours of

dark. Two breeding pairs of female and male C57BL/6 inbred mice carrying null mutation for

S100a8 gene were a gift from Dr. Philippe Tessier, Department of Microbiology and Immunol-

ogy, Faculty of Medicine, Université Laval. After quarantine, breeders were used to establish a

colony of S100a8 homozygous knock out (KO), heterozygous (HET) and wild-type (WT)

C57BL/6 inbred mice, and genotypes confirmed (Transnetyx, Cordova, TN). Mice were

housed in disposable sterile caging or re-usable autoclaved caging containing sterile corn-cob

bedding, with sterile paper nestlets (Scotts Pharma Solutions, Marlborough, MA), and/or ster-

ile enrichment paperboard or plastic “houses.” Cages were changed every other week or sooner

if soiled. Mice were provided with sterile mouse chow (Envigo, Indianapolis, IA) and sterile,

acidified water ad libidum.

M. tuberculosis Aerosol Infection

Female Diversity Outbred mice and inbred founder strains were infected with aerosolized M.

tuberculosis strain Erdman bacilli using a custom-built CH Technologies system [24,34,61] or

a Glas-col (Terre Haute, ID) system [62,63] between eight and ten weeks of age. Male and

female C57BL/6 S100a8 KO, HET, and WT mice were infected between eight and sixteen

weeks of age. For each aerosol infection, the retained lung dose was determined by euthanizing

a cohort of four to twelve mice 24 hours after exposure, homogenizing the entire lungs in 5mL

sterile phosphate buffered saline, and plating the entire homogenate onto OADC-supple-

mented 7H11 agar. After 3–4 weeks at 37˚C, M. tuberculosis colony forming units were

counted. Mice were infected with ~100 colony forming units in the first two experiments, and

~25 colony forming units in the subsequent eight experiments.

Quantification of TB-related Traits (Phenotyping)

Survival. IACUC protocols disallowed natural death as an endpoint. Therefore, as a proxy of

survival, we used the day of euthanasia due to any single criterion: Severe weakness/lethargy;

respiratory distress; or body condition score< 2 [64]. We confirmed morbidity was due to

pulmonary TB by finding: (i) Large nodular, or severe diffuse lung lesions; (ii) histopathology

confirmation of severe granulomatous lung infiltrates; (iii) growth of viable M. tuberculosis
colonies from lung tissue; and (iv) absence of other diseases. Twenty-one M. tuberculosis
infected Diversity Outbred mice were excluded due to co-morbidity that developed during the

in-life portions.

Weight loss. Mice were weighed 1 to 3 days prior to M. tuberculosis aerosol infection, at

least once per week during infection, and immediately before euthanasia. For each mouse,

weight loss was calculated as the percent loss from peak body weight.

Lung granuloma necrosis. Immediately after euthanasia, lung lobes were removed and

inflated and fixed in 10% neutral buffered formalin (5–10 mL per lobe), processed, and embed-

ded in paraffin, sectioned at 5μm, and stained with hematoxylin and eosin with or without car-

bol fuschin for acid-fast bacilli at Tufts University, Cummings School of Veterinary Medicine,

Core Histology Laboratory (North Grafton, MA). Hematoxylin and eosin-stained glass slides

were magnified 400 times and digitally scanned by Aperio, LLC (Sausalito, CA) ScanScope

scanners at 0.23 microns per pixel at The Ohio State University’s Comparative Pathology and

Mouse Phenotyping Shared Resources Core resource (Columbus, OH) or by Aperio, LLC

(Sausalito, CA) AT2 scanners at 0.23 microns per pixel at Vanderbilt University Medical Cen-

ter’s Digital Histology Shared Resource (Nashville, TN). Lung granuloma necrosis was
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quantified in one lung lobe per mouse by our previously validated, deep learning image analy-

sis method [65] and reported here as a ratio of granuloma necrosis per lung tissue section area.

M. tuberculosis lung burden. Immediately after euthanasia, 2 or 3 lung lobes were removed

from each mouse and homogenized in sterile phosphate buffered saline (1mL per lobe), serially

diluted, plated onto OADC-supplemented 7H11 agar, incubated at 37˚C for 3–4 weeks, after

which colonies were counted, and M. tuberculosis lung burden in the lungs was calculated as

described [66].

Lung cytokines and chemokines. Lung homogenates were stored at -80˚C until the experi-

ment ended. Lung homogenates were then thawed overnight at 4˚C, serially diluted and tested

for CXCL5, CXCL2, CXCL1, tumor necrosis factor (TNF), matrix metalloproteinase 8

(MMP8), S100A8, interferon-gamma (IFN-γ), interleukin (IL)-12p40, I-L12p70, IL-10, and

vascular endothelial growth factor (VEGF) by sandwich ELISA using antibody pairs and stan-

dards from R&D Systems (Minneapolis, MN), Invitrogen (Carlsbad, CA), eBioscience (San

Diego, CA), or BD Biosciences (San Jose, CA, USA), per kit instructions. Lung homogenate

ELISA results from five of the experiments using Diversity Outbred mice have been published

and analyzed for biomarkers previously [34].

Phenotype correlation

We took the log of each phenotype after adding one (to ensure that zero was not converted to

negative infinity) and regressed out the effect of the experimental batch. We then standardized

the residuals and estimated the Pearson correlation between all pairs of phenotypes.

Gene expression

Gene expression profiling was performed on a subset of 117 Diversity Outbred mice represent-

ing the spectrum of observed phenotypes. Detailed selection description, additional analyses,

and released datasets are described in [34,67]. Briefly, one lung lobe was homogenized in TRI-

zol, stored at -80˚C, and RNA was extracted using Pure Link mini-kits (Life Technologies,

Carlsbad, CA). Boston University’s Microarray and Sequencing Resource Core Facility (Bos-

ton, MA) confirmed quality and quantity were sufficient for microarray analyses. Mouse Gene

2.0 ST CEL files were normalized to produce gene-level expression values using the implemen-

tation of the Robust Multiarray Average (RMA) in the affy package (version 1.62.0) included

in the Bioconductor software suite and an Entrez Gene-specific probeset mapping (24.0.0)

from the Molecular and Behavioral Neuroscience Institute (Brainarray) at the University of

Michigan. Array quality was assessed by computing Relative Log Expression (RLE) and Nor-

malized Unscaled Standard Error (NUSE) using the affyPLM package (version 1.59.0). The

CEL files were also normalized using Expression Console (build 1.4.1.46) and the default pro-

besets defined by Affymetrix to assess array quality using an AUC metric computed from sets

of negative and positive control probes; all samples used in this analysis had an AUC > 0.8. To

remove microarray probes that intersected with Diversity Outbred SNPs, we intersected the

Diversity Outbred founder strain SNPs [68] with the vendor-provided probes and removed

probes containing SNPs. All microarray analyses were performed using the R environment for

statistical computing (version 3.6.0). A related microarray dataset and other secondary analy-

ses have been published elsewhere [34,67] and deposited in Gene Expression Omnibus (GEO),

and assigned Series ID GSE179417.

Genotyping

We collected tail tips from each Diversity Outbred mouse and sent them to Neogen (Lincoln,

NE) for genomic DNA isolation and genotyping. Neogen genotyped the mice on the Illumina
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GigaMUGA platform, which contains 143,259 markers [69]. Genotypes of S100a8 KO, HET,

and WT C57BL/6 inbred mice were confirmed by polymerase chain reaction (TransnetYX,

Cordova, TN).

Haplotype reconstruction and SNP imputation

We used 137,302 GigaMUGA marker positions located on the autosomes and chromosome X

found at https://github.com/kbroman/MUGAarrays/blob/main/UWisc/gm_uwisc_v1.csv and

the R package qtl2 to reconstruct the Diversity Outbred haplotypes using the founder and

Diversity Outbred allele calls, and used the haplotype reconstructions to impute the founder

SNPs onto the Diversity Outbred genomes [70].

