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Abstract

Polygenic risk scores (PRS) estimate genetic susceptibility of an individual to disease and are 

increasingly proving clinical utility. However, their performance, computation, and reporting in 

diverse populations remain challenging. Here, we present a pragmatic approach to optimize a PRS 

for a population of interest that leverages publicly available data and methods and consists of 

seven steps that are easily implemented without requirement of expertise in complex genetics.

Step 1: Selecting source GWAS and imputation

Step 2: Selecting methods to compute polygenic score

Step 3: Adjusting scores using principal components of ancestry

Step 4: Selecting the best performing score

Step 5: Defining percentiles of a population distribution

Step 6: Validating performance of the optimized polygenic score

Step 7: Implementing the optimized polygenic score in clinical practice
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INTRODUCTION:

Polygenic risk scores (PRS) – which estimate the genetic susceptibility of an individual to 

a disease or trait by combining the effects of common variation across the genome – are 

now commonly used in translational research and starting to penetrate clinical practice.(Patel 
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and Khera, 2022; Klarin and Natarajan, 2022; Kumuthini et al., 2022; Adeyemo et al., 

2021; O’Sullivan et al., 2022) However, a major barrier to the widespread adoption of PRS 

is their reduced performance when computed in populations that were not represented in 

the discovery genome-wide association studies (GWAS).(Martin et al., 2019; Adeyemo et 

al., 2021; Novembre et al., 2022) Because more than 80% of the participants of GWAS 

in the world are of European ancestry, commonly available polygenic risk scores have 

the strongest performance in individuals of European ancestry and reduced performance in 

ancestries outside of Europe.(Martin et al., 2019; Fahed Akl C. et al.; Dikilitas et al., 2020) 

This problem is now considered a top priority area in genomics, with ongoing efforts to 

increase representation in genomic studies and improve methods of computing polygenic 

scores.(Adeyemo et al., 2021; Wand et al., 2021; Patel et al., 2023; Ruan et al., 2022) Those 

efforts are already showing promise for some traits/scores such as increased representation 

of East Asians,(Ishigaki et al., 2020; Chen et al., 2011) and improved multi-ancestry scores 

for lipids and coronary artery disease.(Patel et al., 2023) Beyond continental ancestries 

however, subcontinental population groups, admixed populations, and populations with 

distinct gene-environment interactions continue to struggle to use an “out-of-the-box” PRS 

for a trait of interest in that population. A more pragmatic approach that leverages the use 

of existing datasets to optimize a PRS for a specific population is necessary to help advance 

equitable implementation of PRS around the world.

There are at least four reasons why PRS developed in one population have reduced 

performance in another population.(Martin et al., 2019; Salehi Nowbandegani et al., 2023) 

First, the effect size of a genetic variant in one population might be different from another 

population. Effect size estimates for genetic variants are obtained from GWAS studies, and 

those are used to derive PRS. GWAS are often very large and not representative of global 

populations with strong Eurocentric bias, and as such, the effect size estimated from those 

might not represent the true effect size in the target population. Second, even for known 

variants associated with a trait, allele frequencies might differ among populations. In this 

case, a variant more strongly associated with the trait in the discovery GWAS, might be 

present but at much lower frequency in a target population. Third, the correlation structure of 

the genome known as linkage disequilibrium (LD) also varies across populations, such that 

there are different tagging vs. causal variants. These LD differences result in differences in 

effect size estimates from GWAS to target population. Fourth, gene-environment interactions 

are different across populations and also affect the predictive accuracy for PRS. Those 

include evolutionary gene-environment correlations, differences in prevalence or distribution 

of a trait in population, or simply comparisons across environmentally stratified cohorts such 

as a national biobank where there is healthy selection bias vs. a hospital biobank where 

there is enrichment for disease. Any approach to optimize a PRS for a population of interest 

should take into consideration those limitations and consider methods and datasets that 

systematically enable a correction of those factors that typically reduce performance.
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MULTI STEP APPROACH TO OPTIMIZE PRS FOR POPULATION OF 