Quantitative Trait Locus (QTL) mapping

We performed multiple rounds of genetic mapping to identify the least noisy dataset, ensure

appropriate sample size for statistical power, and generate robust results. The final QTL map-

ping results include all available genotype and phenotype data from Diversity Outbred mice

that survived M. tuberculosis infection for up to 250 days because this dataset produced the

most statistically rigorous results, and minimized confounding effects of age-related comor-

bidities (e.g., lung tumors, lymphoma, uterine lesions). We used qtl2 [70] to perform linkage

mapping using the founder haplotypes and association mapping using the imputed SNPs. We

calculated the kinship between mice using the leave-one-chromosome-out method, which

excludes the current chromosome in kinship calculations [71]. We standardized each pheno-

type and mapped with the Diversity Outbred outbreeding generation as an additive covariate

and used the linear mixed-effects model with one kinship matrix per chromosome. We esti-

mated the genome-wide significance thresholds by permuting the samples 1,000 times and

performed a genome scan with each permutation. We retained the maximum log10 of the odds

ratio (LOD) score from each permutation and estimated the genome-wide significance thresh-

old of 7.6 from the 95th percentile of the empirical distribution of maximum LOD scores

under permutation. We estimated the support interval around each peak using the 95% Bayes-

ian Credible Interval.

For each peak with a LOD score above the genome-wide threshold > 7.6, we then searched

for peaks associated with other traits that had LOD scores> 6 and confidence intervals that

overlapped [72]. Our rationale was that the probability that a peak is biologically relevant,

given that another trait has a co-located peak, is greater than the probability that a peak is sig-

nificant with no prior evidence.

Candidate gene selection

Within each QTL interval, we imputed the founder SNPs onto the Diversity Outbred mouse

genomes using qtl2 and performed association mapping. We selected the SNPs that were

within a 1 LOD drop of the peak SNP in the QTL interval and filtered them to retain ones with

missense, splice, or stop codon effects as annotated by the Sanger Mouse Genome Project [68].

We considered the genes in which these polymorphisms occurred as candidate causal genes

for the associated trait(s).

Trait-related gene sets

Because causal variants within a QTL may exert their influence through mechanisms other

than gene expression, identifying differentially expressed genes within the QTL may be insuffi-

cient for ranking causal genes. Here we took an alternative approach and ranked candidates in
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each QTL based on their predicted association with the mapped traits. To do this, we trained a

Support Vector Machine (SVM) classifier to classify trait-related genes, and then used the

trained SVM to score each positional candidate gene as trait-related or not-trait-related. We

defined the training set of trait-related genes for the SVM as those genes that were highly cor-

related to the measured trait using the gene expression data described above. We calculated

the Pearson correlation between the abundance of each transcript, and each physiological trait

using rank Z normalized gene expression and traits. For each trait, we defined the training set

of trait-related genes as the 500 genes with the largest magnitude Pearson correlation to the

trait. We have made these gene lists available as a set of zipped text files in S1 File.

Support Vector Machine classifier training

We trained SVMs to classify genes in each gene list as trait-related using features derived from

the Functional Network of Tissues in Mouse [41]. The nodes in this network are genes, and

the edges between them are weights between 0 and 1 that predict the likelihood that each pair

of genes is annotated to the same Gene Ontology (GO) term or KEGG pathway [39]. Values

closer to one indicate more certainty that the genes are more likely to be annotated to the same

GO term or KEGG pathway and thus functionally related. The weights were derived using

Bayesian integration of data sets from numerous sources of data, including gene expression,

protein-protein interaction data, and phenotype annotations [41]. We used the top edges of

the mouse lung network downloaded on March 31, 2021, from http://fntm.princeton.edu.

Application of Support Vector Machine classifiers to identify genes

functionally related to traits

We used SVMs to classify each positional candidate as trait-related or not-trait-related, as

described previously [39,40]. Briefly, the expression-derived gene sets for each lung trait served

as the positive labeled set of genes. We used the R package e1071 [73] to train SVMs to distin-

guish this set of genes from a balanced set of genes drawn randomly from the remaining genes

in the lung network. The randomly selected genes were the unlabeled set. We performed this

training 100 times, each time with a new set of random unlabeled genes. The SVMs were

trained to distinguish positive labeled genes from unlabeled genes using the connection

weights to the positive labeled genes. It is expected that positively labeled genes have strong

connections to each other because they are functionally related. It is further expected that ran-

domly drawn genes will be unrelated to the trait and to the positive labeled set and will thus

have lower connection weights to the positive labeled genes. The SVM learns to distinguish

these two groups of genes, and the resulting model can be used to classify genes that have not

been seen before based on their connection weights to the positively labeled genes. We initial-

ized each run by tuning the SVM over a series of cost parameters, starting with the sequence

1025 to 102 by factors of ten, and iteratively narrowing the range until we found a series of

eight cost parameters that maximized accuracy. In running each SVM, we used a linear kernel

and 10-fold cross-validation.

We calculated the area under the receiver operating characteristic curves (AUC) for each

set of trait-related genes as follows. We defined labeled positives (LP) as positive labeled genes

that were classified by the SVM as trait related. Unlabeled negatives (UN) were unlabeled

genes that were classified by the SVM as not trait related. Unlabeled positives (UP) were unla-

beled genes that were classified as trait-related, and labeled negatives (LN) were positive

labeled genes that were classified as not trait-related. These terms are conceptually like true/

false positive and true/false negative scores. However, because unlabeled genes may not be

truly unrelated to the trait, we cannot call them true negatives. Instead, we call them unlabeled.
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We generated ROC curves using the Unlabeled Predicted Positive Rate (UPPR = UP/(UP

+UN)), which is akin to the false positive rate, and the labeled positive rate (LPR = LP/(LP

+UN)), which is akin to the false negative rate, along a series of SVM scores from the mini-

mum to the maximum. We then calculated the average AUC across all 100 SVMs.

Positional candidate scoring

After training SVMs for each trait, we scored all positional candidate genes in each QTL,

defined as the minimum to the maximum position across a set of overlapping QTLs. Each can-

didate gene received one score for each trait that mapped to that location. To compare scores

across traits, we used the UPPR for each gene at its calculated SVM score. The UPPR varies

between 0 and 1, allowing us to compare scores for candidate genes across models. To visually

compare across models, we used the -log10(UPPR) such that genes with small UPPR (high-

nconfidence) got large positive values. In contrast, the SVM scores cannot be used to compare

across models because they are unbounded and vary from model to model. Within each pleio-

tropic QTL, each gene received a score from each trait that mapped to the QTL.

Mouse genome build and database versions

We used mouse genome build GRCm38 and SNPs and Indels from the Sanger Mouse

Genomes Project, version 7, which uses Ensembl version 97 gene models. We also used and

cross-referenced candidates with the Mouse Phenome Database GenomeMUSter, the Mouse

Genome Informatics databases [74], and Ensembl’s Variant Effect Predictor tool.

Results

Survival and body weight changes

We infected Diversity Outbred mice by aerosol with ~100 M. tuberculosis colony forming

units in the first two experiments (N = 167), and ~25 colony forming units in the subsequent

eight experiments (N = 683). Infection reduced survival of Diversity Outbred mice compared

to identically housed, age-, gender-, and generation-matched uninfected Diversity Outbred

mice and to identically housed age- and gender-matched infected C57BL/6J inbred mice (Fig

1A). Approximately one-third of infected Diversity Outbred mice succumbed prior to 60 days

post infection (Fig 1A) reflecting early mortality between 20–56 days that peaked at 30 days

(Fig 1B). This supersusceptible fraction of the Diversity Outbred population has been named

Progressors [24,33,65,67]. Morbidity in all Progressors was due to pulmonary TB, confirmed

by histology, recovery of viable M. tuberculosis bacilli from the lungs and absence of other dis-

eases. After the first mortality wave subsided, cumulative survival declined slowly to nearly 600

days with no discernable mortality waves (Fig 1A and 1B). This resistant fraction of Diversity

Outbred mice has been named Controllers [24,33,65,67]. The eight founder strains survived at

least 40 days of M. tuberculosis infection, without early mortality (Fig 1A).