INTEREST

Here, we present a pragmatic approach to optimize a PRS for a population of interest that 

leverages publicly available data and methods and consists of seven steps that are easily 

implemented without requirement of expertise in complex genetics (Figure 1). First, one 

or more source GWAS for the trait of interest are selected. Second, multiple methods for 

computing PRS are explored and many candidate PRS are computed. Third, the computed 

raw scores are adjusted using principal components of ancestry to generate ancestry-specific 

distributions of PRS. Fourth, in a training dataset, a best-performing score is selected from 

a list of multiple candidate scores and reported as the final optimized PRS in a validation 

dataset. Fifth, a population distribution is selected to define percentiles of the PRS and 

identify risk estimates associated with different population cut-offs (e.g., top 20% of the 

population with three-fold increased risk). Sixth, external validation of PRS performance 

provides additional confirmation that the optimized PRS performance is robust for the 

population of interest and could be moved into clinical implementation. Seventh, efforts to 

establish analytic validity of testing as well as reporting standards should be established and 

might be context-specific for a population.

While several tutorials and methods have been published to inform PRS development and 

optimization, they often require strict dataset requirements which are rarely available for 

most populations.(Choi et al., 2020; Patel and Khera, 2022; Hao et al., 2022; Page et al., 

2022) In this pragmatic multi step approach, we will present a framework that is flexible 

in accommodating variable data availability across populations. This is important because 

different populations might have drastically different datasets available at their disposal. 

At every step, we will highlight (i) the best-case scenario that could be performed in the 

presence of comprehensive data, (ii) what could be done with limited data, and (iii) what 

cannot be done due to risk of introducing bias and inaccuracy. Readers can then decide 

where they fall on the spectrum for each step based on unique aspects of their population 

and datasets available at their disposal. For example, in the case of an indigenous Arabs 

population, where datasets are limited but environmental risk factors are unique, it might 

be necessary to borrow effect estimates from global GWAS studies.(Saad et al.) In South 

Asian or East Asian populations where there are emerging larger datasets, using population-

specific GWAS to update effect size estimates might be feasible.(Weissbrod et al., 2022; 

Koyama et al., 2020)

STEP 1: SELECTING SOURCE GWAS AND IMPUTATION

Genome-wide association studies (GWAS) form the foundation of input data for 

constructing polygenic scores. In a GWAS, a logistic or linear regression is performed 

between a genotype with an outcome or continuous variable, respectively. The strength 

or effect size and statistical significance of these associations are determined for a 

selection of over millions of individual variants found at common frequencies across 

different populations. These summary statistics inform the input weights for polygenic score 

calculation. The accuracy of these summary statistics reflects the integrity of phenotyping 
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as well as the sample size, with larger datasets being able to achieve greater resolution in 

common variants with smaller effect sizes or rare variants with moderate effect sizes.

Ancestry can have a significant impact on the genetic architecture of traits and diseases. 

The allele frequencies of variants and haplotype blocks, or blocks of genetic material which 

are inherited together across generations of meiosis, differ across ancestries. The closer 

the ancestry of the source GWAS is to the target ancestry, the better the predictive power 

the final polygenic score will be achieved. To date, the bulk of GWAS participants are of 

European ancestry. As a result, polygenic scores using these largely European datasets have 

been shown to underperform in non-European ancestry populations.(Martin et al., 2019)

Ideally, when selecting a source GWAS, [*Copy Editor: Please query the authors if the 

course GWAS are from the GWAS Catalogue at EBI and if that could be included here.] 

the GWAS population will be large and closely match the target population. More complex 

and polygenic traits require a larger source GWAS to get more accurate estimates of weak 

effect sizes to develop a meaningfully predictive polygenic score when compared with traits 

whose variance is more fully explained by fewer variants of large effect.(Dudbridge, 2013; 

Zhang et al., 2023) However, in the absence of this, using summary statistics from a large 

consortium-based GWAS, which often incorporates meta-analysis of data across different 

ancestries is another feasible option. Furthermore, recent studies have demonstrated the 

potential in integrating summary statistics from multiple ancestries to help boost production 

in target ancestry using methods taking advantage of meta-analyzing summary statistics, 

leveraging LD patterns, and mixing polygenic scores.(Patel et al., 2023; Ruan et al., 

2022; Weissbrod et al., 2022) The method of mixing multi ancestry polygenic scores 

is of particular relevance when designing scores for mixed populations. For example, 

a polygenic score informed by GWAS from multiple ancestries and multiple traits had 

significantly improved performance in predicting CAD in individuals of Hispanic ancestry 

when compared to previously published scores informed by only European ancestry data.