All mice were weighed prior to infection, during infection, and immediately before eutha-

nasia. Non-infected Diversity Outbred mice gained weight until they developed other diseases

or were euthanized at the experiment end (S1A Fig). Progressors gained weight for 2–3 weeks,

and then lost weight rapidly (S1B Fig). Controllers and C57BL/6J inbred mice gained weight

for long and variable durations through about 250 days of infection, and then most but not all

slowly lost weight (S1C and S1D Fig). We questioned whether pre-infection body weight influ-

enced differential susceptibility. Retrospective analysis identified no significant differences in

pre-infection body weights of non-infected Diversity Outbred mice compared to Progressors;

and a significant difference of on average 1.75 gm less in mean body weights of non-infected
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Diversity Outbred mice and Progressors compared to Controllers (S2A Fig). Whether this is

spurious or biologically relevant (i.e., heavier pre-infection body weight is partially protective)

remains to be determined. S2B, S2C, and S2D Fig show correlations between survival and

eight clinical indicators. Seven indicators positively correlated with survival, including pre-

infection body weight which was weakly positive. Only one indicator, the rate of body weight

loss, negatively correlated with survival.

Fig 1. Mouse survival following exposure to a low dose of aerosolized M. tuberculosis strain Erdman. Diversity Outbred (DO) mice (n = 680, brown solid

line), and the eight inbred founder strains (n = 15 to 78, colored lines) were infected with M. tuberculosis strain Erdman bacilli by aerosol. Panel A: Cumulative

survival. Approximately 30% of the DO population succumbed to pulmonary TB by 60 days post infection and approximately 70% succumbed to between 60-

and 600-days post infection. Of the eight inbred founder strains, survival studies were completed for the C57BL/6J inbred strain; the other seven inbred

founder strains were euthanized 40 days after M. tuberculosis infection. No inbred founder or non-infected (NI) DO mice (n = 53, dashed line) showed

mortality in that period. Panel B: Daily mortality of M. tuberculosis-infected DO mice, highlighting the early wave of mortality that peaked between 25- and

35-days post infection.

https://doi.org/10.1371/journal.ppat.1011915.g001

PLOS PATHOGENS Functional gene candidates in Mycobacterium tuberculosis-infected diversity outbred mice

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011915 June 11, 2024 9 / 36

https://doi.org/10.1371/journal.ppat.1011915.g001
https://doi.org/10.1371/journal.ppat.1011915


Lung histology and automated image analysis of granuloma necrosis

By eight weeks of M. tuberculosis infection, Diversity Outbred mice showed a spectrum of lung

lesions visible at low magnification (Fig 2) with variation in severity (minimal to marked); dis-

tribution of cellular infiltrates (focal, multifocal, and diffuse); and granuloma content (e.g.,

necrotizing, and non-necrotizing, shown in S3 Fig at higher magnification). Additional lesions

included fibrin thrombosis with alveolar septal necrosis; cavities with peripheral fibrosis;

foamy and multinucleated macrophages with cholesterol clefts; formation of secondary lym-

phoid follicles; alveolar septal fibrosis; and intra- and extracellular M. tuberculosis bacilli

described elsewhere [19,24,28,67,75–77]. Since granuloma necrosis is a key feature of pulmo-

nary TB in humans, we focused on this feature of disease and used our automated image analy-

sis method [65] to quantify granuloma necrosis in lung tissue sections. The ratio of necrotic to

non-necrotic lung tissue was then input as a trait for genetic mapping.

Quantification of lung traits: M. tuberculosis burden and immune

responses

We quantified M. tuberculosis lung burden by counting colonies from lung tissue homogenate

and used the remaining lung homogenate to quantify cytokines and chemokines by ELISA

[24,34]. Most lung traits were significantly greater in mice infected with M. tuberculosis com-

pared to non-infected mice (Fig 3A), including neutrophil and monocyte/macrophage chemo-

kines (CXCL1, CXCL2, CXCL5); mediators of innate immunity (S100A8, Tumor Necrosis

Factor (TNF), interleukin (IL)-10, matrix metalloproteinase-8 (MMP8); mediators of acquired

immunity (interferon-gamma (IFN-γ)) and M. tuberculosis burden. Pairwise Pearson correla-

tion of all traits in infected mice showed that all the lung traits except IL10 and VEGF

Fig 2. Diversity Outbred (DO) mice develop a spectrum of histopathological lung lesions due to M. tuberculosis
infection. Lung lobes were formalin-fixed, paraffin-embedded, sectioned, and stained with hematoxylin & eosin. Panel

A: Lung section from a non-infected DO mouse. Panels B through I: Lung sections from M. tuberculosis-infected DO

mice euthanized eight weeks after infection show a spectrum of lesions from mild to severe (upper left to bottom

right); focal lesions (e.g., Panel B) to diffuse infiltration (Panel H); and include necrotizing (Panels C, E, F, I) and non-

necrotizing granulomas (Panels B, D, G, H). Low magnification (15X).

https://doi.org/10.1371/journal.ppat.1011915.g002
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Fig 3. M. tuberculosis infection of Diversity Outbred (DO) mice induces clinical, microbiological, and immune/

inflammatory phenotypes that are positively and significantly correlated. (A) Boxplots of phenotypes in non-

infected (n = 77) and infected (n = 930) mice at euthanasia, which ranged from 5 to 553 days post-infection. Each

box shows the median (central line) and the inter-quartile range in the box. The whiskers show 90% of the data and the

dots beyond the whiskers show data points outside of the 90th percentile of the distribution. Significant differences at a
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positively correlated with each other (Fig 3B). Like previous findings in a small study of Diver-

sity Outbred mice [24], correlations were strongest between M. tuberculosis lung burden and

mediators of acute neutrophilic inflammation, innate immunity, and extracellular matrix deg-

radation: CXCL1, CXCL2, TNF, and MMP8 with a mean correlation of 0.75.

Overview of genetic mapping and gene prioritization within QTLs

We performed linkage mapping on each trait by regressing each on the additive founder allele

dosage at each locus using the R package qtl2 [70]. We selected peaks with a permutation-

derived significance threshold of 7.62 (pGW� 0.05) and found eight peaks associated with

multiple traits on chromosomes 1, 2, 3, 4, 16, and 17 (Table 1 and Fig 4). We observed that cor-

related traits colocalized to shared QTLs, and had similar patterns of allele effects, so we used a

two-step procedure in which we recorded the confidence interval for peaks with a LOD� 7.62

and then looked for peaks of colocalized traits with a LOD� 6.0 (pGW� 0.6). We reasoned

that once we had found the first significant peak for one trait, the threshold for colocalized

peaks with the same pattern of founder allele effects should be less, allowing refinement of the

loci. Fig 5 shows a flow diagram of the types of input data for genetic mapping to identify

QTLs, and the subsequent methods of gene prioritization.

Bonferroni corrected p-value of 0.004 are shown with an asterisk. (B) Pearson correlation of selected phenotypes with

n = 930 infected mice. Each cell in the upper triangle contains an ellipse in which the color and shape show the

strength of the correlation. Positive correlations are shown in blue and negative correlations are shown in red. Strong

correlations are shown by narrow ellipses, and weak correlations are shown by round ellipses. The more circular the

ellipse, the closer the correlation is to zero. Numerical values of the Pearson correlation are shown in the lower triangle

and range from -0.14 to 0.84. Phenotypes are ordered by hierarchical clustering of the similarity in correlations.

Absolute Pearson correlations greater than 0.105 are significant at a Bonferroni-corrected p-value of 0.0007 and are

shown with an asterisk.

https://doi.org/10.1371/journal.ppat.1011915.g003

Table 1. Quantitative Trait Locus (QTL) mapping results of lung traits in M. tuberculosis-infected DO mice. Six QTLs with LOD scores> 7.62 (pGW < 0.05) and two

with lower thresholds were identified by linkage mapping. Correlated traits with lower LOD thresholds (� 6) mapped to the same positions. The columns from left to right

show: Lung trait(s), chromosome, LOD score of the peak, the position of the peak in megabases (Mb), lower and upper confidence intervals (C.I.) in Mb, and the width of

the confidence interval in Mb. Five QTLs are new, and two QTLs are not new. Dots3 overlaps with the QTL tbs1, previously identified by crossing A/Sn and I/St inbred

mouse strains. Dots7 and Dots8 overlap with sst5 and sst6, previously identified by crossing C3HeB/FeJ and C57BL/6J inbred mouse strains.

QTL Trait(s) Chr LOD Peak C.I. Lo C.I. Hi C.I. Width New

Dots1 M.tb burden

CXCL1

CXCL2

MMP8

1 7.68

7.87

� 6

� 6

155.36 154.25 156.71 2.45 Yes

Dots2 CXCL2 2 7.69 118.65 118.05 118.86 0.82 Yes

Dots3 S100A8 3 16.57 90.69 90.52 92.02 1.50 No

Dots4 S100A8 4 7.64 22.43 22.18 23.79 1.61 Yes

Dots5 M.tb burden

Wt loss

Granuloma necrosis

16 8.45

� 6

� 6

38.28 33.28 43.28 10.00 Yes

Dots6 M.tb burden

CXCL5

16 6.68 52.23 37.97 57.67 19.70 Yes

Dots7 M.tb burden 17 ~6.5 ~20 ~12.5 ~25 ~12.5 No

Dots8 Granuloma necrosis

Wt loss

CXCL1

MMP8

IL-10

17 8.12

� 6

� 6

� 6

� 6

35.02 33.94 41.06 7.12 No

https://doi.org/10.1371/journal.ppat.1011915.t001
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Chromosome 1: Diversity Outbred Tuberculosis Susceptibility locus 1 (Dots1)

Dots1 is a new QTL on chromosome 1 with a peak LOD>7.6 (pGW < 0.05) at 155.36 M and

interval 154.25–156.71 Mb shared by two correlated traits, M. tuberculosis burden and CXCL1

(Table 1). Two correlated traits (CXCL2 and MMP8) that mapped to the same position had

LOD thresholds� 6.0 (pGW� 0.6) (Fig 4). Notably, these four correlated traits shared patterns

of founder allele effects (S5 Fig), suggesting this QTL contains an important mechanism of

genetic regulation for neutrophil-mediated activities, extracellular matrix remodeling, and M.

tuberculosis growth. To refine the locus, we calculated the first principal component of those

four traits and plotted the LOD curve, which also peaked between 154–156 Mb (Fig 6A) and

plotted the founder allele effects. A/J, C57BL/6J and WSB/EiJ alleles contributed to greater val-

ues of principal component 1 and CAST/EiJ alleles contributed to lesser values (Fig 6B). We

next imputed the founder SNPs onto the Diversity Outbred genomes and performed associa-

tion mapping in a 10 Mb region around the peak (Fig 6C). Interestingly, the SNPs with highest

LOD scores were outside of the peak, and none of the SNPs with the highest LOD scores were

missense, stop, or splice site SNPs. This suggested the SNPs in the confidence interval could

regulate expression of nearby genes, including some of the 47 protein-coding genes in the

interval (Fig 6D and S1 File). To find and prioritize trait-related gene candidates within Dots1,

we used the trained SVM model to rank gene candidates based on the strength of their func-

tional relationship in gene expression network modules (S2 File). Fam20b and Ncf2 ranked

highest by functional scoring (Fig 6E). Table 2 shows known protein functions, MVAR

genome annotations, allele effects, founder alleles containing SNPs, and predicted effects of

missense SNPs in Fam20b and Ncf2 genes on protein functions.

Fig 4. The heatmap of linkage mapping peaks shows patterns of common genetic regulation. Quantitative trait locus (QTL) mapping results from M.

tuberculosis infected Diversity Outbred mice that were euthanized on or prior to 250 days post infection (if morbidity developed), and complete genotype and

phenotypic trait data which also passed QA/QC (n = 853). The mouse genome, from chromosome 1 through X, is shown on the horizontal axis. Phenotypes are

shown on the vertical axis. Each cell shows the logarithmic of the odds (LOD) score on one chromosome for the phenotype listed on the left, colored by the

color scale. Higher LOD scores (oranges and yellows) meet or exceed statistical thresholds and show the significant genotype-phenotype associations. The

phenotypes are hierarchically clustered based on the correlation between LOD curves, i.e., phenotypes with similar LOD curves are clustered next to each other.

https://doi.org/10.1371/journal.ppat.1011915.g004
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Chromosome 2: Diversity Outbred Tuberculosis Susceptibility locus 2

(Dots2)

Dots2 is a new QTL, not shared by correlated traits (Table 1), and has a peak LOD of 7.69

(pGW < 0.05) at 22.43 Mb that was associated with lung CXCL2 protein levels (Fig 4). Dots2
contains 19 protein coding genes (S1 File). Because this QTL was associated with only one

trait, gene prioritization by functional scoring was not pursued.

Chromosome 3: Diversity Outbred Tuberculosis Susceptibility locus 3

(Dots3)

Dots3 is not a new QTL (Table 1) and overlaps with tbs1, a QTL previously identified by cross-

ing A/Sn and I/St inbred mouse strains [78]. These strains are not founder strains of the Diver-

sity Outbred population. Dots3 was identified by a single peak with a high LOD of 16.57 at

90.69 Mb and interval 90.52–92.02 (pGW < 108) associated with lung S100A8 (calgranulin A)

protein levels (Figs 4 and 7A). CAST/EiJ alleles effects were high and PWK/PhJ allele effects

were low (Fig 7B). SNPs with the highest LOD scores within the peak are shown (Fig 7C). The

interval contains 12 protein coding genes (S1 File) including the S100a8 gene (Fig 7D), sug-

gesting that genetic variants which affect S100a8 transcription regulate S100A8 (calgranulin A)

protein levels in M. tuberculosis infection. Further, based on based on the strength of the func-

tional relationship in gene expression network modules (S2 File) the trained SVMs identified

S100a8 as the gene with the highest functional score in Dots3 (Fig 7E). Dots3 also contains the

Fig 5. Overview of gene prioritization methods. Traits were mapped to identify positional candidate genes in QTLs. Gene expression

data were analyzed for differential gene expression. The top 500 differentially expressed genes (DEG) were used to train SVMs to

distinguish these trait-related genes from other genes in the genome using the FNTM mouse lung network. The fitted models were

used to score positional candidates in each trait QTL. Positional candidates were then ranked as trait-related based on their functional

scores.

https://doi.org/10.1371/journal.ppat.1011915.g005
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Fig 6. Quantitative Trait Locus (QTL) mapping results of first principal component (PC1) of CXCL1, CXCL2, M.

tuberculosis burden, and MMP8 identifies Dots1 on chromosome 1, containing the gene candidates Fam20b and

Ncf2. Panel A: LOD curve for PC1 between 150 and 160 Mb on chromosome 1 with peak near 155.36 Mb. Panel B:

Founder allele effects for PC1 in the same genomic interval. Each colored line is the best linear unbiased predictor for

one of the founder alleles. Founder colors are shown in the upper left. Panel C: LOD score of the imputed SNPs in the
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gene S100a9, which encodes S100A9 (calgranulin B), a protein binding partner of S100A8 (cal-

granulin A) required to form the heterodimer, calprotectin. Table 2 shows known protein

functions, MVAR genome annotations, allele effects, founder alleles containing SNPs, and pre-

dicted effects of missense SNPs in S100a8 and S100a9 genes on protein functions.

Chromosome 4: Diversity Outbred Tuberculosis Susceptibility locus

(Dots4)

Dots4 is a new QTL, not shared by correlated traits (Table 1), and has a peak LOD of 7.64

(pGW < 0.05) at 22.43 Mb and interval 22.18–23.79 Mb associated with lung S100A8 (calgra-

nulin A) protein levels (Fig 4). Dots4 contains two protein coding genes (S1 File). Because this

QTL was associated with only one trait and contained few protein coding genes, prioritization

by functional scoring was not pursued.