(Patel et al., 2023) PRS computation methods from source GWAS will be described in the 

following section in STEP 2. Since many traits are genetically related, using multiple source 

GWASs of related traits to a trait of interest is another approach to further improve the 

performance of PRS. For example, we recently used this multi-trait approach to improve 

the performance of a coronary artery disease (CAD) PRS by borrowing genetic information 

from known CAD risk factors such as diabetes mellitus, body mass index, blood pressure 

and cholesterol, as well as other atherosclerotic diseases in different vascular beds such as 

peripheral artery disease and ischemic stroke.(Patel et al., 2023)

Available genotyping arrays only directly genotype hundreds of thousands to a few 

million common variants in each individual, however the alleles of millions of variants 

can be inferred through imputation. Genetic imputation algorithms leverage patterns of 

linkage disequilibrium (LD) observed in the reference panel. LD refers to the non-random 

association of alleles at different loci due to their physical proximity on the same 

chromosome. By comparing the genotypes of directly genotyped markers in the study 

dataset with a reference panel of whole genome sequences in a similar ancestry population, 

the algorithm can infer the genotypes of untyped markers that are in LD with the known 

ones. Prior to performing imputation, it is important to ensure high quality input data both 
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from the source GWAS as well as the training dataset, including removal of individuals 

with discordant reported versus genotypic sex, low genotyping rate (<95% or higher cutoff), 

putative sex chromosome aneuploidy, heterozygosity outliers, excess relatedness (second 

degree or closer) and removing variants with low minor allele frequency (<1%) and low 

call rates (<95% or higher cutoff). It is also important to ensure genome build is consistent 

across discovery, training, and target populations, otherwise the LiftOver tool can be used 

for conversion between builds.(Hinrichs et al., 2006)

Over the years, several genome reference panels have been created to facilitate genetic 

imputation, with recent datasets incorporating genomes from more diverse populations 

(Table 1). The 1000 Genomes Project is one of the oldest reference panels, providing 

detailed sequencing data for 2,504 individuals from 26 diverse populations.(Auton et al., 

2015) The UK Biobank, which is a large-scale genetic and health data resource of largely 

European-ancestry individuals, has also released whole-genome sequencing data for almost 

500,000 participants which can be used for imputation.(Bycroft et al., 2018) More recently, 

efforts have centered around collecting whole-genome sequencing data for a diverse set of 

populations. The Trans-Omics for Precision Medicine (TOPMed) program is an initiative 

by the National Heart, Lung, and Blood Institute (NHLBI) that provides whole-genome 

sequencing data for 53,831 individuals of diverse ancestry.(Taliun et al., 2021) Similarly, 

the GenomeAsia 100K Project has assembled genome sequencing reference data from 1,739 

individuals of 219 population groups across Asia.(Wall et al., 2019) The African Genome 

Variation Project (AGVP) is an ongoing effort to provide whole-genome sequencing data for 

diverse African populations to help boost imputation accuracy in this group.(Gurdasani et 

al., 2015) After imputation is performed, imputation quality of each variant is assessed with 

“info score”, of which >0.8 is recommended for inclusion in subsequent PRS analyses.

With advances in technology and falling costs of sequencing, whole genome sequencing 

(WGS) has become more readily available. As WGS datasets provide the sequence of each 

variant in the genome for each individual, population-specific effects from LD patterns 

will play less of a role in polygenic score analyses. In addition to the common variants, 

rare variants will also be able to be included in the genome-wide association studies 

and resulting polygenic scores to ultimately result in more accurate genetic prediction. 