Chromosome 16: Diversity Outbred Tuberculosis Susceptibility locus

(Dots5)

Dots5 is a new QTL on chromosome 16, shared by three correlated traits: lung M. tuberculosis
burden (LOD = 8.45, pGW� 0.01), weight loss, and granuloma necrosis with a peak at 38.3 Mb

same genomic interval. Each point represents the LOD score of one imputed SNP. Panel D: Genes in the confidence

interval. Panel E: Functional scores for genes in the chromosome 1 QTL. Each dot represents a single gene. Its position

on the x axis is its position within the QTL. Its position on the y axis is the functional -log10(UPPR) derived from the

SVM. Points are colored based on is correspondence with the trait—green with CXCL1, orange with MMP8, and blue

with M. tuberculosis burden. Fam20b and Ncf2 genes had the highest functional scores. QTL mapping results from

n = 853 M. tuberculosis infected Diversity Outbred mice up to 250 days post infection.

https://doi.org/10.1371/journal.ppat.1011915.g006

Table 2. Loci, candidate genes, protein functions, genome annotations, founder alleles with single nucleotide polymorphisms (SNPs), and predicted effects of SNPs

on protein functions. Predicted effects of missense SNPs on proteins were identified using Ensembl’s Variant Effect Predictor and Sorting Intolerant from Tolerant

(SIFT) databases. SIFT produces scores based on sequence homology and physicochemical similarity between amino acids encoded by SNPs. Normalized scores are based

on the probability that the amino acid change is tolerated, with scores< 0.05 are predicted to be deleterious and all other scores are predicted ’tolerated’.

QTL Candidate Known protein functions MVAR genome annotations* Alleles with SNPs** Predicted effects of missense SNPs

Dots1 Ncf2 superoxide production Cn, Cs, I, U3, U5 129, cast, nod, nzo, pwk, wsb 2 of 2 tolerated

Dots1 Fam20b glycosaminoglycan synthesis Cn, Cs, I, U3, U5 129, aj, cast, nod, nzo, pwk, wsb No missense SNPs

Dots3 S100a8 calgranulin A neutrophil responses Cn, Cs, I, U3, U5 129, cast, nod, nzo, pwk, wsb 4 of 15 deleterious

Dots3 S100a9 calgranulin B neutrophil responses Cs, I cast, nod, nzo, pwk, wsb 1 of 1 tolerated

Dots5 Itgb5 integrin subunit binds fibronectin Cn, Cs, I, U3, U5 129, cast, pwk, wsb 2 of 6 deleterious

Dots5 Fstl1 angiogenesis, wound-healing, fibrosis Cn, Cs, I, U3, U5 aj, cast, pwk, wsb 3 of 4 deleterious

Dots5 Zbtb20 transcriptional repressor Not annotated aj, cast, nod, pwk, wsb Not available

Dots8 Ddr1 interacts with collagen, fibrosis Cn, Cs, I, U3, U5 129, aj, cast, nod, nzo, pwk, wsb No results retrieved

Dots8 Ier3 signaling pathways, apoptosis Cn, Cs, I, U3 aj, nod, pwk, wsb No results retrieved

Dots8 Vegfa angiogenesis, endothelial activation Cs, I, U3, U5 129, cast, nod, nzo, pwk, wsb No missense SNPs

Dots8 Zfp318 transcriptional repressor in B cells Cn, Cs, I, U3, U5 129, cast, nod, pwk 4 of 16 deleterious

*Mouse Variation Registry (MVAR) annotations

Cn Non-synonymous variant in codon, including missense.

Cs Synonymous variant in codon

I Variant in an intron

U3 UTR variant of the 3’ UTR

U5 UTR variant of the 5’ UTR

** Bold alleles have high or low effects

https://doi.org/10.1371/journal.ppat.1011915.t002
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Fig 7. Quantitative Trait Locus (QTL) mapping of lung S100A8 identifies Dots3 on chromosome 3, containing the

gene candidates S100a8 and S100a9. Panel A: LOD score in the confidence interval from 90 to 92 Mb on

chromosome 3. Panel B: Founder allele effects within the confidence interval. Panel C: LOD score of the imputed SNPs

with the highest SNPs colored in red. Panel D: Genes in the same interval. The gene S100a8 is directly under the SNPs

with the highest LOD scores. Panel E: Functional scores for genes in the chromosome 3 QTL. Each dot represents a
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and interval 33.28–43.28 Mb (Table 1 and Fig 4). We calculated the first principal component

of these traits and plotted the LOD curve showing its peak (Fig 8A). The founder allele effects

indicate that C57BL/6J alleles contribute to greater values of principal component 1 and that

PWK/PhJ and NZO/HILtJ alleles contribute to lesser (Fig 8B). We imputed the founder SNPs

onto the Diversity Outbred genomes and performed association mapping around the peak,

showing the SNPs with the highest LOD scores (Fig 8C). The SNPs with high LOD scores (Fig

8D) were not missense, stop, or splice site SNPs in the 75 protein coding genes within the

interval (S1 File). By prioritizing genes based on functional relationships in network modules,

we identified Fstl1 and Itgb5 as functional candidates associated with weight loss, and Zbtb20
as a functional candidate associated with M. tuberculosis burden (Fig 8E and S2 File). Table 2

shows known protein functions, MVAR genome annotations, allele effects, founder alleles

containing SNPs, and predicted effects of missense SNPs in Fstl1, Itgb5, and Zbtb20 genes on

protein functions.

Chromosome 16: Diversity Outbred Tuberculosis Susceptibility locus

(Dots6)

Dots6 is a new QTL on chromosome 16 and shared by two correlated traits: M. tuberculosis
burden and CXCL5 with a peak at 52.23 Mb and interval 37.97–57.67 Mb (Table 1 and Fig 4).

The interval contains 101 protein coding genes (S1 File). Because the LOD score was less than

LOD threshold 7.64 for significance (pGW < 0.05), prioritization by functional scoring was not

pursued.

Chromosome 17: Diversity Outbred Tuberculosis Susceptibility locus

(Dots7)

Dots7 on chromosome 17 is not new, and overlaps with sst5 and sst6, QTLs that were previ-

ously identified by crossing C3HeB/FeJ and C57BL/6J inbred mouse strains [79]. Dots7 is asso-

ciated with M. tuberculosis burden and the LOD peaks ~20 Mb (Table 1 and Fig 4). The

interval contains 198 protein coding genes (S1 File). Because the LOD score was less than the

LOD threshold 7.64 for significance (pGW < 0.05), prioritization by functional scoring was not

pursued.

Chromosome 17: Diversity Outbred Tuberculosis Susceptibility locus

(Dots8)

Dots8 is not a new QTL and also overlaps with sst5 and sst6, two QTLs that were previously

identified by crossing C3HeB/FeJ and C57BL/6J inbred mouse strains [79]. Five traits: lung

granuloma necrosis (“Necr Ratio”), weight loss, MMP8, CXCL1, and IL-10 mapped to Dots8.

Lung granuloma necrosis had the highest LOD score (LOD = 8.12, pGW� 0.02) at 35.02 Mb

and interval 33.94–41.06 Mb Of those five traits, four positively correlated with each other (Fig

3) and had similar patterns of allele effects, and one, IL-10 had weak correlation and different

pattern of founder allele effects.

We calculated the first principal component of the correlated traits and again performed

QTL mapping. Principal component 1 mapped to a wide interval 30–50 Mb with a peak near

38 Mb (Fig 9A). The founder allele effects indicate PWK/PhJ alleles contribute to greater trait

single gene. Its position on the x axis is its position within the QTL. Its position on the y axis is the functional -log10

(UPPR) derived from the SVM. The gene S100a8 had the highest functional score. QTL mapping results from n = 853

M. tuberculosis infected Diversity Outbred mice up to 250 days post infection.

https://doi.org/10.1371/journal.ppat.1011915.g007
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Fig 8. Quantitative Trait Locus (QTL) mapping results of first principal component (PC1) of M. tuberculosis
burden, weight loss, and granuloma necrosis identifies Dots5 on chromosome 16, containing gene candidates

Fstl1, Itgb5, and Zbtb20. M. tuberculosis lung burden, weight loss, and granuloma necrosis map to a region on

chromosome 16 near 38 Mb. Panel A: LOD profile for M. tuberculosis in the confidence interval. The genomic position

on chromosome 16 is on the horizontal axis and the LOD score is on the vertical axis. Panel B: Founder allele effect in
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values, and NZO/HILtJ and NOD/ShiLtJ alleles contribute to lesser values (Fig 9B). We

expected to find polymorphisms in the proximal peak of Dots8 at 34–38 Mb because it con-

tains the mouse histocompatibility-2 (H-2; or Major Histocompatibility Complex-II MHCII).