Another available technology is low coverage whole genome sequencing (lcWGS) which 

also enables polygenic score analyses without the need for imputation and at a markedly 

lower cost compared to WGS.(Homburger et al., 2019)

STEP 2: SELECTING METHODS TO COMPUTE POLYGENIC SCORE

Numerous methods to develop polygenic scores have been developed over the years (Table 

2). These methods can be split up into three main frameworks based on their statistical 

approach: frequentist, Bayesian, and hybrid.

Frequentist methods refer to classical statistical approaches that do not involve Bayesian 

inference. The naive scoring approach calculates polygenic scores by summing the effect 

sizes of genetic variants weighted by their allele frequencies and genotypes in the target 

dataset. The PRSice and PLINK software packages allow for these calculations.(Purcell et 
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al., 2007; Choi and O’Reilly, 2019) They also allow for thresholding and clumping to select 

relevant variants for score calculation based on linkage disequilibrium blocks to improve the 

selection of relevant variants and improve the accuracy of resulting scores. BOLT-REML 

(Bayesian and Omnibus Linear regression with Twin and RElated MethoLogies) is a method 

that uses a linear mixed model to estimate genetic effects while accounting for relatedness 

between individuals and provides added efficiency when analyzing large-scale datasets.(Loh 

et al., 2015a)

Bayesian algorithms incorporate prior knowledge about genetic architecture, leveraging 

population-specific reference data or external databases to assign weights more accurately to 

variants and enhance prediction accuracy. BayesR models the effects of all genetic variants 

simultaneously, assuming that only a subset of variants has non-zero effects on the trait, 

effectively shrinking the coefficients of irrelevant variants to zero. SBayesR (Spike and 

Slab Bayesian Regression) incorporates a spike-and-slab prior to model the distribution 

of effect sizes, allowing for sparse polygenic models with a subset of variants having non-

zero effects.(Lloyd-Jones et al., 2019) BOLT-LMM (Bayesian and Lasso-Adjusted Linear 

Mixed Model) combines linear mixed models with a Lasso-penalized regression to estimate 

the polygenic score while efficiently handling large-scale genetic data and accounting for 

relatedness between individuals.(Loh et al., 2015b) LDpred (Linkage Disequilibrium score 

regression) and LDpred2 estimate the effect sizes of genetic variants while accounting 

for linkage disequilibrium patterns in the genome.(Privé et al., 2020; Vilhjálmsson et al., 

2015) PRS-CS (Polygenic Risk Score - Conditional and Sparse) estimates the effect sizes 

of genetic variants while allowing for sparsity in the polygenic model.(Ge et al., 2019) 

It identifies a subset of relevant variants with non-zero effects, reducing the number of 

predictors in the polygenic score. PRS-CSx additionally incorporates genetic effects across 

populations through a shared continuous shrinkage (CS) prior, allowing for more improved 

effect size estimation from sharing information between summary statistics and leveraging 

LD diversity across input GWAS.(Ruan et al., 2022)

Hybrid methods combine elements of frequentist, Bayesian, and additional techniques such 

as Lasso regularization. For example, SuSiE (Sum of Single Effects) is a hybrid algorithm 

that uses Bayesian spike-and-slab regression to estimate sparse polygenic models.35 [*Copy 

Editor: the superscript 35 appears that it might be a citation. Please query the authors.] It 

selects a subset of genetic variants with non-zero effects, reducing the number of predictors 

in the polygenic score and improving its interpretability.

For developing polygenic scores for a non-European or admixed dataset, methods that 

leverage commonalities across ancestries such as PRS-CSx are most likely to yield the 

strongest performance. The most optimal course of action, however, is to generate scores 

using multiple methods and pick the modality resulting in the best performance in a target 

population.
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STEP 3: ADJUSTING SCORES USING PRINCIPAL COMPONENTS OF 

ANCESTRY

The process of polygenic score development, validation, and interpretation occurs in the 

context of a reference population, and therefore this must be accounted for in analysis to 

avoid confounding. Genetic architecture varies across different populations due to historical 

migrations and genetic drift. Important distinctions include differences in allele frequencies 

and linkage disequilibrium patterns. These differences can result in significant error in 

assigning polygenic score weights particularly when imputation is used. If not correctly 

accounted for, different populations appear to have vastly different distributions of genetic 

risk relative to each other.