This locus contains genes known to regulate innate and adaptive immunity and is known to be

highly polymorphic. Indeed, the highest SNP association mapping LOD scores were over the

mouse H-2 locus, located 36–38 Mb (Fig 9C), and there were 27 SNPs with protein-coding or

splice site variation which occurred in 15 genes (S3 File). Among these were several histocom-

patibility genes (H2-M1, H2-M5, H2-M9, H2-M11) and several tripartite motif (TRIM) family

genes (Trim10, Trim26, Trim31, Trim40).

The genes within the broad interval of Dots8 are difficult to show in the figure and are pro-

vided in S1 File. There were 361 protein-coding genes within the 30–50 Mb locus. We priori-

tized positional candidate genes based on their functional relationships in network modules to

the correlated traits (S2 File). This identified candidates Ddr1, Ier3, and Vegfa associated with

CXCL1; and Zfp318 associated with granuloma necrosis (Fig 9D). Table 2 shows known pro-

tein functions, MVAR genome annotations, allele effects, founder alleles containing SNPs, and

predicted effects of missense SNPs in Ddr1, Ier3, Vegfa, and Zfp318 genes on protein

functions.

Methodological and gene candidate validation

We performed three validation types shown in S6 Fig. This included (i) survival analysis of

Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus in Dots8 on chromosome

17; (ii) quantification of S100A8 protein levels in lungs of M. tuberculosis infected PWK/PhJ

and CAST/EiJ inbred founder strains; and (iii) infection of S100a8 C57BL/6 gene deficient

mice. Notably, infected Diversity Outbred mice carrying at least one copy of the PWK/PhJ

allele at the mouse H-2 locus had shorter survival than mice carrying other alleles at the H-2

locus (S6A Fig).

The Dots3 QTL on chromosome 3, associated with S100A8, had the highest LOD score,

narrowest interval, distinct founder allele effects, and the gene candidate was the S100a8 gene

itself. For these reasons, the locus was selected for additional study. To help validate the

method and ensure the founder allele effects generated by QTL mapping were biologically rel-

evant, S100A8 was measured in lungs of the two founder inbred strains with the highest and

lowest allele effects at the locus (Fig 7). As predicted by the allele effects, lungs from M. tuber-
culosis infected CAST/EiJ inbred mice contained significantly more S100A8 protein than

lungs from M. tuberculosis infected PWK/PhJ inbred mice (S6B Fig). To evaluate in vivo effects

of S100a8 genetic deficiency, we obtained C57BL/6 breeding pairs to generate knockout, het-

erozygous, and wild-type mice. Littermates with null mutation (knockout), heterozygous, and

wild-type C57BL/6 S100a8 alleles were infected with M. tuberculosis for up to 50 days. The

absence of one or both copies of the C57BL/6 S100a8 allele had minimal impact on M. tubercu-
losis lung burden (S6C Fig). The lung granulomas of knockout, heterozygous, and wild type

C57BL/6 mice were similar and non-necrotizing, composed of small dense aggregates of lym-

phocytes and macrophages, without neutrophils and lacking interalveolar pyknotic debris

the confidence interval. The vertical axis shows the estimates effect of gaining one founder allele. Panel C shows the

SNP LOD score for association mapping using imputed SNPs. Panel D: Genes in the confidence interval. Panel E:

Functional scores for genes in the chromosome 16 QTL. Each dot represents a single gene. Its position on the x axis is

its position within the QTL. Its position on the y axis is the functional -log10(UPPR) derived from the SVM. Points are

colored based corresponds to the trait—green with weight loss and blue with M. tuberculosis burden. Fstl1 was the top

ranked gene overall followed by Itgb5 and Zbtb20. QTL mapping results from n = 853 M. tuberculosis infected

Diversity Outbred mice up to 250 days post infection.

https://doi.org/10.1371/journal.ppat.1011915.g008
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Fig 9. Quantitative Trait Locus (QTL) mapping results of first principal component (PC1) of granuloma necrosis,

M. tuberculosis burden, weight loss, CXCL1 and MMP8 identifies Dots7 on chromosome 17, which contains gene

candidates Vegfa, Ier3, Ddr1, and Zpf318. Panel A: LOD score for PC1 of lung granuloma necrosis ratio, M.

tuberculosis burden, MMP8, CXCL1, and weight loss in the interval where the phenotypes map. Panel B: Founder allele

effects for the two peaks. Panel C: LOD score of the imputed SNPs in the interval, with the highest scoring SNPs
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(S6D, S6E and S6F Fig). This indicates that a lack or reduction of S100A8 has no major impact

on early M. tuberculosis growth or granuloma formation in C57BL/6 inbred mice. These find-

ings are unlikely to generalize to all genetic backgrounds, however, especially those genetic

backgrounds predisposed to early accumulation of neutrophils and necrotizing granulomas

with relatively high S100A8 levels, like the Diversity Outbred mice that are highly susceptible

to M. tuberculosis [24,34].

Discussion

TB remains a major public health concern in the United States and across the globe, with an

estimated 2 billion people infected with M. tuberculosis; 8–9 million patients diagnosed each

year, and 1–1.5 million deaths annually [2]. Fortunately, most humans (~90%) are highly resis-

tant to M. tuberculosis and clear or control infection [11,80]. In susceptible adults, active pul-

monary TB develops a few years following exposure and tends to occur in young to middle-

aged adults in the prime years of their lives [81]. The disease is usually restricted to the lungs

and is characterized by granuloma necrosis and cavitation, neutrophilic infiltration, and

cachexia [82,83]. The genetic basis of pulmonary TB is complex and not attributable to single-

gene defects that cause severe immune deficiency (i.e., Mendelian susceptibility to mycobacte-

rial disease does not explain pulmonary TB) [15,84–89]. Although genome-wide association

studies have identified loci, gene candidates, and SNPs associated with increased or decreased

odds ratios for pulmonary TB, only a few (e.g., Ipr1/SP110b and HLA variants/I-A Major

Histocompatibility genes) have been validated [16,90–96]. This has led investigators to seek

alternative experimental mouse models such as Diversity Outbred mice and Collaborative

Cross recombinant inbred strains to examine effects of genetics on host responses to M. tuber-
culosis [24–26,47].

An advantage of the Diversity Outbred mouse population is that infection with M. tubercu-
losis induces phenotypes that are rare in common laboratory inbred strains of mice [15–17].

Further, a growing body of evidence shows similarities in M. tuberculosis-infected Diversity

Outbred mice and humans in biomarkers, gene expression signatures, and BCG vaccination

[28,33,34,47,97]. The phenotypic similarities suggest that humans and Diversity Outbred mice

may share underlying genetic pathways of immunity and disease. And, because SNP variants

in the Diversity Outbred mouse genomes are dense, with balanced allele frequencies, any gene

that plays a role in disease is theoretically detectable [98]. This eliminates a problem common

to human genetic studies where under-represented alleles cannot be confidently associated

with disease phenotypes because they are low-frequency genetic events.

We performed genetic mapping in M. tuberculosis-infected Diversity Outbred mice and

used orthogonal methods to rationally select candidate genes. We first used DOQTL mapping,

which relies entirely on phenotypic and genetic variation, to find eight QTLs on six different

chromosomes named Dots1 through Dots8. To refine loci, we then subjected the QTLs on

chromosomes 1, 16, and 17 (Dots1, Dots5, and Dots 8) by mapping the first principal compo-

nent of the correlated traits with similar patterns of allele effects that colocalized to the same

interval. Finally, we applied a gene-based machine-learning SVM to identify and rank gene

candidates based on functional scores. The sequential methods narrowed the candidate gene

colored in red. Panel D: Functional scores for genes in the chromosome 17 QTL. Each dot represents a single gene. Its

position on the x axis is its position within the QTL. Its position on the y axis is the functional -log10(UPPR) derived

from the SVM. Points are colored based on correspondence to the traits—blue with CXCL1 and green with granuloma

necrosis. Vegfa was the top ranked gene overall followed by Ier3, Ddr1, and Zpf318. QTL mapping results from n = 853

M. tuberculosis infected Diversity Outbred mice up to 250 days post infection.

https://doi.org/10.1371/journal.ppat.1011915.g009
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list to eleven polymorphic, protein coding genes. Finally, the SNPs were critically examined

using publicly available databases to find four candidates (S100a8, Itgb5, Fstl1, Zfp318) where

missense SNPs are predicted to have deleterious effects on protein function.