The standard way to adjust for population stratification is using principal components of 

genetic ancestry, which are linear combinations of genetic markers that capture the major 

sources of genetic variation within a population.(Price et al., 2006) A linear regression 

model can be used to regress principal components of genetic ancestry with the polygenic 

score. The model can be used to predict a polygenic score and these values are then 

subtracted from the raw polygenic score to get an adjusted score. The adjusted score is then 

scaled so that its mean is 0 and standard deviation is 1 to facilitate analysis. This commonly 

centers the population-specific polygenic distributions and allows for better comparison of 

genetic risk across groups (Figure 2).

STEP 4: SELECTING THE BEST PERFORMING SCORE

To ensure the accuracy, reliability, and generalizability of the polygenic score, it is important 

to ensure independence of discovery, training, and validation datasets, as is the case for other 

predictive models (Figure 3). The discovery datasets refer to the genome-wide association 

studies that were used to generate the weights for each variant in the score. Only summary 

level data is required, and these datasets are often publicly available for download, such as 

in the GWAS catalog.(GWAS Catalog) The training data set refers to the individual-level 

data used to build the polygenic score model. It is used to identify the relevant genetic 

variants associated with the trait, estimate their effect sizes, and compute the additional 

polygenic score algorithm-specific hyperparameters which lead to the best performing score. 

The validation dataset refers to individual-level data used to evaluate the performance of 

the polygenic score model. The training and validation datasets could be partitions of an 

available dataset, or these steps can occur in completely separate studies. For validation of 

PRS for highly heritable traits, effective sample sizes of at least 100 individuals are needed 

for meaningful analyses (Choi et al., 2020).

When benchmarking polygenic risk scores, it is essential to consider multiple metrics 

to get a comprehensive understanding of their performance i) in the training dataset to 

select the best parameters and score version and ii) in the testing dataset to compare with 

other available scores and clinical risk estimators (Table 3). Simple correlation metrics like 

Pearson correlation quantify the correlation between the PRS and continuous trait values. 

The strength of association between polygenic scores and a binary trait can be expressed 

using measures of risk, such as cox proportional hazards or odds ratios. These metrics are 
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often reported per standard deviation of the polygenic score scaled to a standard deviation of 

1 and mean of 0. Individuals in the top percentiles of the score can also be compared with 

remaining individuals in the population or the middle quintile of individuals when reporting 

these risk estimates.

R-squared (R2) measures the proportion of variance in the trait or disease explained by the 

polygenic risk score. A higher R2 indicates that the PRS can better predict the phenotype 

of interest. Similar to R2, Nagelkerke’s R2 measures the proportion of variance explained 

by the PRS but is adjusted for the baseline prevalence of the trait. A similar metric, 

the log liability R2 helps explain the proportion of variance explained to allow for direct 

comparison on the heritability scale.38 [*Copy Editor: Again, please ask the authors about 

this superscript.]

Metrics of discrimination are particularly relevant when assessing polygenic scores. The 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC-AUC) assesses the 

discriminatory power of the PRS model. It plots the true positive rate against the false 

positive rate at various prediction thresholds. An AUC value closer to 1 indicates better 

discrimination. The concordance statistic, or C-statistic, reflects the area under the ROC. A 

related metric, the Precision-Recall Area Under the Curve (PR-AUC) is useful when dealing 

with imbalanced datasets.

Finally, measures of reclassification help compare the added value of polygenic scores 

to available models. The Net Reclassification Improvement (NRI) evaluates whether the 

addition of PRS improves risk classification compared to a baseline model without the PRS. 

This can be calculated on the continuous spectrum or based on a threshold. Similarly, the 

Integrated Discrimination Improvement (IDI) assesses the improvement in risk prediction 

when including the PRS in the model.

STEP 5: DEFINING PERCENTILES OF A POPULATION DISTRIBUTION

PRS is defined as a percentile of a population distribution which enables quantification of 

risk in individuals or groups within a population. Given that PRS has a normal distribution 

in any population, individuals are ranked into 100 groups from lowest to highest PRS value. 

Individuals with higher percentile numbers have higher risk and vice versa. Commonly, 

the extremes of the distributions are used to define relative risk, compared to the average 

population risk or middle of the distribution. For example, the top quintile of the population 

distribution of a recent CAD PRS was associated with three-fold increased risk of CAD 

compared to the average (Patel et al., 2023). This means that this PRS can detect 20% of the 

population at 3-fold increased risk of CAD. Clinical reports of PRS use specific percentile 

thresholds to define risk depending on the PRS, disease, and reporting mechanisms (Wand et 

al., 2021; Brockman et al., 2021; Maamari et al., 2022).

The selection of the population distribution used to define percentiles is an important 

step, especially in the context of ancestrally diverse populations and smaller case-control 

datasets used for PRS derivation. As a general rule, the dataset used to define the population 

distribution should be representative of the population in which PRS is being used. In many 
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cases where the training and validation sets are large and not markedly biased for disease, 

such as in population cohorts or national biobanks, those same datasets can be used to define 

the percentiles as they are usually representative of the population. For example, polygenic 

scores derived from the UK Biobank, a prospective nationwide population-based study of 

half a million middle-aged participants in the UK, typically use the UK Biobank itself to 

define percentiles (Inouye et al., 2018; Khera et al., 2018).

However, when smaller case-control datasets that are enriched for disease of interest are 

used to train and validate a PRS, a separate dataset that is representative of the population 

is needed to define percentiles. Such case-control datasets by definition are heavily skewed 

to disease and not representative of the population. It is preferable to use a separate dataset 

not enriched for the disease of interest. In order to have an accurate percentile distribution, 

it is preferable that this dataset is large enough (usually more than 1000 participants). 

There are different ways of having a representative population distribution that are context 

specific. For example, in a recent work optimizing PRS in Saudi Arabia, we used a 

reference population of 1017 individuals sampled from 28 tribes of Saudi Arabia without 

consideration of any disorders (Mineta et al., 2021). Similarly in deriving a PRS for South 

Asians, a separate dataset of 1,733 individuals from a population-based study in India were 

recruited without consideration of disease status (Wang et al., 2020b).

STEP 6: VALIDATING THE OPTIMIZED POLYGENIC SCORE PERFORMANCE

Validating a polygenic score involves testing it in an independent population to determine its 

accuracy, reliability, and generalizability. As with training, the polygenic score is modeled 

along with age, sex, and principal components of genetic ancestry, and performance is 

benchmarked by a variety of previously described metrics (Table 3). The size of the 

validation cohort is crucial for obtaining meaningful results. Small sample sizes may lead 

to unstable estimates and reduced statistical power, making it challenging to draw reliable 

conclusions about the polygenic score’s performance. Oftentimes, a single cohort is divided 

into a subset for training and validating. Although convenient, this often is subject to 

overfitting, and internal validation produces stronger associations which are difficult to 

reproduce in other datasets. However, in the absence of abundant, independent, ancestry-

specific datasets, this is a reasonable option.

For a score to be implemented widely, it is important to benchmark its performance to other 

scores in external validation datasets, at least in the target ancestry and ideally in multiple 

ancestries. Comparing the performance of a new score with previously published scores 

helps identify which predictor would be most useful for future analyses. The Polygenic 

Score Catalog (http://www.pgscatalog.org/), [*Copy Editor: added the url – please inform 

the authors.] an open database of published polygenic scores for any trait or disease, is 

valuable for performing such comparisons (Lambert et al., 2021). It is important to note 

that even when scores are trained and externally validated in the same ancestral group, 

the performance of the score can vary based on other factors, such as geographic or 

environmental differences. For example, a polygenic score for coronary artery disease 

trained in the UKBB European ancestry individuals had diminished performance when 
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applied in White participants in the Million Veteran Program (Gaziano et al., 2016; Patel et 

al., 2023).