All eleven candidates have roles in infection, inflammation, cell migration, extracellular

matrix remodeling, or intracellular signaling. Of those, only one (mouse Ncf2 in Dots1 on

chromosome 1) has a human homologue where a single SNP (G nucleotide in human NCF2

rs10911362) may provide a protective effect because this SNP was associated with a lower odds

ratio for pulmonary TB in humans [99]. Absence of Ncf2 in C57BL/6 inbred mice temporarily

impairs resistance to M. tuberculosis infection by abrogating superoxide production, but the

defect does not affect overall survival due to compensation by T cell mediated immunity [100].

Experimental validation of mouse Ncf2 and human NCF2 polymorphisms remains to be

confirmed.

We identified Fam20b in Dots1 QTL on chromosome 1. The gene encodes a xylosylkinase

that functions in glycosaminoglycan synthesis to produce extracellular matrix components in

tissues. Deficiencies are embryologically lethal or cause cranioskeletal malformations

[52,53,101,102]. A functionally homologous enzyme phosphorylates cadherins [103] which

regulate immune cell migration [104] by interacting with extracellular matrix components,

and since cell migration is required to form mycobacterial granulomas, Fam20b polymor-

phisms may alter host susceptibility to M. tuberculosis by changing extracellular matrix.

We identified S100a8 and S100a9 genes in Dots3 QTL on chromosome 3, which encode

S100A8 (calgranulin A) and S100A9 (calgranulin B). The proteins form monomers, homodi-

mers, heterodimers, and multimers in inflammation, host defense, and nociception [105–108].

Some forms activate Toll-Like receptor 4; some activate the receptor for advanced glycation

end-products (RAGE); and some sequester calcium, zinc, and manganese metal ions

[105,109,110]. In pulmonary TB, S100A9 contributes to neutrophil localization to granulomas,

and both S100A8 and S100A9 are biomarkers of TB-related lung damage [34,47,97,110–112].

Our results showing S100a8 deficiency does not impact on M. tuberculosis lung burden, or

granulomas, during early infection of C57BL/6 inbred mouse strain aligns with findings by

Scott et. al. [97]. More specifically, the authors showed that S100A9 was elevated during

chronic M. tuberculosis infection of C57BL/6 mice where it promotes neutrophil recruitment

by CD11b, and C57BL/6 mice lacking S100A9 had lower M. tuberculosis CFU by 100 days post

infection [97]. Whether these findings and mechanisms generalize to all genetic backgrounds

and to all forms of S100A8 and S100A9 remain open questions, as S100A8 has anti-inflamma-

tory functions [113] that appear independent from S100A9.

We identified Itgb5 in Dots5 QTL on chromosome 16 as a gene candidate. Itgb5 encodes the

beta 5 (β5) integrin subunit which dimerizes with the alpha v subunit to mediate cell adhesion

and signaling by binding to fibronectin and vitronectin [49]. Notably, the β5 subunit is on the

surface of cancer cells, and normal epithelial cells and activated endothelial cells but not on lym-

phoid or myeloid cells [49,114–120]. To our knowledge, neither the mouse nor human gene,

nor subunit β5, nor the αvβ5 integrin heterodimer have been investigated in pulmonary TB.

We identified Fstl1 in Dots5 QTL on chromosome 16. The primary transcript encodes

microRNA (miR)-198. The product is a secreted glycoprotein, FSTL1 with activities in angio-

genesis, cell proliferation, differentiation, embryogenesis, metastasis, and wound healing; spe-

cifically reducing inflammation and fibrosis in cardiovascular disease [51,121–124]. Notably,

Fstl1 affects survival of M. tuberculosis-infected macrophages [43,44,125]. Given the central

roles of macrophages, inflammatory mediators, and fibrosis in M. tuberculosis infection,

understanding how Fstl1 polymorphisms and FSTL1 function in vivo may inform TB patho-

genesis, and host-directed therapy.
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We identified Zbtb20 in Dots5 QTL on chromosome 16. The gene encodes a transcriptional

repressor involved in glucose homeostasis; growth; hematopoiesis; innate immunity; neuro-

genesis; and B cell development and long-term survival of plasma cells [54–57,126–130]. Natu-

ral mutations occur in humans with Primrose Syndrome, although immune deficiencies are

not reported [131]. To our knowledge, there are no studies on Zbtb20 and M. tuberculosis
infection or pulmonary TB. However, in Listeria monocytogenes infection, Zbtb20-deficiency

improved CD8 T cell memory functions due to efficient use of diverse fuel sources [57].

Whether the same is true in pulmonary TB is unknown.

We identified Ddr1 in Dots8 QTL on chromosome 17. Ddr1 encodes for the discoidin

domain receptor 1 (DDR1), which interacts with collagen [50]. Initial studies suggested DDR1

function was restricted to epithelial cells; however, recent work shows expression on solid

tumors, metastatic cells, and mouse histiocytic cancer cell lines, J774 and Raw264.7 [132–138].

DDR1 has additional roles in demyelination, fibrosis, vitiligo, and wound healing, and it is also

a promising target for anti-fibrotic therapy [139–143]. Whether Ddr1 (mouse) or DDR1

(human) gene polymorphisms contribute to pulmonary TB, or whether it could be a target for

anti-fibrotic therapy in TB are areas open for investigation.

We identified the immediate early response gene, Ier3 in Dots8 QTL on chromosome 17.

Ier3 transcription is triggered by cytokines, hormones, DNA damage, and infections. The pro-

tein, IER3, regulates apoptosis, DNA repair, differentiation, and proliferation by interfering

with NF-κB, MAPK/ERK and PI3K/Akt signaling pathways [58–60,144–146]. Mice lacking

Ier3 are more susceptible to Leishmania [147], an intracellular pathogen that shares some simi-

lar immune responses profiles with those induced by M. tuberculosis but we did not find stud-

ies showing that mutated Ier3 also increases susceptibility to M. tuberculosis. One in vitro
study of human macrophages, however, had high levels of IER3 mRNA following infection

with a hypervirulent strain of M. tuberculosis [148] indicating the transcriptional pathway is

triggered.

We identified Vegfa in Dots8 QTL on chromosome 17. Mouse Vegfa and human VEGFA,

encode for a heparin-binding protein and essential growth factor that induces proliferation,

migration, and permeability changes in vascular endothelial cells by binding VEGFR1 and

VEGFR2 [149–152]. Roles for VEGF in pathogenesis and diagnostics for extrapulmonary TB,

cavitary TB, and active TB have been published [153–155]. Myeloid-specific gene deletion of

Vegfa extended survival of C57BL/6J inbred mice infected with M. tuberculosis [156], highly

noteworthy because very few gene deletions improve survival. Whether Vegfa or VEGFA poly-

morphisms have the same effect is unknown.

Lastly, we identified Zfp318 in Dots8 QTL on chromosome 17. The gene encodes the tran-

scription factor, zinc finger protein 318 and it is expressed in testes, hematopoietic, and lymph

nodes [157]. In B cells, the protein represses transcription required for class switching, helping

to maintain B cell anergy and prevent autoimmunity [158–160]. Database and literature

searches identified no publications on mouse Zpf318 or human ZPF318 in infectious diseases.