STEP 7: IMPLEMENTING THE OPTIMIZED POLYGENIC SCORE IN CLINICAL 

PRACTICE

Moving PRS from a research tool into clinical implementation requires additional 

considerations that are also relevant in the context of diverse populations (Hao et al., 2022). 

Those considerations fall under three groups. First, clinical assays need to be constructed 

which require confirmation of analytical validity.(Hao et al., 2022) The variability in 

the validity of PRS in diverse ancestries whether non-European or admixed needs to be 

accounted for, both in the way PRS is calculated for an individual patient and the way 

it is interpreted. In an ideal world, an ancestry specific PRS would be used and reported 

based on its published effect size estimates to individuals of each ancestry. However, this 

is not possible in most cases and multiple alternative approaches are often used: (i) In one 

approach, a single PRS could be used for all ancestries, preferentially one that performs 

well (but still variably) across multiple ancestries, and “high-risk” is defined for different 

percentile cut-offs that result in equivalent risk increase across ancestries. This approach 

results in a lower proportion of the population where the PRS has a reduced performance 

being reported as “high-risk” compared to the population where the PRS has a higher 

performance, but the risk level reported to those individuals is similar. (ii) In another 

approach, the same percentile cut-off is used but different risk levels are reported for 

different ancestries. (iii) A modification of this latter approach is having a disclaimer around 

the lower performance of the score in individuals of non-European ancestries but without 

specifying the risk level.

Second, clinical reports of PRS need to be created in a way that is understandable by 

their target audience, patients and/or providers. There are no standards of clinical reports 

today and practices vary significantly as we have recently reviewed.(Brockman et al., 2021) 

However, it is critical that reports are designed in a user-centric approach that also takes 

into consideration the target audience with regards to comprehension and reactions elicited 

by receiving the result.(Muse et al., 2022; Maamari et al., 2022) The content of the report 

itself can also vary with regards to the amount of details with regards to recommendations 

and guidance on next steps vs. limiting to an interpretative service. In the context of diverse 

populations, reports should be delivered in a user-centric lens with regards to the level of 

understanding, language barriers, and even cultural considerations on how risk is perceived.

Third, disclosure of PRS results to patients should occur in the context of clinical workflows 

and resources that support their use for patients and providers. Genetic counseling services 

are often paired with disclosure of the results. Clinical guidelines will be needed to guide 

providers on when to order the test and what to do with the results. This still however 

remains in its infancy as translational research with prospective studies on clinical utility 

continues to accumulate.
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CONCLUSION

Polygenic risk scores are a powerful tool with emerging clinical utility. Leveraging the 

advantage of DNA information available early in life, they can deliver on the promise 

of precision medicine across multiple disease areas. Their variable performance across 

populations, particularly reduced cross-ethnic performance in ancestries outside Europe, is 

an important limitation to advancing translational research and clinical utility. However, 

increasing availability of public datasets and tools enables us to optimize a PRS for a 

population of interest. We presented a pragmatic seven-step approach to optimize a PRS in 

diverse populations starting from identifying a genome-wide association study for a trait of 

interest, developing the PRS for that trait that will perform best in the population of interest, 

and all the way to implementing its disclosure to the next patient in the clinic.
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Figure 1. Pragmatic Multi-Step Approach to Optimize Polygenic Risk Scores to Populations of 
Interest
A pragmatic approach to optimize a polygenic risk score for a population of interest 

leverages publicly available data and methods is described in seven steps that are easily 

implemented without requirement of expertise in complex genetics. GWAS: Genome Wide 

Association Studies, PRS: Polygenic Risk Score
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Figure 2. Raw vs. Ancestry-Adjusted Polygenic Score Population Distributions
(A) Raw distribution of a recently published polygenic risk score (PRS) for coronary 

artery disease (GPSMult) in individuals of African (n=7,281), East Asian (n=1,464), 

European (n=308,264), and South Asian (n=8,982) ancestries shows shifted distributions 

due population stratification. (B) When the same PRS is adjusted for principal components 

of ancestry as described in STEP 3 the distributions are overlapping. Briefly, a linear 

regression model is used to regress principal components of genetic ancestry with the PRS. 