When we compared genetic mapping results from Diversity Outbred mice to results from

colleagues using Collaborative Cross inbred strains [26], QTLs and gene candidates did not

overlap although we measured a few of the same traits by standard laboratory methods (e.g.,

body weight changes, lung M. tuberculosis burden, and lung CXCL1 by immunoassays). This

suggests that phenotype-genotype relationships in the Collaborative Cross strains may be fun-

damentally different than in the Diversity Outbred mouse population, possibly due to hetero-

zygosity in the Diversity Outbred population which is absent from Collaborative Cross inbred

strains. Other reasons could be differences in routes of infection that change the host cell types

first encountering M. tuberculosis bacilli which alters antigen presentation, T-cell, and B-cell

priming. Here, we modeled natural aerosol exposure by delivering a low dose of M.
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tuberculosis bacilli to the lungs of Diversity Outbred mice in nebulizer-delivered aerosol mist,

and then focused on quantification of lung disease. In contrast, Smith et al [26] took a different

approach by using intravenous infection with 1x106 bacilli to take advantage of their rich

library of transposon mutants, allowing detailed assessment of pathogen-associated QTLs. As

the intravenous route of infection favors rapid induction of acquired immunity by delivering

bacilli directly to lymphoid organs (i.e., spleen, thoracic, and abdominal lymph nodes by portal

and systemic circulation), this approach maximized identification of unique Host-Interacting-

with Pathogen QTLs and resulted in a prioritized list of candidate genes involved in immunity.

Overall, by using a systems genetics approach focused on the lungs, we identified multiple

new and existing QTLs, and 11 candidate genes. Of those, gene products for five (Ncf2, Fstl1,

Zbtb20 Vegfa, Zfp318) have known roles in recruitment, activation, or regulation of effector

functions of immune cells (e.g., neutrophils, monocytes, macrophages and CD8 T cells). The

gene products for three candidates (Fam20b, Itgb5, Ddr1) have known roles in epithelial cell,

endothelial cell, and (possibly) macrophage adhesion to extracellular matrix glycoproteins or

participate in remodeling of extracellular matrix. The gene products for two candidates

(S100a8 and S100a9) have complex and context-dependent roles in innate immune response

signaling and in host defenses. Finally, the gene product of one candidate (Ier3) controls early

stress responses of cells, including cell survival and death pathways. Ten of the eleven candi-

dates have annotated polymorphisms; six have missense SNPs in protein coding regions; and

the SNPs in four candidates (S100a8, Itgb5, Fstl1, and Zfp318) are predicted to have deleterious

consequences on protein functions. Together, these results yield a concise list of candidates

that may be major regulators of host necrotizing and inflammatory responses during M. tuber-
culosis infection and pulmonary TB disease progression. Future studies will focus on testing

effects of these gene candidates and polymorphisms in vivo and identification of pathogenic

molecular and cellular mechanisms.

Supporting information

S1 Fig. Mouse body weight following a low dose of aerosolized M. tuberculosis strain Erd-

man. Mice were infected with a low dose of M. tuberculosis strain Erdman by aerosol and

infection progressed unmanipulated until mice were euthanized due to IACUC-approved

morbidity criteria. Panel A: Body weight changes of identically housed, age-, gender-, and gen-

eration-matched non-infected Diversity Outbred (DO) mice (n = 49) compared to baseline.

Panels B, C, and D: Body weight changes of Progressor DO mice (n = 195); Controller DO

mice (n = 145); and C57BL/6J inbred founder strain mice that succumbed to pulmonary TB

(n = 39), are shown over time compared to pre-infection baseline. All mice were weighed 1 to

3 days prior to M. tuberculosis infection, at least twice per week during infection, and immedi-

ately before euthanasia. Each line is the body weight expressed as a percent change compared

to initial pre-infection body weight.

(TIF)

S2 Fig. Clinical correlates of survival due to pulmonary TB in Diversity Outbred (DO)

mice following exposure to a low dose of aerosolized M. tuberculosis strain Erdman. Age-,

gender-, and generation-matched DO mice were assigned to cages at random, and infected (or

not infected) with a low dose of M. tuberculosis strain Erdman by aerosol exposure. All mice

were initially weighed 1–3 days prior to infection, at least twice per week during infection, and

immediately before euthanasia. Panel A: shows retrospective analysis of pre-infection body

weights of Non-infected mice (n = 76) compared to pre-infection body weights of Progressors

(n = 298) and pre-infection body weights of Controllers (n = 195), shown as box-and-whisker

plots with the line at the mean for each group, and whiskers at the minimum and maximum.
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Data were analyzed by 1-way ANOVA with Tukey’s multiple comparisons test ***p<0.001;

****p<0.0001. Panels B, C, D: Infection progressed unmanipulated until mice were euthanized

due to IACUC-approved morbidity criteria. Panel B: The rate of weight loss (gm/day) and

duration of body weight (BW) loss in days negatively correlate with each other. Panel C: Dura-

tion of BW loss was strongly, positively, and linearly correlated with survival by Spearman cor-

relation analysis (r = 0.848 with dashed lines indicating the 95% confidence interval, 0.8204 to

0.8717, p<0.0001). Panel D: Correlation matrix to show how survival and eight clinical indica-

tors correlate with each other. Only correlations with p-values <0.00001 are shown on the

matrix. Cells marked by an “X” were not significantly correlated.

(TIF)

S3 Fig. Examples of necrotizing and non-necrotizing lesions in lungs of M. tuberculosis
infected Diversity Outbred (DO) mice by light microscopy at high magnification. Lung

lobes were formalin-fixed, paraffin-embedded, sectioned, and stained with carbol fuschin and

counterstained with hematoxylin & eosin. Panels A and B: High magnification images of nec-

rotizing lung lesions. One example contains abundant pyknotic nuclear debris (A) and one

example contains abundant fibrin, eosinophilic cellular debris, and less nuclear debris (B).

Panels C and D: High magnification images of non-necrotizing lung lesions. Both examples

contain mostly viable cells, including macrophages, foamy macrophages, and foci of lympho-

cytes (400X).

(TIF)

S4 Fig. Similar patterns of founder allele effects for four traits that map to distal chromo-

some 1 QTL. The pattern of founder allele effects of four correlated traits all with LOD > 6.0

on chromosome 1 at 155.36 Mb is similar. Panel A: Founder allele effects for CXCL1. Panel B:

Founder allele effects for CXCL2. Panel C: Founder allele effects for MMP8. Panel D: Founder

allele effects for M. tuberculosis burden. Founder strain names are on the horizontal axis and

the standardized allele effect are on the vertical axis. Allele effects from QTL mapping results

from n = 853 M. tuberculosis infected Diversity Outbred mice up to 250 days post infection.

(TIF)

S5 Fig. Receiver operator characteristic (ROC) curves for SVM training on traits used in

gene prioritization. Each panel shows the true positive rate of the trained SVM as a function

of the false positive rate for each trait. The area under the curve (AUC) is noted for each panel.

(TIF)

S6 Fig. Validation of QTL mapping results. Panel A: M. tuberculosis infected Diversity Out-

bred (DO) mice with one or more PWK/PhJ alleles (red) at the H-2 locus on chromosome 17

in Dots8 (near 36 Mb) have significantly reduced survival compared to DO mice carrying

other alleles (grey) (p = 0.00075, Cox-PH test). Days of survival are shown on the horizontal

axis and the proportion of mice surviving is shown on the vertical axis. Panel B: Lungs from

M. tuberculosis infected CAST/EiJ inbred mice contain significantly more S100A8 protein (cal-

granulin A) than lungs of PWK/PhJ inbred mice at the time points indicated on the horizontal

axis. PWK/PhJ (red) and CAST/EiJ (green) inbred founder strains with 4–6 mice per strain

per time point, analyzed by Mann-Whitney t-tests within each time point, *p<0.05. Panel C:

M. tuberculosis infected S100a8 knockout (KO), heterozygotes (HET), wild-type (WT) C57BL/

6 inbred mice were euthanized at the time points indicated, and M. tuberculosis lung burden

assessed by CFUs with total combined 15–22 mice per genotype per time point from 2 inde-

pendent experiments, shown as average and standard error of the mean. No significant (ns)

differences were identified within each time point by mixed effects ANOVA with Tukey’s

post-test (p<0.05). Panel D, E, F: Representative examples of lymphohistiocytic non-
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necrotizing granulomas day 50 post infection from S100a8 knockout (D), heterozygous (E),

and wild type (F) C57BL/6 inbred mice magnified 400x normal.

(TIF)

S1 File. This file is an Excel workbook containing worksheets that list all protein-coding

genes in each QTL with the functional candidates highlighted.

(XLSX)

S2 File. This is an Excel file that lists the top ten functional candidates for each trait in

each QTL.

(XLSX)

S3 File. This is an Excel file that lists genes within chromosome 17 QTL.

(XLSX)
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