The model is then used to predict a PRS, and these values are then subtracted from the 

raw PRS to get an adjusted score. The adjusted PRS is then scaled so that its mean is 0 

and standard deviation is 1. This centers the population-specific polygenic distributions and 

allows for better comparison of genetic risk across groups.
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Figure 3. Datasets Used for Development of Polygenic Risk Score
Three datasets are often used to develop a polygenic risk score (PRS). First, a discovery 

dataset is used to establish the genetic associations of the trait or disease in question, or in 

other words to perform a genome-wide association study (GWAS). For pragmatic purposes, 

existing GWAS association statistics that are publicly available are used as described in 

STEP 1. Second, a training dataset is used to compute multiple PRS and select the best-

performing one as described in STEPS 2, 3 and 4. Third, a validation dataset is used to study 

and report the performance of the optimized PRS. While an external validation dataset is 

preferable, it is common practice to also split a single large enough dataset into training and 

validation datasets.
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Table 1.

Select Imputation Reference Panels

Reference Panel Number of genome sequences Ancestral distribution

1000 Genomes (Auton et al., 2015) 2,504 26 world populations

Trans-Omics for Precision Medicine (Taliun et al., 2021) 97,256 4 continental populations

GenomeAsiaV2 (Wall et al., 2019) 6,461 219 Asian populations

NyuWa (Zhang et al., 2021) 2,999 Chinese population

Haplotype Reference Consortium (McCarthy et al., 2016) 32,488 European population

CAAPA (Mathias et al., 2016) 883 African American population
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Table 2.

List of polygenic score methods used with a brief description and parameters

Method Software Description Web Resource Citation

Frequentist Statistical Approach

PRSice-2 PRSice-2 Clumping and P-value 
thresholding (C+T)

https://choishingwan.github.io/PRSice/ (Choi and O’Reilly, 
2019)

BOLT-REML BOLT-REML Variance component 
analysis

https://alkesgroup.broadinstitute.org/BOLT-
LMM/BOLT-LMM_manual.html

(Loh et al., 2015a)

Bayesian Statistical Approach

PRS-CS PRS-CS Bayesian shrinkage https://github.com/getian107/PRScs (Ge et al., 2019)

PRS-CSx PRS-CS Bayesian shrinkage https://github.com/getian107/PRScsx (Ruan et al., 2022)

LDpred2 (-grid) bigsnpr (R 
package)

Bayesian shrinkage https://choishingwan.github.io/PRS-Tutorial/
ldpred/

(Privé et al., 2020)

lassosum2 bigsnpr (R 
package)

Lasso regression-based https://privefl.github.io/bigsnpr/reference/
snp_lassosum2.html

(Privé et al., 2022)

SBayes GCTB Bayesian shrinkage https://cnsgenomics.com/software/gctb/
#Overview

(Lloyd-Jones et al., 
2019)

BOLT-LMM BOLT-LMM Mixed model 
association testing

https://alkesgroup.broadinstitute.org/BOLT-
LMM/BOLT-LMM_manual.html

(Loh et al., 2015b)

Hybrid Statistical Approach

SUSIE susieR (R 
package)

Sum of single effects https://stephenslab.github.io/susieR/ (Wang et al., 2020a)
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Table 3.

Metrics for Studying the Performance of Polygenic Risk Scores

Metric Use Case

Predictive Ability

 Odds Ratio Logistic regression comparing either percentile groups or reporting per standard deviation of scaled score

 Hazard ratio Cox proportional hazards regression comparing either percentile groups or reporting per standard deviation of 
scaled score

Variance explained

 Nagelkerke R2 Phenotypic variance calculated on observed scale, can underestimate if disease prevalence is low

 Log-liability R2 Phenotypic variance calculated on the liability scale to allow for more direct comparison with heritability 
estimates

Discrimination

 AUC-ROC Measure of discriminatory capacity of a model in distinguishing between individuals with and without a certain 
trait or condition

Reclassification

 Net reclassification index Classification accuracy achieved by moving individuals into more appropriate risk categories when using 
polygenic score compared to another model, based on threshold or continuous scale
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